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 a b s t r a c t

Background and Objective : Computerised decision support systems (CDSS) in mechanical ventilation 
(MV) provide individualised, closed-loop treatment but often require extensive input parameters, 
which are challenging to obtain continuously in clinical settings. Many also fail to incorporate 
mechanical power (MP) and MP ratio — recently identified as significant predictors of patient outcomes. 
This study introduces the Stochastic Virtual Patient Ventilation Protocol (SVP VENT), a model-based 
CDSS addressing these limitations.
Methods : The SVP VENT Protocol integrates a stochastic virtual patient model to predict temporal 
lung elastance, Ers, trends and deliver closed-loop, lung protective ventilation minimising MP ratio
and driving pressure. The protocol was validated against the VENT and SiVENT protocols using an 
established virtual patient platform comprising over 1229 h of both volume control (VC) and pressure 
control (PC) retrospective MV data. Patient responses were monitored to ensure adherence to accepted 
clinical safety guidelines.
Results : The SVP VENT protocol consistently outperformed retrospective clinical data, VENT and 
SiVENT protocols in ensuring adherence to clinical safety metrics, achieving an all-adherence rate of 
∼57% and ∼67% for the VC and PC cohorts, respectively. Across cohorts, the protocol maintained MP
and MP ratio levels below safety thresholds (12 J/min and 4.5, respectively), and extended intervention 
intervals up to 3 h, potentially reducing clinical workload.
Conclusion : Overall, the virtual trial demonstrates the SVP VENT protocol’s potential to enhance 
MV management by extending intervention intervals, while maintaining patient safety. These findings 
support initial clinical trials to evaluate the protocol’s impact on clinical workload and patient safety 
over prolonged monitoring periods, facilitating its integration into standard clinical practices.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Computerised decision support systems (CDSS) have emerged 
to provide closed-loop and patient-specific mechanical ventila-
tion (MV) treatment. These CDSS aim to overcome the challenges 
imposed by current care practices, which are based on gener-
alised guidelines. These practices also rely heavily on clinician 
experience and expertise, and regular patient monitoring (Amer-
ling, Winchester, & Ronco, 2008; Chase et al., 2014; Fernandez 
et al., 2015), resulting in potentially sub-optimal care and higher 
clinical burden.

Existing CDSS were developed based on machine learning 
methods (Akbulut, Akkur, Akan, & Yarman, 2014; Hong et al., 
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2022; Ossai & Wickramasinghe, 2021), fuzzy logic (Banner et al., 
2008; Lozano et al., 2008; Steven , Michael, Neil, Carl, Layon, 
Andrea, 2011; Wang, Zhang, & Wu, 2016), or model-based meth-
ods (Buiteman-Kruizinga et al., 2023; Karbing et al., 2015; Patel 
et al., 2022; Rees & Karbing, 2017; Rees et al., 2022; Tehrani, 
2019; von Platen, Pomprapa, Lachmann, & Leonhardt, 2020; von 
Platen et al., 2023; Zhang et al., 2021). These CDSS used physio-
logical models and/ or clinical guidelines to adjust MV settings, 
such as respiratory rate (RR), tidal volume (VT ), fraction of in-
spired oxygen (FiO2), positive end-expiratory pressure (PEEP) 
and MV mode. They have demonstrated significant potential in 
improving patient outcomes, underscoring the need for ongoing 
research to refine and broaden their applications.

However, some CDSS rely on multiple physiological models 
or very complex models. These CDSS can thus require extensive 
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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input parameters such as arterial blood gas values and end-
tidal partial pressure of CO2 (PETCO2) measurements, which can 
increase clinical workload and burden to track (Rees et al., 2022; 
von Platen et al., 2023). Finally, some variables can be challeng-
ing to continuously obtain in clinical settings. Consequently, the 
complexity and added burden may limit the ability to adopt 
these systems (Chase, Andreassen, Jensen, & Shaw, 2008; Parmar 
et al., 2022; Schonthal & Euchner, 2022; Wong, Naswall, Pawsey, 
Chase, & Malinen, 2023), particularly in clinical environments 
with limited infrastructure or personnel capacity.

The VENT (Lee et al., 2022) and SiVENT (Lee, Chiew, et al., 
2022) CDSS protocols offer personalised MV by providing a selec-
tion of MV parameters and settings using only measured airway 
data. The SiVENT protocol also integrates stochastic prediction 
to account for temporal changes in patient-specific respiratory 
elastance (Ers) as patient state evolves (Chiumello et al., 2008; 
Davidson et al., 2014; van Drunen et al., 2013). The MV settings 
recommended by each protocol target lung-protective ventilation 
by titrating patient MV responses based on patient-specific respi-
ratory mechanics. However, the VENT and SiVENT protocols have 
a limited intervention period of 30 min, limiting clinical practi-
cality as a result of increased clinician workload. Furthermore, 
both protocols and other CDSS do not account for mechanical 
power (MP) and mechanical power ratio (MP ratio), which have 
been more recently proposed as an important predictor of patient 
outcomes (Gattarello et al., 2023; Gattinoni, Collino, & Camporota, 
2023; Gattinoni et al., 2016; Goedegebuur et al., 2024; Kim, 
Chung, Nam, Ko, & Suh, 2025; Manrique et al., 2024; Pozzi et al., 
2024; Serpa Neto et al., 2018; von Düring et al., 2025; Yoon et al., 
2024).

While potentially valuable, MP is also not readily monitored 
in real-time and titrating MP requires a delicate balance between 
several MV parameters (RR, PEEP, VT , and driving pressure), which 
at times may be conflicting (Buiteman-Kruizinga, Serpa Neto, 
& Schultz, 2022). This problem is further compounded by the 
heterogeneity and everchanging pulmonary condition of MV pa-
tients (Pozzi et al., 2024), where the constant titration of these 
MV parameters is hindered by limited clinical resources. Hence, 
there is a need for CDSS with low clinical burden, such as SiVENT 
and VENT, but with longer intervention intervals and including 
mechanical power into their decision frameworks, all without 
adding clinical workload.

This study presents a model-based CDSS for intensive care MV 
treatment tested in a virtual patient platform. The CDSS integrates 
a stochastic virtual patient (SVP) prediction method to provide 
patient-specific prediction of temporal Ers trends, enabling ex-
tended intervention intervals based on patient-specific risk de-
fined by evidence-based protective guidelines. The developed 
CDSS also focuses on delivering individualised, lung protective 
ventilation in a closed-loop by targeting minimum MP ratio and 
driving pressure (Gattarello et al., 2023). The protocol’s extended 
intervention intervals can potentially reduce clinician workload, 
thus improving the clinical utility of such CDSS.

2. Methodology

2.1. Patient selection

This study uses measured airway pressure, flow and vol-
ume (P-V̇ -V ) data from 12 retrospective MV patients of the 
CARESG cohort (Ref: DSRB Ref:2018/00042) (Ang, Chiew, Vu, & 
Cove, 2022). The patients were ventilated for more than 24 h, 
with volume-controlled (VC, N = 8 subjects, median weight: 
73.9 [62.0–82.9] kg, median height: 170.5 [164.3–174.5] cm) 
or pressure-controlled (PC, N = 4 subjects, median weight: 
55.0 [49.9–63.8] kg, median height: 158.5 [156.0–165.0] cm) 
2

ventilation. Other MV settings were not fixed. Patient data were 
stratified based on their MV modes, with the demographics of 
each group of patients detailed in Table  1. The temporal profiles of 
respiratory system elastance and MV parameters form the digital 
twin of the clinical patients analysed in this study (Ang et al., 
2022), which is a tested virtual patient approach in general (Chase 
, others, 2021; Chase et al., 2023).

All patients were ventilated using a Puritan Bennett PB980 
ventilator. The airway pressure (cmH2O) and flow (L/min) data 
were recorded using a data acquisition system at a sampling rate 
of 50 Hz (Ng et al., 2021, 2022). Individual breathing cycles were 
processed to remove incomplete breathing cycles or breaths with 
excessive noise, patient effort, and/or asynchronies. The filtering 
criteria for each breath are defined in previous work (Ang, Chiew, 
Wang, et al., 2022; Kim, Knopp, Dixon, & Chase, 2019; Lee et al., 
2021). The available retrospective patient data will form the 
virtual patients used as part of the virtual trial validation process, 
as detailed in the following sections.

2.1.1. Patient data management
The clinically implemented MV settings and measured patient 

responses to MV are identified using the ventilator waveform 
data and are averaged into mean values over 30 min, defined as 
an interval. These MV settings and measured patient responses 
for VC and PC patients are summarised in Table  2. Ers char-
acterises the elastic properties of the respiratory system, en-
compassing both the lungs and the chest wall. It serves as a
representation of respiratory system function, where the changes 
in Ers capture the progression of patient-specific disease state 
(Chiew et al., 2015; Hess, 2014; Nolley et al., 2023). Mean val-
ues of Ers and Rrs over 30 min intervals are identified using a 
recruitment and distension basis function respiratory model: 

Paw (t) = (E1eb(V (t))
+E2

Paw (t)
60

)V (t)+(R1+R2
⏐⏐V̇ (t)

⏐⏐)V̇ (t)+PEEP

(1)

where Paw is the airway pressure (cmH2O), t is the time, V(t) is the 
volume (L), V̇ (t) is the airflow (L/s), PEEP (cmH2O) is the positive 
end-expiratory pressure. E1, b, E2, R1 and R2 are all breath-specific 
basis function coefficients to be determined (Morton et al., 2018, 
2019). To simplify model identification, respiratory elastance and 
resistance is assumed to be a breath-average value (Chiew, Chase, 
Shaw, Sundaresan, & Desaive, 2011a). As such, Eq.  (1) can be 
rearranged as: 
Paw (t) = ErsV (t) + RrsV̇ (t) + PEEP (2)

where

Ers = E1eb(V (t))
+ E2

Paw (t)
60

Rrs = R1 + R2
⏐⏐V̇ (t)

⏐⏐
Additional details on the model solution process are provided 

in Supplementary material (Stochastic Virtual Patients - Respi-
ratory Elastance). Predicted body weight (PBW) is also calculated 
for each patient (Moreault, Lacasse, & Bussières, 2017).

2.2. Computerised decision support system

2.2.1. Stochastic Virtual Patient MV CDSS (SVP VENT)
The CDSS developed in this study is known as the Stochastic 

Virtual Patient Ventilation Protocol (SVP VENT). The SVP VENT 
integrates stochastic virtual patients (Supplementary material 
- Stochastic Virtual Patients) with the modified VENT protocol 
(Supplementary material - VENT Protocol) to predict the vari-
ations in future patient E  trends (Ang et al., 2023). The SVP 
rs
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Table 1
CARESG Patient demographics.
 No. Sex Age (Years) Weight (kg) Height (cm) PF ratio (mmHg) Diagnosis MV data (h)  
 Volume-Controlled (VC) Cohort
 1 M 70.0 90.0 173.0 290.0 Pneumonia 66.5  
 2 M 54.4 85.0 179.0 244.0 Septic shock 80.0  
 3 M 70.5 66.0 170.0 259.3 Pneumonia 216.0  
 4 F 77.0 45.1 152.0 128.7 Septic shock 134.0  
 5 M 35.0 77.9 183.0 297.0 Acute exacerbation of asthma 125.0  
 6 M 72.0 50.0 153.0 230.8 Type 1 respiratory failure 19.5  
 7 M 46.9 70.0 171.0 140.4 Type 1 respiratory failure 152.5  
 8 M 55.0 82.2 168.0 170.5 Type 1 respiratory failure 103.0  
 Median 62.5 73.9 170.5 237.4 114.0  
 [IQR] [52.5 – 70.9] [62.0 – 82.9] [164.3 – 174.5] [163.0 – 266.9] [76.6 – 138.6] 
 Pressure-Controlled (PC) Cohort
 1 M 65.7 60.0 160.0 139.8 DLBCL 56.0  
 2 M 69.1 75.1 180.0 123.8 Liver Failure 182.0  
 3 F 70.0 49.7 157.0 198.6 AOCKD, DKA, NSTEMI 46.5  
 4 M 72.0 50.0 153.0 230.8 Type 1 respiratory failure 48.0  
 Median 69.5 55 .0 158.5 169.2 52.0  
 [IQR] [68.2 – 70.5] [49.9 – 63.8] [156.0 – 165.0] [135.8 – 206.6] [47.6 – 87.5]  
Abbreviations: DLBCL – Diffuse large B-cell lymphoma, AOCKD – Acute-on-Chronic Kidney Disease, DKA – Diabetic ketoacidosis, 
NSTEMI – non-ST segment elevation myocardial infarction.
Table 2
MV settings and patient responses extracted from patients under VC and PC MV.
 Extracted MV settings (VC) Extracted MV settings (PC) Measured patient responses  
 • Respiratory rate, RR • Respiratory rate, RR • Peak pressure, PMAX  
 • Positive end-expiratory pressure, PEEP • Positive end-expiratory pressure, PEEP • Plateau pressure, PPLAT  
 • Tidal volume, VT • Inspiratory pressure, PI • Mechanical power, MP  
 • Peak inspiratory flow, V̇MAX • Inspiratory time, TI • Driving pressure, ∆P  
 • Waveform (Square or ramp wave) • Rise percent, RP • Minute Ventilation, MVENT  
 • Plateau pressure, PPLAT • Plateau pressure, PPLAT • Mechanical power ratio, MP ratio 
 • Driving pressure, PPLAT– PEEP • Driving pressure, PPLAT - PEEP  
 • Plateau time, TPLAT  
VENT protocol builds upon the existing VENT CDSS framework 
by incorporating: stochastic virtual patients, physiological lung 
model, and clinically established safety thresholds.

In short, SVP VENT provides decision support by recommend-
ing a combination of MV settings by solving a multi-objective 
constrained minimisation problem. These constraints are based 
on clinically established thresholds targeting lung protective ven-
tilation, minimising ∆P and MP ratio (Lee et al., 2022). MP ratio
is the ratio between the actual MP (MPactual) of the respiratory 
system and the expected baseline MP (MPexp) (Gattarello et al., 
2023; Gattinoni et al., 2016; Silva, Ball, Rocco, & Pelosi, 2019), 
and is defined as:

MPratio =
MPactual
MPexp

(3)

whereMPactual

= RR ×

{
V 2
T ×

[
0.5 × Ers + RR ×

1 + I : E
60 × I : E

× Rrs

]
+ VT × PEEP

}
(4)

MPexp = 1.47 × (0.006 × IBW )2 ×

(
3.57

0.006 × IBW
+ 7.5

)
(5)

where I:E is the inspiratory-to-expiratory time ratio. 1.47, 0.006, 
3.57 and 7.5 are conversion constants, and IBW is ideal body 
weight. The calculation of MP using Eq.  (4) accounts for the 
relative contribution and changes of its different components (VT , 
RR, PEEP, I:E, pressure and airflow) (Silva et al., 2019). The single 
combination of suggested MV settings targeting minimum ∆P
and MP ratio allows SVP VENT to be implemented in a closed-loop 
fashion.

Key definitions and assumptions used in the SVP VENT proto-
col include:
3

• Ers,0: The initial respiratory elastance identified at the start 
of the intervention (t = 0) using Eq.  (2).

• Stochastic virtual patients: A simulated Ers profile over a 3-
hour prediction window, divided into six 30 min intervals, 
and is defined as:

Ers,N = SM
(
Ers,N−1[1 + W · z]

)
,

where z follows the distribution f (x) =
1

√
2π

e−
z2
2 (6)

where N is the N th Ers interval, SM is the stochastic model, W
is X% random noise, and z is a random real variable following 
a standard normal distribution with a mean of 0 and a variance 
of 1. This process is more elaborately detailed in Supplementary 
material - Stochastic Virtual Patients.

• Clinical safety adherence: Each combination of MV settings 
and patient responses is assessed against predefined safety 
thresholds (Table  3).

• Composite Adherence Score (CAS): The CAS is the average 
adherence rate of each clinical safety parameter (Table  3) 
across the 5th, 50th and 95th percentiles. The CAS reflects 
the overall likelihood of maintaining safe ventilation across 
the predicted range of patient Ers.

• tcompliant : tcompliant represents the longest duration over
which the highest CAS can be maintained, defining the 
intervention interval from t = 0 to tcompliant minutes. In this 
study, tcompliant is constrained to a range of 30–180 min.

• PEEP independence: Changes in SVP Ers do not consider 
the influence of PEEP changes, as established in prior stud-
ies (Ang, Chiew, Wang, Mat Nor, & Chase, 2023; Ang, Chiew, 
Wang, et al., 2022; Lee et al., 2021).
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• Protocol consistency: In alignment with retrospective trial 
data, retrospective PEEP values are used throughout all pro-
tocols. If a PEEP change of more than ±1 cmH2O occurs dur-
ing an intervention interval, the interval is truncated at the 
point of adjustment to maintain consistency. This approach 
preserves protocol consistency by preventing PEEP-related 
shifts from impacting the model’s performance in predicting 
Ers trends.

The SVP VENT is illustrated in Fig.  1 and generalised in the 
following steps:

1. Initial MV recommendation:
Initial MV settings targeting minimum MP ratio are recom-
mended using the VENT protocol (Supplementary mate-
rial –VENT Protocol).

2. Generation of Virtual Patients:
For an initial value of Ers,0, 200,000 stochastic virtual pa-
tients are generated over a 3-hour window, divided into 
six 30 min intervals.

3. Identification of Ers Percentiles:
The 5th, 50th and 95th percentile Ers values of the 200,000 
stochastic virtual patient profiles are then identified for 
each interval.

4. Application of VENT Protocol:
The identified percentile Ers values (5th, 50th and 95th 
percentiles) at t = 180 minutes are input to the VENT 
protocol, returning a combination of suggested MV in-
put settings. The corresponding patient responses (Table 
2) are forward-simulated over the six intervals using the 
percentile Ers values. The MV setting selection process is 
detailed in Supplementary material – VENT Protocol.

5. Safety Threshold Evaluation:
The protocol-suggested MVsettings and patient responses 
for the 5th, 50th and 95th percentile Ers values are evalu-
ated for adherence to established clinical safety thresholds 
(Table  3) at each interval.

6. Composite Adherence Scoring and Optimal Interval Se-
lection:
The CAS is computed at every interval and the cumulative 
interval with the highest CAS, denoted as tcompliant is then 
identified. The MV settings from this interval are then ap-
plied continuously from t = 0 to tcompliant minutes (ranging 
from 30–180 min).

7. Handling PEEP Adjustments:
If a PEEP change exceeding ±1 cmH2O occurs within the 
selected interval, it is truncated just before the adjust-
ment to maintain consistency in Ers prediction and protocol 
application.

8. Protocol Reapplication:
Steps 2–7 are repeated using the Ers value from the interval 
immediately following tcompliant (i.e., at t = tcompliant+1).

2.3. CDSS validation via virtual trials

SVP VENT was validated in a longitudinal virtual trial using an 
established virtual patient (VP) platform (Ang et al., 2022), with 
12 retrospective patients from the CARESG cohort (VC: 8 patients, 
PC: 4 patients) to obtain the CDSS-suggested MV settings and 
resultant VP responses to MV as outlined in Table  2. The general 
procedure for the virtual trial is defined in 4 main steps:

1. The CDSS is initialised using initial values of patient Ers and 
MV settings.

2. The CDSS is implemented to derive the CDSS-
recommended MV settings for the current time interval 
(t = 0 to t  minutes, up to 180 min).
compliant

4

Table 3
Accepted clinical standards of patient response to MV.
 Patient responses to MV Accepted clinical thresholds  
 Tidal volume, VT 4 – 8 mL/kg Fan et al. 

(2017)
 

 Plateau pressure, PPLAT < 30 cmH2O Brower , 
Matthay, Morris, Schoenfeld, 
Thompson, Wheeler (2000)

 

 Minute ventilation, MVENT 5 – 12 L/min Brower et al. 
(2000)

 

 Mechanical power, MP < 12 J/min Guérin et al. 
(2016), Russotto, Bellani, 
and Foti (2018)

 

 Driving pressure, ∆P < 14 cmH2O Bellani et al. 
(2016)

 

 Mechanical Power ratio, MP ratio < 4.5 D’Albo et al. (2024)  

3. These MV settings are applied throughout the current time 
interval and the resulting VP responses are recorded at 
30 min intervals throughout the time interval (t = 0 to 
tcompliant minutes, up to 180 min).

4. Steps 2–3 are iterated until the entire VP profile has been 
analysed.

To evaluate the performance of the SVP VENT, virtual trials 
implementing previously developed VENT and SiVENT protocols 
were also conducted on the same patient cohort using 30 min 
intervals (Lee, Chiew, et al., 2022; Lee et al., 2022). The narrowing 
objectives for the VENT and SiVENT protocols were based on prior 
virtual trial studies (Ang et al., 2024a, 2024b). The total number of 
intervention intervals implemented by each CDSS were recorded. 
Furthermore, the resulting patient responses to MV were also 
monitored to ensure they adhere to accepted clinical standards 
(Table  3).

2.4. Statistical analysis

The cohort values of each virtual trial and the retrospec-
tive data were compared across the implemented MV settings 
and measured patient responses to MV as detailed in Table  2. 
Pairwise comparisons between the SVP VENT protocol with the 
Retrospective, VENT, and SiVENT protocols were assessed using 
the Wilcoxon rank-sum test (p < 0.05). To account for multi-
ple comparisons, a Bonferroni correction was applied, yielding a 
significance threshold of p < 0.0167. All statistical analyses was 
performed with Matlab (R2023a, The Mathworks, Natick, MA, 
USA).

3. Results

3.1. Virtual trial results

Over 1,229 h of MV data across 8 volume-controlled (VC) and 
4 pressure-controlled (PC) MV patients were analysed. Cohort-
specific patient demographics are detailed in Table  1. The res-
piratory elastance, Ers and respiratory resistance, Rrs of the VC 
patient cohort (N = 8) are 31.39 [30.33–33.05] cmH2O/L and 
10.53 [9.44–11.43] cmH2O/L/s, respectively; while the Ers and Rrs
of the PC patient cohort (N = 4) are 11.62 [9.31–23.33] cmH2O/L 
and 8.50 [7.83–10.20] cmH2O/L/s, respectively. The retrospective 
temporal Ers profiles for each patient of the VC and PC cohorts are 
presented in Fig.  2. Each data point consists of breath-to-breath 
Ers values which are averaged over 30 min intervals.

3.2. Patient responses to MV

The adherence of patient responses to MV to established safety 
thresholds in Table  3 across the various MV protocols (VENT, 
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Fig. 1. The general process of the SVP VENT.
Table 4
The adherence of patient responses to MV to accepted clinical standards.
 Safety adherence rate (%) VC MV PC MV

 Retro VENT SiVENT SVP VENT Retro VENT SiVENT SVP VENT 
 VT : 4–8 mL/kg 94.92 100.00 100.00 100.00 75.19 73.68 98.35 93.98  
 PPLAT < 30 cmH2O 72.89 97.16 97.16 97.21 99.25 99.85 98.50 100.00  
 MVENT : 5–12 L/min 64.75 99.89 99.89 100.00 86.47 96.09 97.29 99.40  
 MP <12 J/min 1.90 46.79 46.01 86.61 50.68 99.10 90.98 75.79  
 ∆P < 14 cmH2O 32.74 94.48 94.48 80.31 89.32 94.14 93.68 93.23  
 MP ratio < 4.5 1.28 38.98 38.98 69.83 2.71 78.05 75.19 67.37  
 Within all safety thresholds 1.23 29.78 29.00 56.83 1.95 68.27 86.47 67.37  
SiVENT, and SVP VENT) and retrospective data is summarised in 
Table  4 for both the VC and PC patient cohort. Patient-specific 
adherence rates for the VC and PC cohorts are detailed in Table 
S2 and S3 (Supplementary material - Patient Responses to MV), 
respectively.

3.3. Temporal profiles of MV inputs and patient responses

Cohort- and protocol-specific MV settings and patient re-
sponses are detailed in Table  5. The MP and MP ratio were found 
to be statistically different between the SVP VENT, VENT and 
SiVENT protocols, and retrospective data (p < 0.0167, Bonferroni 
correction applied). The temporal trends of MV inputs and patient 
responses for the retrospective, VENT, SiVENT and SVP VENT 
protocols are presented in Fig.  3 for Patient 4 (VC cohort) and 
Patient 2 (PC cohort), as examples. Similar plots for all patients 
of the VC and PC cohorts are presented in the Supplementary 
Material (Figures S1–S6).

3.4. CDSS intervention intervals

The retrospective VC patients in this study are comprised of 
1,785 30 min intervals. The VENT and SiVENT protocols perform 
an intervention (maintaining or adjustment of MV settings) at the 
start of each interval, resulting in a total of 1,785 interventions. 
Implementation of the SVP VENT protocol results in a ∼67% re-
duction of intervals (597 intervention intervals) for the VC cohort. 
Similarly, the SVP VENT protocol reduces the total number of 
intervals for the PC cohort by up to ∼78% with respect to the 
retrospective, VENT and SiVENT protocols (145 vs 661 intervals). 
Patient-specific information on the number of intervention inter-
vals for both patient cohorts are detailed in Tables S4 and S5
(Supplementary material – Results). The SVP VENT intervention 
5

intervals for each patient are also illustrated in Fig.  3 for both 
patient cohorts.

4. Discussion

4.1. Safety of patient care choices and responses to MV

In terms of patient safety, the VC SVP VENT protocol con-
sistently outperformed both retrospective clinical data and al-
ternative protocols (VENT, SiVENT) in achieving adherence of 
patient MV responses to accepted clinical standards, demon-
strating that the inclusion of SVPs lead to improved protocol 
performance. Overall, all-adherence of the VC SVP VENT was 
significantly higher at ∼57%, a marked increase compared to 
the retrospective data (1.23%), VENT (29.78%) and SiVENT pro-
tocol (29.00%). Specifically, adherence to maintaining MP below 
12 J/min was significantly higher with the SVP VENT protocol 
(∼87%) compared to ∼46% for the VENT and SiVENT protocols, 
and only ∼2% for the retrospective data. This improvement is 
likely attributed to the modulation of tidal volume (VT ) in VC 
MV modes, where VT  has a greater influence on the calculation 
of MP (Gattinoni et al., 2023). Despite this improvement, it is 
important to note that the relatively poor adherence of the VC 
protocol compared to the PC protocol is likely due to the higher 
Ers values of the VC cohort (31.39 [30.33–33.05] cmH2O/L vs 11.62 
[9.31–23.33] cmH2O/L), which reflects poorer patient conditions. 
When combined with higher clinically implemented PEEP values, 
these elevated Ers values result in relatively higher MP and MP 
ratio values, making it more challenging to maintain adherence 
to MP ratio thresholds compared with the PC cohort.

In the PC cohort, the SVP VENT protocol achieved adherence 
rates exceeding 67% across all individual safety metrics, with an 
all-adherence rate of ∼67%, marking a ∼65% improvement on 
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Fig. 2. (a–h) The temporal Ers profiles for Patients 1–8 of the VC cohort. (i–l) The temporal Ers profiles for patients 1–4 of the PC cohort. The length (x-axis) of the 
SVP VENT predicted 5-95th percentile of Ers also represents the duration of the intervention interval (tcompliant).
the retrospective patients. However, the SiVENT protocol achieves 
the highest all-adherence rate of ∼86% out of the 3 protocols 
for this PC cohort, suggesting that while the SVP VENT protocol 
effectively ensures adherence to each individual safety parameter, 
there may be trade-offs between them. Consequently, maintain-
ing adherence across all metrics simultaneously for a particular 
patient interval can be challenging, leading to a lower overall 
adherence rate.

The SVP VENT protocol effectively reduced the median MP 
ratio of the VC cohort to 3.32 [2.89–4.74], which is below the 
safety threshold (MP ratio = 4.5) identified in a study on porcine 
models (D’Albo et al., 2024), and consequently improved the 
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adherence rate of MP ratio to ∼70%. For the PC cohort, all three 
protocols resulted in increased MP ratio adherence rates com-
pared to the retrospective patient cohort (Table  4) and resulting 
in median MP ratio values of less than 4.5 (Table  5). The im-
provement in the VC cohort can be attributed to the SVP VENT 
protocol’s narrowing objective of explicitly minimising MP ratio, 
in contrast to VENT and SiVENT, which only limit absolute MP
(< 17 J/min) without targeting MP ratio directly. This design choice 
allows SVP VENT to provide tighter control over MP ratio, and by 
extension MP, particularly in VC modes of MV, where achieving 
optimal MP ratio values appears to be more challenging without 
such targeted intervention. This benefit arises because in VC 
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Table 5
The median [interquartile range, IQR] MV parameters and patient responses of the retrospective clinical data, VENT, SiVENT, and 
SVP VENT protocol over the entire acquisition period. A significance threshold of p < 0.0167 was used after Bonferroni correction 
was applied.
 VC MV Retro VENT SiVENT SVP VENT  
 VT  (mL/kg) 6.31 [5.61 – 6.74] 4.00 [4.00 – 4.00] 4.00 [4.00 – 4.00] 4 [4 – 6]a,b,c  
 V̇MAX (L/min) 60.32 [56.23 – 67.46] 50.00 [45.00 – 55.00] 50.00 [40.00 – 55.00] 25 [25 – 25]a,b,c  
 RR (breaths/min) 25.21 [20.13 – 35.29] 22.00 [20.00 – 28.00] 22.00 [20.00 – 28.00] 18 [11 – 19]a,b,c  
 TPLAT  (s) 0 [0 – 0] 0.1 [0 – 0.2] 0.1 [0 – 0.1] 0 [0 – 0]b,c  
 PEEP (cmH2O) 9.19 [6.13 – 13.72] 11.00 [6.00 – 14.00] 11.00 [6.00 – 14.00] 9.19 [6.13 – 13.72]  
 PMAX (cmH2O) 29.79 [26.60 – 31.74] 24.62 [23.43 – 27.21] 24.53 [23.48 – 27.55] 22.52 [21.16 – 25.85]a,b,c 
 PPLAT  (cmH2O) 28.09 [22.75 – 30.22] 21.75 [18.21 – 25.06] 21.75 [18.21 – 25.06] 22.07 [20.49 – 25.28]a,b,c 
 MP (J/min) 28.36 [22.51 – 35.60] 12.24 [11.32 – 15.69] 12.39 [11.33 – 15.32] 8.96 [8.29 – 10.92]a,b,c  
 ∆P (cmH2O) 15.54 [13.41 – 19.96] 10.53 [9.40 – 12.83] 10.53 [9.40 – 12.83] 12.30 [10.63 – 13.60]a,b,c 
 MVENT (L/min) 10.91 [9.08 – 12.64] 6.85 [5.60 – 7.48] 6.85 [5.60 – 7.48] 5.06 [5.02 – 5.14]a,b,c  
 MP ratio 11.83 [8.30 – 15.21] 5.70 [4.00 – 6.25] 5.54 [3.97 – 6.13] 3.32 [2.89 – 4.74]a,b,c  
 PC MV Retro VENT SiVENT SVP VENT  
 PI (cmH2O) 8.43 [8.05 – 9.81] 5.00 [5.00 – 10.00] 10.00 [5.00 – 10.00] 10 [10 – 10]a,b,c  
 TI (s) 0.98 [0.90 – 1.07] 0.80 [0.60 – 1.00] 0.60 [0.60 – 1.20] 0.80 [0.60 – 0.96]a,b  
 RR (breaths/min) 17.8 [16.25 – 21.90] 25.00 [21.00 – 25.00] 25.00 [21.00 – 25.00] 23 [20 – 25]a,b,c  
 RP (%) 26.60 [14.00 – 33.83] 40.00 [10.00 – 70.00] 20.00 [10.00 – 60.00] 20 [10.00– 31.25]a,b,c  
 PEEP (cmH2O) 5.38 [5.22 – 5.56] 5.00 [5.00 – 6.00] 5.00 [5.00 – 6.00] 5.38 [5.22 – 5.56]b,c  
 VT  (mL/kg) 6.73 [6.17 – 7.93] 4.05 [3.99 – 4.30] 4.98 [4.72 – 5.24] 5.48 [5.05 – 6.26]a,b,c  
 PPLAT  (cmH2O) 13.49 [13.38 – 15.37] 12.43 [12.43 – 12.43] 12.43 [12.43 – 12.43] 10.56 [8.60 – 12.80]a,b,c  
 MP (J/min) 11.92 [10.26 – 13.84] 5.73 [5.29 – 7.08] 7.73 [6.55 – 10.87] 10.74 [8.16 – 11.94]a,b,c  
 ∆P (cmH2O) 8.31 [7.95 – 9.72] 7.43 [6.43 – 7.43] 7.43 [6.43 – 7.43] 5.40 [3.43 – 7.37]a,b,c  
 MVENT (L/min) 8.80 [7.61 – 10.42] 6.02 [5.56 – 6.35] 7.27 [6.18 – 8.69] 7.91 [6.57 – 9.33]a,b,c  
 MP ratio 6.54 [4.37 – 7.84] 2.02 [1.61 – 4.09] 3.27 [2.31 – 4.46] 3.54 [3.14 – 4.92]a,b,c  
a The MV parameters and VP responses of the SVP VENT protocol are statistically different to the retrospective data.
b The MV parameters and VP responses of the SVP VENT protocol are statistically different to the VENT protocol.
c The MV parameters and VP responses of the SVP VENT protocol are statistically different to the SiVENT protocol.
modes, MP ratio and actual MP can be more effectively modulated 
through explicit control of tidal volume. Future protocol refine-
ments could also adopt a more targeted optimisation of MP and 
MP ratio by focusing on the higher-risk subcomponents of MP, as 
described by Marini et al., recognising that certain portions of MP
within a breath contribute more significantly to lung injury than 
others (Marini & Rocco, 2020).

Existing research has demonstrated a correlation between pro-
longed exposure to MP exceeding 18 J/min and extended dura-
tions of invasive MV, as well as prolonged intensive care unit 
length of stay (Manrique et al., 2024). Thus, the implementation 
of the SVP VENT protocol tracking temporal trends of MP and 
MP ratio offers the potential to ensure these metrics are met by 
consistently maintaining lower MP and MP ratio levels. Therefore, 
the overall results show its potential for integration into clinical 
practice to improve patient safety, where this study justifies 
moving to initial clinical trials and validation of the approach.

4.2. Temporal profiles of MV inputs and patient responses

In this study, the SVP VENT protocol (Supplementary material 
– VENT Protocol) features a hierarchical V-stage for determining 
MV settings. In the VC protocol, VT  is first constrained to 6–8 
ml/kg. If no suitable MV setting can be determined within this 
range, the protocol expands the VT  range to 4–8 ml/kg. This 
adjustment accounts for patients with higher Ers values, where 
lower tidal volumes may be necessary to prevent barotrauma. In 
the PC protocol, retrospective clinical settings for the start of each 
intervention interval are first used to set TI and RP. If the protocol 
fails to provide a MV setting recommendation, TI and RP are then 
adjusted by the protocol itself to ensure appropriate ventilation. 
This hierarchical approach is designed to improve patient-specific 
adaptability while reducing computational burden.

Temporal trends of MV inputs and patient responses across 
the retrospective, VENT, SiVENT and SVP VENT protocols are illus-
trated in Fig.  3 for Patient 4 (VC cohort) and Patient 2  (PC cohort). 
7

For Patient 4 (Fig.  3a), the MV input settings recommended by 
the three protocols were relatively similar, except for a notable 
difference in V̇MAX , where the SVP VENT protocol suggested a 
setting approximately 15 L/min lower than the VENT and SiVENT 
protocols (25 L/min vs 40 L/min). Additionally, patient responses 
to MV including PMAX , PPLAT , ∆P , MP, MVENT  and MP ratio, were 
significantly lower across all three protocols when compared to 
the retrospective data. Specifically, the MP and MP ratio achieved 
by the SVP VENT protocol were slightly lower than those of the 
VENT and SiVENT protocols, which aligns with its primary goal of 
minimising the MP ratio.

In contrast, for Patient 2 (PC cohort), there was greater tem-
poral variation in MV input settings for the VENT and SiVENT 
protocols, while the SVP VENT protocol exhibited less variabil-
ity. This consistency in the SVP VENT protocol could help avoid 
excessive changes in ventilation settings, minimising patient dis-
comfort and stress. In terms of patient responses to MV and the 
safety of care choices, most measurements were within a safe 
range even in the retrospective data, likely due to Patient 2’s 
relatively low Ers (as depicted in Fig.  2j). However, generally, for 
Patient 2, all three protocols achieved lower PPLAT , ∆P , MP, and 
MP ratio compared to the retrospective data.

Across the VC patient cohort (Table  5), the SVP VENT protocol 
was associated with lower PMAX  and MVENT, resulting in signif-
icantly reduced MP and MP ratio. Notably, in the PC cohort, the 
SVP VENT protocol favoured a lower RR, but a higher VT  to achieve 
similar MVENT  levels. While this approach led to reductions in 
PPLAT  and ∆P , it also resulted in slightly higher MP and MP ratio
values compared to the VENT and SiVENT protocol (p < 0.0167, 
Bonferroni correction applied), though still lower than the values 
observed in the retrospective data. Importantly, the median [IQR] 
MP of 10.74 [8.16–11.94] J/min remained below the clinically 
significant threshold of 12 J/min.

In this study, a recruitment and distension basis function res-
piratory model (Eq.  (1)), which effectively simplifies to a single-
compartment lung model, SCM (Eq.  (2)) was used to determine
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Fig. 3. The MV input settings and patient responses for the retrospective clinical data, VENT protocol, SiVENT protocol and SVP VENT protocol over the first 24 h 
of MV for (a) Patient 4 (VC cohort) and (b) Patient 2 (PC cohort).
patient-specific trends of respiratory mechanics and MV param-
eters. The SCM, which has been developed and validated over 
time, provides an optimal balance between complexity and clini-
cal utility, making it particularly suitable for real-time, bedside 
personalisation (Warnaar et al., 2023). More complex models 
can also account for pulmonary gas exchange and respiratory 
control, and may offer higher precision, but require additional 
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measuring modalities. In contrast, the SCM integrates seamlessly 
into existing clinical workflows without necessitating extensive 
modifications (Warnaar et al., 2023).

The SCM relies solely on airway pressure and flow measure-
ments, which are readily obtainable from standard ventilators, 
making it a more practical and accessible tool for real-time 
patient-specific adjustments in mechanical ventilation. It is also 
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important to note the SVP VENT protocol is generalisable and can 
evolve over time, incorporating different models and new insights 
on safe ventilator setting ranges as they emerge from ongoing 
clinical studies. Thus, this model is flexible enough to ensure 
the approach remains aligned with the latest evidence-based 
practices concerning mechanical power.

In this study, retrospective PEEP values are used throughout 
the SVP VENT protocol, as the stochastic model and stochastic VPs 
assume fluctuations in patient Ers occur independently of PEEP
changes. Essentially, this model attributes shifts in respiratory 
system condition solely to disease progression and/or other non-
PEEP related factors. Thus, in clinical practice, the protocol could 
provide MV setting recommendations based on the PEEP levels 
determined by clinicians, integrating easily with standard PEEP
adjustments and manoeuvres. Equally, it is flexible enough to 
react to any changes in Ers, such as in cases of Ers-guided PEEP
titration (Amato et al., 2015; Chiew, Chase, Shaw, Sundaresan, & 
Desaive, 2011b; Goligher et al., 2021; Morton et al., 2019).

4.3. CDSS intervention intervals

The findings of this study demonstrate the ability of the SVP 
VENT protocol in extending the allowable intervention interval to 
3 h by incorporating stochastic VP Ers profiles, resulting in up to a 
78% reduction in number of intervention intervals. While longer 
prediction intervals are theoretically possible using stochastic 
models such as in the SiVENT protocol, they often suffer from 
wide percentile bounds when data is limited (Ang, Chiew et al., 
2023; Ang, Chiew, Wang, et al., 2022; Lee et al., 2021). This 
greater width can lead to Ers predictions too broad to be clinically 
useful, as they fail to provide precise guidance for ventilation 
adjustments.

In contrast, the SVP VENT protocol overcomes this limita-
tion by utilising stochastic VP profiles offering a more reliable 
prediction window for Ers changes up to 3 h in advance. This 
feature allows clinicians to adjust MV settings based on antic-
ipated patient-specific trends, rather than reactive adjustments 
to current conditions. By providing a longer and more accurate 
intervention interval, SVP VENT has the potential to reduce clin-
ician workload of setting MV while maintaining patient safety 
and optimising patient responses to MV. It is essentially a dose-
to-risk approach where the range of probabilities can also be 
modified for different protocol approaches (Chase, Shaw, Preiser, 
Knopp, & Desaive, 2021). Such a dose-to-risk form of care is 
already used in ICU and NICU glycaemic control (Chase, Benyo, 
& Desaive, 2019; Le Compte et al., 2010; Stewart et al., 2016). 
Importantly, the protocol is not intended to totally replace clinical 
judgement, but to complement it—acting as a supportive tool and 
safeguard, particularly in settings where clinical experience or 
specialist knowledge may be limited.

The retrospective Ers profile, along with the predicted 5th–
95th percentile ranges of Ers for the SVP VENT protocol, is shown 
in Fig.  2 for all patients of the VC and PC cohort. These profiles 
illustrate the variability in retrospective Ers profiles, resulting 
in variances of recommended MV settings and resulting patient 
responses between the different protocols. From Fig.  2, width of 
the SVP VENT predicted 5th–95th percentile range of Ers widens 
with increasing Ers values, suggesting the protocol accounts for 
the greater potential temporal variability in respiratory system 
condition among patients with higher Ers.

Patient 4 (VC) and Patient 2 (PC) were selected to represent 
patients from different MV modes and varying ranges of Ers (Fig. 
3), with Patient 2 exhibiting a lower Ers range. At hour 5 of 
Patient 4’s (VC) ventilation, the SVP VENT protocol opted for a 
shorter intervention interval (as seen in Fig.  2d). This adjust-
ment likely reflects the protocol’s responsiveness to the relatively 
9

larger change in patient Ers of ∼10 cmH2O/L. This adaptability 
allows the SVP VENT to maintain safe MV settings 3 h later, while 
also accommodating variable intervention intervals based on pa-
tient risk, particularly in response to more drastic fluctuations in 
Ers. Shorter intervention intervals are also selected by the SVP 
VENT protocol at a time of 15.5 and 16.5 h due to a change in 
PEEP of more than 1 cmH2O, as illustrated in Fig.  3a. Similarly, 
for Patient 2 in the PC cohort (Fig.  2l), the SVP VENT protocol 
selected shorter 30 min intervention intervals to address elevated 
Ers levels and the increased potential for temporal variability in 
respiratory mechanics.

4.4. Limitations

In terms of limitations, the SVP VENT protocol was validated 
using retrospective data from a single-centre patient cohort of 
only 12 patients on controlled ventilator modes, highlighting 
the need for broader validation across multicentre settings to 
establish its efficacy. While the SVP VENT showed effective ad-
herence to individual safety metrics, achieving all adherence over 
extended intervention intervals remains challenging due to the 
potential trade-offs between safety metrics, particularly for PC 
modes of ventilation. Future studies could explore further opti-
misation of the protocol, including its performance across dif-
ferent patient populations and settings. A key direction for ad-
vancement involves refining the balance between minimising MP
ratio and driving pressure, while ensuring safe ventilation deliv-
ery. Achieving this balance may benefit from the integration of 
more comprehensive physiological models, including more com-
plex respiratory models as well as those describing pulmonary 
gas exchange, haemodynamics, and metabolic demand (Ma, Fu-
jioka, Halpern, Bates, & Gaver, 2023; Miserocchi et al., 2024; von 
Platen et al., 2020; Warnaar et al., 2023). Such extensions would 
better capture the multifactorial goals of MV in the intensive 
care environment, where oxygenation, carbon dioxide clearance, 
and systemic perfusion are intricately linked. This multidimen-
sional framework would offer a more holistic, physiology-driven
approach to MV management—one that accounts not only for 
mechanical loading of the lungs, but also for the broader phys-
iological context of critically ill patients. However, it is impor-
tant to emphasise that this study represents a proof-of-concept 
framework focused exclusively on respiratory mechanics, and 
demonstrating how stochastic virtual patients, respiratory me-
chanics, and clinical safety thresholds can be used to personalise 
MV. While the current protocol demonstrates the feasibility of 
integrating stochastic virtual patients into model-based decision 
support for MV, the intent of this study was not to provide 
an exhaustive physiological representation, but rather to estab-
lish and validate a tractable, modular framework upon which 
more complex physiological models can be integrated. This lay-
ered development approach facilitates progressive refinement—
starting from mechanical safety and progressing toward a holistic 
optimisation of ventilatory care tailored to the individual patient.

Moreover, the maximum intervention interval of the SVP VENT 
protocol was restricted to 3 h in this preliminary investigation. 
Future studies should examine the effects of extending these 
intervals on patient safety and clinical outcomes during MV. Ex-
tending the interval duration may help ascertain whether longer, 
less frequent adjustments can be implemented without com-
promising safety, akin to strategies implemented in glycaemic 
control protocols (Uyttendaele, Knopp, Shaw, Desaive, & Chase, 
2020). It may also be possible to augment the stochastic model 
for greater precision by including more temporal values of Ers, 
which was also done in glycaemic control protocols, where it was 
found stable patients tended to remain stable and have narrower 
intervals (Davidson et al., 2019; Uyttendaele et al., 2019). These 
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outcomes and approaches would also enable an assessment of 
the protocol’s adaptability over prolonged monitoring periods, 
potentially further alleviating the workload on clinical personnel.

A key limitation of this study is the assumption that changes 
in Ers are independent of PEEP variations. While this assumption 
is key to developing the Ers stochastic model, it does not fully 
reflect the complex physiological relationship between PEEP and 
lung mechanics. In clinical settings, PEEP adjustments can influ-
ence lung recruitment, overdistension, and compliance, thereby 
affecting Ers (Cove, Pinsky, & Marini, 2022; Gattinoni & Marini, 
2022). However, in this study, retrospective PEEP values were 
used consistently across all protocols to maintain comparability 
with the retrospective trial, minimising the risk of bias introduced 
by varying PEEP strategies. Additionally, intervention intervals 
were adjusted to exclude periods of significant PEEP changes 
(greater than ±1 cmH2O), further isolating the model’s perfor-
mance in predicting Ers trends. Future iterations of the protocol 
could address this limitation by further extending the stochastic 
model to account for dynamic Ers-PEEP interactions using adap-
tive modelling techniques (Kim, Knopp, Dixon, & Chase, 2020; 
Morton et al., 2019, 2020; Sun et al., 2022, 2024; Zhou et al., 
2021).

An important factor in the clinical implementation of the 
SVP VENT protocol is its computational demands, particularly 
the requirement for 200,000 SVP simulations at every interven-
tion interval. Given the limited processing capabilities of bedside 
monitoring and ventilator systems, real-time feasibility may be 
constrained. However, offloading computations to cloud-based 
systems or dedicated hardware (e.g., edge computing devices) 
could mitigate this burden. Additionally, algorithmic optimisa-
tions such as presimulating the SVP profiles and its corresponding 
MV protocol suggested settings could further reduce computa-
tional overhead. As clinical computing infrastructure continues 
to evolve, these advancements may enable seamless integra-
tion of SVP VENT into ICU workflows. Future work should focus 
on real-time deployment strategies and computational optimisa-
tions to facilitate bedside implementation without compromising 
protocol effectiveness.

5. Conclusions

The protocol’s effectiveness maintains the MP below the crit-
ical threshold of 12 J/min across the VC cohort and achieves 
adherence exceeding 67% across all individual safety metrics in 
the PC cohort. This result underscores the protocol’s potential 
for enhancing patient safety. However, broader validation across 
multi-centre settings and further optimisation, particularly in 
addressing trade-offs between safety metrics, are necessary to 
refine and extend its applicability. The findings of this virtual trial 
support the need for initial clinical trials to evaluate the protocol’s 
impact on clinical workload and patient safety adaptability over 
prolonged monitoring periods, facilitating its incorporation into 
standard clinical procedures.

Further, this study demonstrates the potential of the SVP VENT 
protocol to enhance MV management by extending the allowable 
intervention interval to 3 h, while effectively maintaining patient 
safety. By incorporating stochastic VP Ers profiles, the SVP VENT 
protocol anticipates patient-specific trends, allowing for proactive 
adjustments to MV settings rather than reactive responses to 
immediate conditions. This capability reduces clinician workload 
and optimises patient responses to MV, as shown by the proto-
col’s success in achieving lower median MP and MP ratio values 
compared to traditional and alternative protocols, especially in 
VC ventilation modes. Overall, the SVP VENT protocol represents 
a significant step forward in optimising the delivery of MV treat-
ment by maintaining patient safety, reducing MP and MP ratio, 
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and extending intervention intervals, offering the potential for 
safer and more efficient ventilation management in critical care 
settings.
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