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Article history: Background and Objective : Computerised decision support systems (CDSS) in mechanical ventilation
Received 15 April 2025 (MV) provide individualised, closed-loop treatment but often require extensive input parameters,
Received in revised form 9 August 2025 which are challenging to obtain continuously in clinical settings. Many also fail to incorporate
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mechanical power (MP) and MP ratio — recently identified as significant predictors of patient outcomes.
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This study introduces the Stochastic Virtual Patient Ventilation Protocol (SVP VENT), a model-based

Keywords: CDSS addressing these limitations.

Mechanical ventilation Methods : The SVP VENT Protocol integrates a stochastic virtual patient model to predict temporal
Stochastic modelling lung elastance, E, trends and deliver closed-loop, lung protective ventilation minimising MP ratio
Virtual patients and driving pressure. The protocol was validated against the VENT and SiVENT protocols using an
Model-based protocol established virtual patient platform comprising over 1229 h of both volume control (VC) and pressure

Decision making

> . control (PC) retrospective MV data. Patient responses were monitored to ensure adherence to accepted
Respiratory mechanics

clinical safety guidelines.
Results : The SVP VENT protocol consistently outperformed retrospective clinical data, VENT and
SiVENT protocols in ensuring adherence to clinical safety metrics, achieving an all-adherence rate of
~57% and ~67% for the VC and PC cohorts, respectively. Across cohorts, the protocol maintained MP
and MP ratio levels below safety thresholds (12 J/min and 4.5, respectively), and extended intervention
intervals up to 3 h, potentially reducing clinical workload.
Conclusion : Overall, the virtual trial demonstrates the SVP VENT protocol’s potential to enhance
MV management by extending intervention intervals, while maintaining patient safety. These findings
support initial clinical trials to evaluate the protocol’s impact on clinical workload and patient safety
over prolonged monitoring periods, facilitating its integration into standard clinical practices.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction 2022; Ossai & Wickramasinghe, 2021), fuzzy logic (Banner et al.,
2008; Lozano et al., 2008; Steven , Michael, Neil, Carl, Layon,

Computerised decision support systems (CDSS) have emerged Andrea, 2011; Wang, Zhang, & Wu, 2016), or model-based meth-

to provide closed-loop and patient-specific mechanical ventila- ods (Buiteman-Kruizinga et al., 2023; Karbing et al., 2015; Patel
tion (MV) treatment. These CDSS aim to overcome the challenges et al, 2022; Rees & Karbing, 2017; Rees et al., 2022; Tehrani,
imposed by current care practices, which are based on gener-
alised guidelines. These practices also rely heavily on clinician
experience and expertise, and regular patient monitoring (Amer-
ling, Winchester, & Ronco, 2008; Chase et al., 2014; Fernandez
et al., 2015), resulting in potentially sub-optimal care and higher

2019; von Platen, Pomprapa, Lachmann, & Leonhardt, 2020; von
Platen et al.,, 2023; Zhang et al., 2021). These CDSS used physio-
logical models and/ or clinical guidelines to adjust MV settings,
such as respiratory rate (RR), tidal volume (V7), fraction of in-

clinical burden. spired oxygen (FiO,), positive end-expiratory pressure (PEEP)

Existing CDSS were developed based on machine learning and MV mode. They have demonstrated significant potential in

methods (Akbulut, Akkur, Akan, & Yarman, 2014; Hong et al., improving patient outcomes, underscoring the need for ongoing
research to refine and broaden their applications.

* Corresponding author. However, some CDSS rely on multiple physiological models

E-mail address: chiew.yeong.shiong@monash.edu (Y.S. Chiew). or very complex models. These CDSS can thus require extensive

https://doi.org/10.1016/j.ifacsc.2025.100334
2468-6018/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



CY.S. Ang, Y.S. Chiew, X. Wang et al.

input parameters such as arterial blood gas values and end-
tidal partial pressure of CO, (PETCO,) measurements, which can
increase clinical workload and burden to track (Rees et al., 2022;
von Platen et al., 2023). Finally, some variables can be challeng-
ing to continuously obtain in clinical settings. Consequently, the
complexity and added burden may limit the ability to adopt
these systems (Chase, Andreassen, Jensen, & Shaw, 2008; Parmar
et al,, 2022; Schonthal & Euchner, 2022; Wong, Naswall, Pawsey,
Chase, & Malinen, 2023), particularly in clinical environments
with limited infrastructure or personnel capacity.

The VENT (Lee et al, 2022) and SiVENT (Lee, Chiew, et al,,
2022) CDSS protocols offer personalised MV by providing a selec-
tion of MV parameters and settings using only measured airway
data. The SiVENT protocol also integrates stochastic prediction
to account for temporal changes in patient-specific respiratory
elastance (E,s) as patient state evolves (Chiumello et al., 2008;
Davidson et al., 2014; van Drunen et al., 2013). The MV settings
recommended by each protocol target lung-protective ventilation
by titrating patient MV responses based on patient-specific respi-
ratory mechanics. However, the VENT and SiVENT protocols have
a limited intervention period of 30 min, limiting clinical practi-
cality as a result of increased clinician workload. Furthermore,
both protocols and other CDSS do not account for mechanical
power (MP) and mechanical power ratio (MP ratio), which have
been more recently proposed as an important predictor of patient
outcomes (Gattarello et al., 2023; Gattinoni, Collino, & Camporota,
2023; Gattinoni et al., 2016; Goedegebuur et al., 2024; Kim,
Chung, Nam, Ko, & Suh, 2025; Manrique et al., 2024; Pozzi et al,,
2024; Serpa Neto et al., 2018; von Diiring et al., 2025; Yoon et al.,
2024).

While potentially valuable, MP is also not readily monitored
in real-time and titrating MP requires a delicate balance between
several MV parameters (RR, PEEP, Vr, and driving pressure), which
at times may be conflicting (Buiteman-Kruizinga, Serpa Neto,
& Schultz, 2022). This problem is further compounded by the
heterogeneity and everchanging pulmonary condition of MV pa-
tients (Pozzi et al., 2024), where the constant titration of these
MV parameters is hindered by limited clinical resources. Hence,
there is a need for CDSS with low clinical burden, such as SiVENT
and VENT, but with longer intervention intervals and including
mechanical power into their decision frameworks, all without
adding clinical workload.

This study presents a model-based CDSS for intensive care MV
treatment tested in a virtual patient platform. The CDSS integrates
a stochastic virtual patient (SVP) prediction method to provide
patient-specific prediction of temporal E,; trends, enabling ex-
tended intervention intervals based on patient-specific risk de-
fined by evidence-based protective guidelines. The developed
CDSS also focuses on delivering individualised, lung protective
ventilation in a closed-loop by targeting minimum MP ratio and
driving pressure (Gattarello et al., 2023). The protocol’s extended
intervention intervals can potentially reduce clinician workload,
thus improving the clinical utility of such CDSS.

2. Methodology
2.1. Patient selection

This study uses measured airway pressure, flow and vol-
ume (P-V-V) data from 12 retrospective MV patients of the

CAREsg cohort (Ref: DSRB Ref:2018/00042) (Ang, Chiew, Vu, &
Cove, 2022). The patients were ventilated for more than 24 h,

with volume-controlled (VC, N = 8 subjects, median weight:
73.9 [62.0-82.9] kg, median height: 170.5 [164.3-174.5] cm)
or pressure-controlled (PC, N = 4 subjects, median weight:

55.0 [49.9-63.8] kg, median height: 158.5 [156.0-165.0] cm)
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ventilation. Other MV settings were not fixed. Patient data were
stratified based on their MV modes, with the demographics of
each group of patients detailed in Table 1. The temporal profiles of
respiratory system elastance and MV parameters form the digital
twin of the clinical patients analysed in this study (Ang et al.,
2022), which is a tested virtual patient approach in general (Chase
, others, 2021; Chase et al., 2023).

All patients were ventilated using a Puritan Bennett PB980
ventilator. The airway pressure (cmH;0) and flow (L/min) data
were recorded using a data acquisition system at a sampling rate
of 50 Hz (Ng et al., 2021, 2022). Individual breathing cycles were
processed to remove incomplete breathing cycles or breaths with
excessive noise, patient effort, and/or asynchronies. The filtering
criteria for each breath are defined in previous work (Ang, Chiew,
Wang, et al., 2022; Kim, Knopp, Dixon, & Chase, 2019; Lee et al,,
2021). The available retrospective patient data will form the
virtual patients used as part of the virtual trial validation process,
as detailed in the following sections.

2.1.1. Patient data management

The clinically implemented MV settings and measured patient
responses to MV are identified using the ventilator waveform
data and are averaged into mean values over 30 min, defined as
an interval. These MV settings and measured patient responses
for VC and PC patients are summarised in Table 2. E, char-
acterises the elastic properties of the respiratory system, en-
compassing both the lungs and the chest wall. It serves as a
representation of respiratory system function, where the changes
in E, capture the progression of patient-specific disease state
(Chiew et al.,, 2015; Hess, 2014; Nolley et al., 2023). Mean val-
ues of E,s and R over 30 min intervals are identified using a
recruitment and distension basis function respiratory model:

Paw (t) = (Eleb<"<f>>+52M)v (O)+(Ri+R; |V (D)|)V (t)+PEEP

60
(1)

where Py, is the airway pressure (cmH;0), t is the time, V(t) is the
volume (L), V(t) is the airflow (L/s), PEEP (cmH,0) is the positive
end-expiratory pressure. Eq, b, E;, Ry and R, are all breath-specific
basis function coefficients to be determined (Morton et al., 2018,
2019). To simplify model identification, respiratory elastance and
resistance is assumed to be a breath-average value (Chiew, Chase,
Shaw, Sundaresan, & Desaive, 2011a). As such, Eq. (1) can be
rearranged as:

Pay (t) = ExV (t) + RV (t) + PEEP (2)
where

Paw (1)
Ers = E1e?V® 4 -2 2
TS 1 + E 60

R =Ry +Ro |V (0)]

Additional details on the model solution process are provided
in Supplementary material (Stochastic Virtual Patients - Respi-
ratory Elastance). Predicted body weight (PBW) is also calculated
for each patient (Moreault, Lacasse, & Bussiéres, 2017).

2.2. Computerised decision support system

2.2.1. Stochastic Virtual Patient MV CDSS (SVP VENT)

The CDSS developed in this study is known as the Stochastic
Virtual Patient Ventilation Protocol (SVP VENT). The SVP VENT
integrates stochastic virtual patients (Supplementary material
- Stochastic Virtual Patients) with the modified VENT protocol
(Supplementary material - VENT Protocol) to predict the vari-
ations in future patient E,; trends (Ang et al, 2023). The SVP
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Table 1
CAREsg Patient demographics.
No. Sex Age (Years) Weight (kg) Height (cm) PF ratio (mmHg) Diagnosis MV data (h)
Volume-Controlled (VC) Cohort
1 M 700 90.0 173.0 290.0 Pneumonia 66.5
2 M 54.4 85.0 179.0 244.0 Septic shock 80.0
3 M 705 66.0 170.0 259.3 Pneumonia 216.0
4 F 77.0 45.1 152.0 128.7 Septic shock 134.0
5 M 350 77.9 183.0 297.0 Acute exacerbation of asthma 125.0
6 M 720 50.0 153.0 230.8 Type 1 respiratory failure 19.5
7 M 469 70.0 171.0 140.4 Type 1 respiratory failure 152.5
8 M  55.0 82.2 168.0 170.5 Type 1 respiratory failure 103.0
Median 62.5 73.9 170.5 2374 114.0
[IQR] [52.5 - 70.9] [62.0 - 82.9] [164.3 - 174.5] [163.0 - 266.9] [76.6 - 138.6]
Pressure-Controlled (PC) Cohort
1 M 657 60.0 160.0 139.8 DLBCL 56.0
2 M  69.1 75.1 180.0 123.8 Liver Failure 182.0
3 F 70.0 49.7 157.0 198.6 AOCKD, DKA, NSTEMI 46.5
4 M 720 50.0 153.0 230.8 Type 1 respiratory failure 48.0
Median 69.5 55 .0 158.5 169.2 52.0
[IQR] [68.2 - 70.5] [49.9 - 63.8] [156.0 - 165.0] [135.8 - 206.6] [47.6 - 87.5]

Abbreviations: DLBCL - Diffuse large B-cell lymphoma, AOCKD - Acute-on-Chronic Kidney Disease, DKA - Diabetic ketoacidosis,

NSTEMI - non-ST segment elevation myocardial infarction.

Table 2

MV settings and patient responses extracted from patients under VC and PC MV.

Extracted MV settings (VC)

Extracted MV settings (PC)

Measured patient responses

e Respiratory rate, RR
e Positive end-expiratory pressure, PEEP
e Tidal volume, Vy

e Waveform (Square or ramp wave)
e Plateau pressure, Ppiar

e Driving pressure, Ppar— PEEP

e Plateau time, Tpiar

e Respiratory rate, RR
e Positive end-expiratory pressure, PEEP
e Inspiratory pressure, P;

e Peak inspiratory flow, Viax e Inspiratory time, T;
e Rise percent, RP
e Plateau pressure, Ppiar

e Driving pressure, Ppjsr- PEEP

e Peak pressure, Pyax

e Plateau pressure, Ppar

e Mechanical power, MP

e Driving pressure, AP

e Minute Ventilation, MVENT

e Mechanical power ratio, MP ratio

VENT protocol builds upon the existing VENT CDSS framework
by incorporating: stochastic virtual patients, physiological lung
model, and clinically established safety thresholds.

In short, SVP VENT provides decision support by recommend-
ing a combination of MV settings by solving a multi-objective
constrained minimisation problem. These constraints are based
on clinically established thresholds targeting lung protective ven-
tilation, minimising AP and MP ratio (Lee et al., 2022). MP ratio
is the ratio between the actual MP (MPgcuq) of the respiratory
system and the expected baseline MP (MP.y,) (Gattarello et al.,
2023; Gattinoni et al., 2016; Silva, Ball, Rocco, & Pelosi, 2019),
and is defined as:

MPqcpyal ( 3)

exp

MPratio =

where MPctyal
1+4+1:E

=RRx {V?x|[05xEs+RRx ————
X[TX|: * Ers ><60><I:E

X Rr{| + Vr x PEEP}

(4)
MPey, = 1.47 x (0.006 x IBW)? x L+75 (5)
ep = ' 0.006 x IBW = '~

where LE is the inspiratory-to-expiratory time ratio. 1.47, 0.006,
3.57 and 7.5 are conversion constants, and IBW is ideal body
weight. The calculation of MP using Eq. (4) accounts for the
relative contribution and changes of its different components (Vr,
RR, PEEP, I:E, pressure and airflow) (Silva et al., 2019). The single
combination of suggested MV settings targeting minimum AP
and MP ratio allows SVP VENT to be implemented in a closed-loop
fashion.

Key definitions and assumptions used in the SVP VENT proto-
col include:

e E,so: The initial respiratory elastance identified at the start
of the intervention (¢t = 0) using Eq. (2).

o Stochastic virtual patients: A simulated E,; profile over a 3-
hour prediction window, divided into six 30 min intervals,
and is defined as:

Ersn = SM (Ersn—1[1+ W - 2]),
1 2
where z follows the distributionf (x) = —e™ 2 (6)

Nozd

where N is the N E, interval, SM is the stochastic model, W
is X% random noise, and z is a random real variable following
a standard normal distribution with a mean of 0 and a variance
of 1. This process is more elaborately detailed in Supplementary
material - Stochastic Virtual Patients.

e Clinical safety adherence: Each combination of MV settings
and patient responses is assessed against predefined safety
thresholds (Table 3).

e Composite Adherence Score (CAS): The CAS is the average
adherence rate of each clinical safety parameter (Table 3)
across the 5th, 50th and 95th percentiles. The CAS reflects
the overall likelihood of maintaining safe ventilation across
the predicted range of patient Ej.

® teompliant: teomplian: T€Presents the longest duration over
which the highest CAS can be maintained, defining the
intervention interval from t = 0 t0 teompliensr Minutes. In this
study, teompiian: i constrained to a range of 30-180 min.

e PEEP independence: Changes in SVP E, do not consider
the influence of PEEP changes, as established in prior stud-
ies (Ang, Chiew, Wang, Mat Nor, & Chase, 2023; Ang, Chiew,
Wang, et al., 2022; Lee et al.,, 2021).
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e Protocol consistency: In alignment with retrospective trial
data, retrospective PEEP values are used throughout all pro-
tocols. If a PEEP change of more than £1 cmH;0 occurs dur-
ing an intervention interval, the interval is truncated at the
point of adjustment to maintain consistency. This approach
preserves protocol consistency by preventing PEEP-related
shifts from impacting the model’s performance in predicting
E,s trends.

The SVP VENT is illustrated in Fig. 1 and generalised in the
following steps:

1. Initial MV recommendation:
Initial MV settings targeting minimum MP ratio are recom-
mended using the VENT protocol (Supplementary mate-
rial -VENT Protocol).

2. Generation of Virtual Patients:
For an initial value of E o, 200,000 stochastic virtual pa-
tients are generated over a 3-hour window, divided into
six 30 min intervals.

3. Identification of E,; Percentiles:
The 5th, 50th and 95th percentile E,; values of the 200,000
stochastic virtual patient profiles are then identified for
each interval.

4. Application of VENT Protocol:
The identified percentile E,; values (5th, 50th and 95th
percentiles) at t = 180 minutes are input to the VENT
protocol, returning a combination of suggested MV in-
put settings. The corresponding patient responses (Table
2) are forward-simulated over the six intervals using the
percentile E, values. The MV setting selection process is
detailed in Supplementary material — VENT Protocol.

5. Safety Threshold Evaluation:
The protocol-suggested MVsettings and patient responses
for the 5th, 50th and 95th percentile E,; values are evalu-
ated for adherence to established clinical safety thresholds
(Table 3) at each interval.

6. Composite Adherence Scoring and Optimal Interval Se-
lection:
The CAS is computed at every interval and the cumulative
interval with the highest CAS, denoted as tcompiiane 1 then
identified. The MV settings from this interval are then ap-
plied continuously from t = 0 to teompliensr Minutes (ranging
from 30-180 min).

7. Handling PEEP Adjustments:
If a PEEP change exceeding +1 cmH,0 occurs within the
selected interval, it is truncated just before the adjust-
ment to maintain consistency in E,; prediction and protocol
application.

8. Protocol Reapplication:
Steps 2-7 are repeated using the E,s value from the interval
immediately following tcompiiant (i.€., at t = teompliant+1)-

2.3. CDSS validation via virtual trials

SVP VENT was validated in a longitudinal virtual trial using an
established virtual patient (VP) platform (Ang et al., 2022), with
12 retrospective patients from the CAREs; cohort (VC: 8 patients,
PC: 4 patients) to obtain the CDSS-suggested MV settings and
resultant VP responses to MV as outlined in Table 2. The general
procedure for the virtual trial is defined in 4 main steps:

1. The CDSS is initialised using initial values of patient E,; and
MV settings.

2. The CDSS is implemented to derive the CDSS-
recommended MV settings for the current time interval
(t = 0 to teomplionsr Minutes, up to 180 min).
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Table 3
Accepted clinical standards of patient response to MV.

Patient responses to MV Accepted clinical thresholds

Tidal volume, Vr 4 - 8 mL/kg Fan et al.
(2017)

< 30 cmH,0 Brower ,
Matthay, Morris, Schoenfeld,
Thompson, Wheeler (2000)
5 - 12 L/min Brower et al.
(2000)

< 12 J/min Guérin et al.
(2016), Russotto, Bellani,
and Foti (2018)

< 14 cmH,0 Bellani et al.
(2016)

< 45 D'Albo et al. (2024)

Plateau pressure, Ppar

Minute ventilation, MVENT

Mechanical power, MP

Driving pressure, AP

Mechanical Power ratio, MP ratio

3. These MV settings are applied throughout the current time
interval and the resulting VP responses are recorded at
30 min intervals throughout the time interval (¢t = 0 to
teompliant Minutes, up to 180 min).

4. Steps 2-3 are iterated until the entire VP profile has been
analysed.

To evaluate the performance of the SVP VENT, virtual trials
implementing previously developed VENT and SiVENT protocols
were also conducted on the same patient cohort using 30 min
intervals (Lee, Chiew, et al., 2022; Lee et al., 2022). The narrowing
objectives for the VENT and SiVENT protocols were based on prior
virtual trial studies (Ang et al., 2024a, 2024b). The total number of
intervention intervals implemented by each CDSS were recorded.
Furthermore, the resulting patient responses to MV were also
monitored to ensure they adhere to accepted clinical standards
(Table 3).

2.4. Statistical analysis

The cohort values of each virtual trial and the retrospec-
tive data were compared across the implemented MV settings
and measured patient responses to MV as detailed in Table 2.
Pairwise comparisons between the SVP VENT protocol with the
Retrospective, VENT, and SiVENT protocols were assessed using
the Wilcoxon rank-sum test (p < 0.05). To account for multi-
ple comparisons, a Bonferroni correction was applied, yielding a
significance threshold of p < 0.0167. All statistical analyses was
performed with Matlab (R2023a, The Mathworks, Natick, MA,
USA).

3. Results
3.1. Virtual trial results

Over 1,229 h of MV data across 8 volume-controlled (VC) and
4 pressure-controlled (PC) MV patients were analysed. Cohort-
specific patient demographics are detailed in Table 1. The res-
piratory elastance, E,; and respiratory resistance, R,s; of the VC
patient cohort (N = 8) are 31.39 [30.33-33.05] cmH,O0/L and
10.53 [9.44-11.43] cmH,0/L/s, respectively; while the E,; and R;s
of the PC patient cohort (N = 4) are 11.62 [9.31-23.33] cmH,0/L
and 8.50 [7.83-10.20] cmH,0/L/s, respectively. The retrospective
temporal E,s profiles for each patient of the VC and PC cohorts are
presented in Fig. 2. Each data point consists of breath-to-breath
E,s values which are averaged over 30 min intervals.

3.2. Patient responses to MV

The adherence of patient responses to MV to established safety
thresholds in Table 3 across the various MV protocols (VENT,
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Initial E,; value

50 50
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200,000 VP profiles are simulated

Patient £ att=0

5, 50, 95th Percentile Values
45 45 [| —%— Stochastic Virtual Patients

5th 50thand 95t percentile
E, at t = 180 min are input

Input to VENT Protocol
1 / N = ™
S = b -
52 -
R VEXNXT)
15 1 S _ _ ____ >
10 10 .
5 sf {
0 L . . . .
0 30 60 90 120 150 180 % % L 120 150 0 Suggested MV input settings
Time, mins Time, mins :
at each time step
MV settings implemented over Check(::d for afﬂ}erence 8 Corresponding simulated
¢ o < established clinical safety |[¢——— s
intervention interval patient responses
thresholds
Fig. 1. The general process of the SVP VENT.
Table 4
The adherence of patient responses to MV to accepted clinical standards.
Safety adherence rate (%) VC MV PC MV
Retro VENT  SiVENT SVP VENT Retro VENT SiVENT SVP VENT
Vr: 4-8 mL/kg 9492 100.00 100.00 100.00 75.19 73.68 98.35 93.98
Ppiar < 30 cmH,0 7289 97.16 97.16 97.21 99.25 99.85 98.50 100.00
MVENT: 5-12 L/min 64.75 99.89 99.89 100.00 86.47 96.09 97.29 99.40
MP <12 J/min 190 4679  46.01 86.61 50.68 99.10 90.98 75.79
AP < 14 cmH,0 3274 94.48 94.48 80.31 89.32 94.14 93.68 93.23
MP ratio < 4.5 1.28 38.98 38.98 69.83 271 78.05 75.19 67.37
Within all safety thresholds 1.23 29.78 29.00 56.83 1.95 68.27 86.47 67.37

SiVENT, and SVP VENT) and retrospective data is summarised in
Table 4 for both the VC and PC patient cohort. Patient-specific
adherence rates for the VC and PC cohorts are detailed in Table
S2 and S3 (Supplementary material - Patient Responses to MV),
respectively.

3.3. Temporal profiles of MV inputs and patient responses

Cohort- and protocol-specific MV settings and patient re-
sponses are detailed in Table 5. The MP and MP ratio were found
to be statistically different between the SVP VENT, VENT and
SiVENT protocols, and retrospective data (p < 0.0167, Bonferroni
correction applied). The temporal trends of MV inputs and patient
responses for the retrospective, VENT, SiVENT and SVP VENT
protocols are presented in Fig. 3 for Patient 4 (VC cohort) and
Patient 2 (PC cohort), as examples. Similar plots for all patients
of the VC and PC cohorts are presented in the Supplementary
Material (Figures S1-S6).

3.4. CDSS intervention intervals

The retrospective VC patients in this study are comprised of
1,785 30 min intervals. The VENT and SiVENT protocols perform
an intervention (maintaining or adjustment of MV settings) at the
start of each interval, resulting in a total of 1,785 interventions.
Implementation of the SVP VENT protocol results in a ~67% re-
duction of intervals (597 intervention intervals) for the VC cohort.
Similarly, the SVP VENT protocol reduces the total number of
intervals for the PC cohort by up to ~78% with respect to the
retrospective, VENT and SiVENT protocols (145 vs 661 intervals).
Patient-specific information on the number of intervention inter-
vals for both patient cohorts are detailed in Tables S4 and S5
(Supplementary material - Results). The SVP VENT intervention

intervals for each patient are also illustrated in Fig. 3 for both
patient cohorts.

4. Discussion
4.1. Safety of patient care choices and responses to MV

In terms of patient safety, the VC SVP VENT protocol con-
sistently outperformed both retrospective clinical data and al-
ternative protocols (VENT, SiVENT) in achieving adherence of
patient MV responses to accepted clinical standards, demon-
strating that the inclusion of SVPs lead to improved protocol
performance. Overall, all-adherence of the VC SVP VENT was
significantly higher at ~57%, a marked increase compared to
the retrospective data (1.23%), VENT (29.78%) and SiVENT pro-
tocol (29.00%). Specifically, adherence to maintaining MP below
12 J/min was significantly higher with the SVP VENT protocol
(~87%) compared to ~46% for the VENT and SiVENT protocols,
and only ~2% for the retrospective data. This improvement is
likely attributed to the modulation of tidal volume (V7) in VC
MV modes, where V; has a greater influence on the calculation
of MP (Gattinoni et al,, 2023). Despite this improvement, it is
important to note that the relatively poor adherence of the VC
protocol compared to the PC protocol is likely due to the higher
E,s values of the VC cohort (31.39 [30.33-33.05] cmH,0/L vs 11.62
[9.31-23.33] cmH,0/L), which reflects poorer patient conditions.
When combined with higher clinically implemented PEEP values,
these elevated E,s values result in relatively higher MP and MP
ratio values, making it more challenging to maintain adherence
to MP ratio thresholds compared with the PC cohort.

In the PC cohort, the SVP VENT protocol achieved adherence
rates exceeding 67% across all individual safety metrics, with an
all-adherence rate of ~67%, marking a ~65% improvement on
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Fig. 2. (a-h) The temporal E, profiles for Patients 1-8 of the VC cohort. (i-1) The temporal E profiles for patients 1-4 of the PC cohort. The length (x-axis) of the
SVP VENT predicted 5-95th percentile of E;s also represents the duration of the intervention interval (tcompiiant)-

the retrospective patients. However, the SiVENT protocol achieves
the highest all-adherence rate of ~86% out of the 3 protocols
for this PC cohort, suggesting that while the SVP VENT protocol
effectively ensures adherence to each individual safety parameter,
there may be trade-offs between them. Consequently, maintain-
ing adherence across all metrics simultaneously for a particular
patient interval can be challenging, leading to a lower overall
adherence rate.

The SVP VENT protocol effectively reduced the median MP
ratio of the VC cohort to 3.32 [2.89-4.74], which is below the
safety threshold (MP ratio = 4.5) identified in a study on porcine
models (D’Albo et al., 2024), and consequently improved the

adherence rate of MP ratio to ~70%. For the PC cohort, all three
protocols resulted in increased MP ratio adherence rates com-
pared to the retrospective patient cohort (Table 4) and resulting
in median MP ratio values of less than 4.5 (Table 5). The im-
provement in the VC cohort can be attributed to the SVP VENT
protocol’s narrowing objective of explicitly minimising MP ratio,
in contrast to VENT and SiVENT, which only limit absolute MP
(<17 ]J/min) without targeting MP ratio directly. This design choice
allows SVP VENT to provide tighter control over MP ratio, and by
extension MP, particularly in VC modes of MV, where achieving
optimal MP ratio values appears to be more challenging without
such targeted intervention. This benefit arises because in VC
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Table 5
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The median [interquartile range, IQR] MV parameters and patient responses of the retrospective clinical data, VENT, SiVENT, and
SVP VENT protocol over the entire acquisition period. A significance threshold of p < 0.0167 was used after Bonferroni correction

was applied.

VC MV Retro VENT SIVENT SVP VENT
Vr (mL/kg) 6.31 [5.61 - 6.74] 4,00 [4.00 - 4.00] 4,00 [4.00 - 4.00] 4[4 - 6]2be
Viax (L/min) 60.32 [56.23 - 67.46] 50.00 [45.00 - 55.00] 50.00 [40.00 - 55.00] 25 [25 - 25]*b¢
RR (breaths/min) 25.21 [20.13 - 35.29] 22.00 [20.00 - 28.00] 22.00 [20.00 - 28.00] 18 [11 - 19]*b<
Toar (5) 01[0 - 0] 0.1 [0 - 02] 0.1 [0 - 0.1] 0 [0 - 0]>¢

PEEP (cmH,0)
PMAX (Cl’l‘leO)
Ppiar (cmH,0)

9.19 [6.13 - 13.72]
29.79 [26.60 - 31.74]
28.09 [22.75 - 30.22]

11.00 [6.00 - 14.00]
24,62 [23.43 - 27.21]
21.75 [18.21 - 25.06]

11.00 [6.00 - 14.00]
24.53 [23.48 - 27.55]
21.75 [18.21 - 25.06]

9.19 [6.13 - 13.72]
22.52 [21.16 - 25.85]*"¢
22.07 [20.49 - 25.28]*b¢

MP (J/min) 28.36 [22.51 - 35.60] 12.24 [11.32 - 15.69] 12.39 [11.33 - 15.32] 8.96 [8.29 - 10.92]*>¢
AP (cmH,0) 15.54 [13.41 - 19.96] 1053 [9.40 - 12.83] 10.53 [9.40 - 12.83] 12.30 [10.63 - 13.60]*"<
MVENT (L/min) 10.91 [9.08 - 12.64] 6.85 [5.60 - 7.48] 6.85 [5.60 - 7.48] 5.06 [5.02 - 5.14]*b<
MP ratio 11.83 [8.30 - 15.21] 5.70 [4.00 - 6.25] 554 [3.97 - 6.13] 3.32 [2.89 - 4.74]*b<

PC MV Retro VENT SIVENT SVP VENT

P; (cmH,0) 8.43 [8.05 - 9.81] 5.00 [5.00 - 10.00] 10.00 [5.00 - 10.00] 10 [10 - 10]*b<

Ty (s) 0.98 [0.90 - 1.07] 0.80 [0.60 - 1.00] 0.60 [0.60 - 1.20] 0.80 [0.60 - 0.96]*°

RR (breaths/min) 17.8 [16.25 - 21.90] 25.00 [21.00 - 25.00] 25.00 [21.00 - 25.00] 23 [20 - 25]2b¢

RP (%) 26.60 [14.00 - 33.83] 40.00 [10.00 - 70.00] 20.00 [10.00 - 60.00] 20 [10.00- 31.25]*>¢

PEEP (cmH,0)
Vr (mL/kg)
Ppiar (cmH,0)
MP (J/min)

AP (cmH,0)
MVENT (L/min)
MP ratio

5.38 [5.22 - 5.56]
6.73 [6.17 - 7.93]
13.49 [13.38 - 15.37]
11.92 [10.26 - 13.84]
8.31 [7.95 - 9.72]
8.80 [7.61 - 10.42]
6.54 [4.37 - 7.84]

5.00 [5.00 - 6.00]
4,05 [3.99 - 4.30]
12.43 [12.43 - 12.43]
5.73 [5.29 - 7.08]
7.43 [6.43 - 7.43]
6.02 [5.56 - 6.35]
2.02 [1.61 - 4.09]

5.00 [5.00 - 6.00]
498 [4.72 - 5.24]
12.43 [12.43 - 12.43]
7.73 [6.55 - 10.87]
7.43 [6.43 - 7.43]
7.27 [6.18 - 8.69]
3.27 [2.31 - 4.46]

5.38 [5.22 - 5.56]"¢
5.48 [5.05 - 6.26]*¢
10.56 [8.60 - 12.80]*"<
10.74 [8.16 - 11.94]*"<
5.40 [3.43 - 7.37]*"¢
7.91 [6.57 - 9.33]2P¢
3.54 [3.14 - 4.92]*P¢

2 The MV parameters and VP responses of the SVP VENT protocol are statistically different to the retrospective data.
b The MV parameters and VP responses of the SVP VENT protocol are statistically different to the VENT protocol.
¢ The MV parameters and VP responses of the SVP VENT protocol are statistically different to the SiVENT protocol.

modes, MP ratio and actual MP can be more effectively modulated
through explicit control of tidal volume. Future protocol refine-
ments could also adopt a more targeted optimisation of MP and
MP ratio by focusing on the higher-risk subcomponents of MP, as
described by Marini etal., recognising that certain portions of MP
within a breath contribute more significantly to lung injury than
others (Marini & Rocco, 2020).

Existing research has demonstrated a correlation between pro-
longed exposure to MP exceeding 18 J/min and extended dura-
tions of invasive MV, as well as prolonged intensive care unit
length of stay (Manrique et al., 2024). Thus, the implementation
of the SVP VENT protocol tracking temporal trends of MP and
MP ratio offers the potential to ensure these metrics are met by
consistently maintaining lower MP and MP ratio levels. Therefore,
the overall results show its potential for integration into clinical
practice to improve patient safety, where this study justifies
moving to initial clinical trials and validation of the approach.

4.2. Temporal profiles of MV inputs and patient responses

In this study, the SVP VENT protocol (Supplementary material
- VENT Protocol) features a hierarchical V-stage for determining
MV settings. In the VC protocol, Vr is first constrained to 6-8
ml/kg. If no suitable MV setting can be determined within this
range, the protocol expands the Vr range to 4-8 ml/kg. This
adjustment accounts for patients with higher E,; values, where
lower tidal volumes may be necessary to prevent barotrauma. In
the PC protocol, retrospective clinical settings for the start of each
intervention interval are first used to set T; and RP. If the protocol
fails to provide a MV setting recommendation, T; and RP are then
adjusted by the protocol itself to ensure appropriate ventilation.
This hierarchical approach is designed to improve patient-specific
adaptability while reducing computational burden.

Temporal trends of MV inputs and patient responses across
the retrospective, VENT, SiVENT and SVP VENT protocols are illus-
trated in Fig. 3 for Patient 4 (VC cohort) and Patient 2 (PC cohort).

For Patient 4 (Fig. 3a), the MV input settings recommended by
the three protocols were relatively similar, except for a notable
difference in Vjyax, where the SVP VENT protocol suggested a
setting approximately 15 L/min lower than the VENT and SiVENT
protocols (25 L/min vs 40 L/min). Additionally, patient responses
to MV including Pyax, Ppiar, AP, MP, MVENT and MP ratio, were
significantly lower across all three protocols when compared to
the retrospective data. Specifically, the MP and MP ratio achieved
by the SVP VENT protocol were slightly lower than those of the
VENT and SiVENT protocols, which aligns with its primary goal of
minimising the MP ratio.

In contrast, for Patient 2 (PC cohort), there was greater tem-
poral variation in MV input settings for the VENT and SiVENT
protocols, while the SVP VENT protocol exhibited less variabil-
ity. This consistency in the SVP VENT protocol could help avoid
excessive changes in ventilation settings, minimising patient dis-
comfort and stress. In terms of patient responses to MV and the
safety of care choices, most measurements were within a safe
range even in the retrospective data, likely due to Patient 2's
relatively low E,s (as depicted in Fig. 2j). However, generally, for
Patient 2, all three protocols achieved lower Ppsr, AP, MP, and
MP ratio compared to the retrospective data.

Across the VC patient cohort (Table 5), the SVP VENT protocol
was associated with lower Pyax and MVENT, resulting in signif-
icantly reduced MP and MP ratio. Notably, in the PC cohort, the
SVP VENT protocol favoured a lower RR, but a higher V7 to achieve
similar MVENT levels. While this approach led to reductions in
Ppiar and AP, it also resulted in slightly higher MP and MP ratio
values compared to the VENT and SiVENT protocol (p < 0.0167,
Bonferroni correction applied), though still lower than the values
observed in the retrospective data. Importantly, the median [IQR]
MP of 10.74 [8.16-11.94] ]J/min remained below the clinically
significant threshold of 12 J/min.

In this study, a recruitment and distension basis function res-
piratory model (Eq. (1)), which effectively simplifies to a single-
compartment lung model, SCM (Eq. (2)) was used to determine
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Fig. 3. The MV input settings and patient responses for the retrospective clinical data, VENT protocol, SiVENT protocol and SVP VENT protocol over the first 24 h

of MV for (a) Patient 4 (VC cohort) and (b) Patient 2 (PC cohort).

patient-specific trends of respiratory mechanics and MV param-
eters. The SCM, which has been developed and validated over
time, provides an optimal balance between complexity and clini-
cal utility, making it particularly suitable for real-time, bedside
personalisation (Warnaar et al, 2023). More complex models
can also account for pulmonary gas exchange and respiratory
control, and may offer higher precision, but require additional

measuring modalities. In contrast, the SCM integrates seamlessly
into existing clinical workflows without necessitating extensive
modifications (Warnaar et al., 2023).

The SCM relies solely on airway pressure and flow measure-
ments, which are readily obtainable from standard ventilators,
making it a more practical and accessible tool for real-time
patient-specific adjustments in mechanical ventilation. It is also



CY.S. Ang, Y.S. Chiew, X. Wang et al.

important to note the SVP VENT protocol is generalisable and can
evolve over time, incorporating different models and new insights
on safe ventilator setting ranges as they emerge from ongoing
clinical studies. Thus, this model is flexible enough to ensure
the approach remains aligned with the latest evidence-based
practices concerning mechanical power.

In this study, retrospective PEEP values are used throughout
the SVP VENT protocol, as the stochastic model and stochastic VPs
assume fluctuations in patient E, occur independently of PEEP
changes. Essentially, this model attributes shifts in respiratory
system condition solely to disease progression and/or other non-
PEEP related factors. Thus, in clinical practice, the protocol could
provide MV setting recommendations based on the PEEP levels
determined by clinicians, integrating easily with standard PEEP
adjustments and manoeuvres. Equally, it is flexible enough to
react to any changes in E, such as in cases of E,-guided PEEP
titration (Amato et al., 2015; Chiew, Chase, Shaw, Sundaresan, &
Desaive, 2011b; Goligher et al., 2021; Morton et al., 2019).

4.3. CDSS intervention intervals

The findings of this study demonstrate the ability of the SVP
VENT protocol in extending the allowable intervention interval to
3 h by incorporating stochastic VP E profiles, resulting in up to a
78% reduction in number of intervention intervals. While longer
prediction intervals are theoretically possible using stochastic
models such as in the SiVENT protocol, they often suffer from
wide percentile bounds when data is limited (Ang, Chiew et al.,
2023; Ang, Chiew, Wang, et al., 2022; Lee et al, 2021). This
greater width can lead to E,; predictions too broad to be clinically
useful, as they fail to provide precise guidance for ventilation
adjustments.

In contrast, the SVP VENT protocol overcomes this limita-
tion by utilising stochastic VP profiles offering a more reliable
prediction window for E,; changes up to 3 h in advance. This
feature allows clinicians to adjust MV settings based on antic-
ipated patient-specific trends, rather than reactive adjustments
to current conditions. By providing a longer and more accurate
intervention interval, SVP VENT has the potential to reduce clin-
ician workload of setting MV while maintaining patient safety
and optimising patient responses to MV. It is essentially a dose-
to-risk approach where the range of probabilities can also be
modified for different protocol approaches (Chase, Shaw, Preiser,
Knopp, & Desaive, 2021). Such a dose-to-risk form of care is
already used in ICU and NICU glycaemic control (Chase, Benyo,
& Desaive, 2019; Le Compte et al., 2010; Stewart et al., 2016).
Importantly, the protocol is not intended to totally replace clinical
judgement, but to complement it—acting as a supportive tool and
safeguard, particularly in settings where clinical experience or
specialist knowledge may be limited.

The retrospective E,; profile, along with the predicted 5th-
95th percentile ranges of E,s for the SVP VENT protocol, is shown
in Fig. 2 for all patients of the VC and PC cohort. These profiles
illustrate the variability in retrospective E, profiles, resulting
in variances of recommended MV settings and resulting patient
responses between the different protocols. From Fig. 2, width of
the SVP VENT predicted 5th-95th percentile range of E,; widens
with increasing E,; values, suggesting the protocol accounts for
the greater potential temporal variability in respiratory system
condition among patients with higher E,.

Patient 4 (VC) and Patient 2 (PC) were selected to represent
patients from different MV modes and varying ranges of E (Fig.
3), with Patient 2 exhibiting a lower E, range. At hour 5 of
Patient 4’s (VC) ventilation, the SVP VENT protocol opted for a
shorter intervention interval (as seen in Fig. 2d). This adjust-
ment likely reflects the protocol’s responsiveness to the relatively
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larger change in patient E,; of ~10 cmH,0/L. This adaptability
allows the SVP VENT to maintain safe MV settings 3 h later, while
also accommodating variable intervention intervals based on pa-
tient risk, particularly in response to more drastic fluctuations in
Ey. Shorter intervention intervals are also selected by the SVP
VENT protocol at a time of 15.5 and 16.5 h due to a change in
PEEP of more than 1 cmH,O0, as illustrated in Fig. 3a. Similarly,
for Patient 2 in the PC cohort (Fig. 21), the SVP VENT protocol
selected shorter 30 min intervention intervals to address elevated
E;s levels and the increased potential for temporal variability in
respiratory mechanics.

4.4. Limitations

In terms of limitations, the SVP VENT protocol was validated
using retrospective data from a single-centre patient cohort of
only 12 patients on controlled ventilator modes, highlighting
the need for broader validation across multicentre settings to
establish its efficacy. While the SVP VENT showed effective ad-
herence to individual safety metrics, achieving all adherence over
extended intervention intervals remains challenging due to the
potential trade-offs between safety metrics, particularly for PC
modes of ventilation. Future studies could explore further opti-
misation of the protocol, including its performance across dif-
ferent patient populations and settings. A key direction for ad-
vancement involves refining the balance between minimising MP
ratio and driving pressure, while ensuring safe ventilation deliv-
ery. Achieving this balance may benefit from the integration of
more comprehensive physiological models, including more com-
plex respiratory models as well as those describing pulmonary
gas exchange, haemodynamics, and metabolic demand (Ma, Fu-
jioka, Halpern, Bates, & Gaver, 2023; Miserocchi et al., 2024; von
Platen et al., 2020; Warnaar et al., 2023). Such extensions would
better capture the multifactorial goals of MV in the intensive
care environment, where oxygenation, carbon dioxide clearance,
and systemic perfusion are intricately linked. This multidimen-
sional framework would offer a more holistic, physiology-driven
approach to MV management—one that accounts not only for
mechanical loading of the lungs, but also for the broader phys-
iological context of critically ill patients. However, it is impor-
tant to emphasise that this study represents a proof-of-concept
framework focused exclusively on respiratory mechanics, and
demonstrating how stochastic virtual patients, respiratory me-
chanics, and clinical safety thresholds can be used to personalise
MV. While the current protocol demonstrates the feasibility of
integrating stochastic virtual patients into model-based decision
support for MV, the intent of this study was not to provide
an exhaustive physiological representation, but rather to estab-
lish and validate a tractable, modular framework upon which
more complex physiological models can be integrated. This lay-
ered development approach facilitates progressive refinement—
starting from mechanical safety and progressing toward a holistic
optimisation of ventilatory care tailored to the individual patient.

Moreover, the maximum intervention interval of the SVP VENT
protocol was restricted to 3 h in this preliminary investigation.
Future studies should examine the effects of extending these
intervals on patient safety and clinical outcomes during MV. Ex-
tending the interval duration may help ascertain whether longer,
less frequent adjustments can be implemented without com-
promising safety, akin to strategies implemented in glycaemic
control protocols (Uyttendaele, Knopp, Shaw, Desaive, & Chase,
2020). It may also be possible to augment the stochastic model
for greater precision by including more temporal values of E,
which was also done in glycaemic control protocols, where it was
found stable patients tended to remain stable and have narrower
intervals (Davidson et al,, 2019; Uyttendaele et al., 2019). These
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outcomes and approaches would also enable an assessment of
the protocol’s adaptability over prolonged monitoring periods,
potentially further alleviating the workload on clinical personnel.

A key limitation of this study is the assumption that changes
in E;; are independent of PEEP variations. While this assumption
is key to developing the E,; stochastic model, it does not fully
reflect the complex physiological relationship between PEEP and
lung mechanics. In clinical settings, PEEP adjustments can influ-
ence lung recruitment, overdistension, and compliance, thereby
affecting E,s (Cove, Pinsky, & Marini, 2022; Gattinoni & Marini,
2022). However, in this study, retrospective PEEP values were
used consistently across all protocols to maintain comparability
with the retrospective trial, minimising the risk of bias introduced
by varying PEEP strategies. Additionally, intervention intervals
were adjusted to exclude periods of significant PEEP changes
(greater than £1 cmH,0), further isolating the model’s perfor-
mance in predicting E, trends. Future iterations of the protocol
could address this limitation by further extending the stochastic
model to account for dynamic E,-PEEP interactions using adap-
tive modelling techniques (Kim, Knopp, Dixon, & Chase, 2020;
Morton et al., 2019, 2020; Sun et al., 2022, 2024; Zhou et al.,,
2021).

An important factor in the clinical implementation of the
SVP VENT protocol is its computational demands, particularly
the requirement for 200,000 SVP simulations at every interven-
tion interval. Given the limited processing capabilities of bedside
monitoring and ventilator systems, real-time feasibility may be
constrained. However, offloading computations to cloud-based
systems or dedicated hardware (e.g., edge computing devices)
could mitigate this burden. Additionally, algorithmic optimisa-
tions such as presimulating the SVP profiles and its corresponding
MV protocol suggested settings could further reduce computa-
tional overhead. As clinical computing infrastructure continues
to evolve, these advancements may enable seamless integra-
tion of SVP VENT into ICU workflows. Future work should focus
on real-time deployment strategies and computational optimisa-
tions to facilitate bedside implementation without compromising
protocol effectiveness.

5. Conclusions

The protocol’s effectiveness maintains the MP below the crit-
ical threshold of 12 J/min across the VC cohort and achieves
adherence exceeding 67% across all individual safety metrics in
the PC cohort. This result underscores the protocol’s potential
for enhancing patient safety. However, broader validation across
multi-centre settings and further optimisation, particularly in
addressing trade-offs between safety metrics, are necessary to
refine and extend its applicability. The findings of this virtual trial
support the need for initial clinical trials to evaluate the protocol’s
impact on clinical workload and patient safety adaptability over
prolonged monitoring periods, facilitating its incorporation into
standard clinical procedures.

Further, this study demonstrates the potential of the SVP VENT
protocol to enhance MV management by extending the allowable
intervention interval to 3 h, while effectively maintaining patient
safety. By incorporating stochastic VP E, profiles, the SVP VENT
protocol anticipates patient-specific trends, allowing for proactive
adjustments to MV settings rather than reactive responses to
immediate conditions. This capability reduces clinician workload
and optimises patient responses to MV, as shown by the proto-
col’s success in achieving lower median MP and MP ratio values
compared to traditional and alternative protocols, especially in
VC ventilation modes. Overall, the SVP VENT protocol represents
a significant step forward in optimising the delivery of MV treat-
ment by maintaining patient safety, reducing MP and MP ratio,
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and extending intervention intervals, offering the potential for
safer and more efficient ventilation management in critical care
settings.
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