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Abstract

The Internet of Things (IoT) has transformed global connectivity by linking people, smart
devices, and data. However, as the number of connected devices continues to grow, en-
suring secure data transmission and communication has become increasingly challenging.
IoT security threats arise at the device level due to limited computing resources, mobility,
and the large diversity of devices, as well as at the network level, where the use of varied
protocols by different vendors introduces further vulnerabilities. Physical Unclonable
Functions (PUFs) provide a lightweight, hardware-based security primitive that exploits
inherent device-specific variations to ensure uniqueness, unpredictability, and enhanced
protection of data and user privacy. Additionally, modeling attacks against PUF architec-
tures is challenging due to the random and unpredictable physical variations inherent in
their design, making it nearly impossible for attackers to accurately replicate their unique
responses. This study collected approximately 80,000 Challenge Response Pairs (CRPs)
from a Ring Oscillator (RO) PUF design to evaluate its resilience against modeling at-
tacks. The predictive performance of five machine learning algorithms, i.e., Support Vector
Machines, Logistic Regression, Artificial Neural Networks with a Multilayer Perceptron,
K-Nearest Neighbors, and Gradient Boosting, was analyzed, and the results showed an
average accuracy of approximately 60%, demonstrating the strong resistance of the RO
PUF to these attacks. The NIST statistical test suite was applied to the CRP data of the RO
PUF to evaluate its randomness quality. The p-values from the 15 statistical tests confirm
that the CRP data exhibit true randomness, with most values exceeding the 0.01 threshold
and supporting the null hypothesis of randomness.

Keywords: cryptography; IoT; PUFs; CRPs; machine learning

1. Introduction
The Internet of Things (IoT) has revolutionized remote monitoring and control of

systems by enabling the processing of real-time data from numerous sensing devices. Cisco
estimated that approximately 500 billion IoT devices would be deployed by 2030 [1]. In-
telligent interfaces allow these devices to interact, collect, communicate, and store data
efficiently. A trusted ecosystem built on the principles of authentication, authorization,
privacy, confidentiality, availability, and integrity is therefore essential to ensure secure
data transactions [2,3]. IoT devices are often constrained by limited storage, processing,
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sensing, and computing resources [4]. Moreover, the diversity of devices from multiple
vendors deployed within IoT networks makes them particularly vulnerable to security
threats, with device authentication emerging as a critical factor in maintaining trustworthy
communication. Authenticating edge devices is as important as authenticating users to
ensure that only legitimate devices gain access to IoT resources. Weakly secured devices can
compromise the entire system, leading to severe financial and reputational consequences.
The heterogeneous nature of IoT networks, combined with the resource limitations of edge
devices, makes traditional authentication schemes impractical. These constraints under-
score the need for innovative, lightweight authentication mechanisms tailored specifically
to IoT environments [5].

IoT devices operating at the network edge remain highly vulnerable to cyber threats,
including data breaches, hardware tampering, and denial-of-service attacks. Traditional
cloud-based, centrally managed infrastructures often struggle to counter advanced risks,
including Distributed Denial of Service (DDoS) attacks, Man-in-the-Middle (MiTM) intru-
sions, eavesdropping, and attacks powered by artificial intelligence [6]. To mitigate these
risks more effectively, computational capabilities can be shifted closer to the network edge,
enabling real-time threat detection and mitigation directly on devices rather than relying
solely on remote cloud infrastructure. Cloud-assisted IoT takes advantage of the large
storage capacity and powerful computing resources available in cloud platforms to process
and analyze data. Large amounts of data are continuously sent from widely distributed
IoT nodes and cloud servers experience processing delays, leading to higher latency and
slower response times for the services delivered to network users.

Edge Computing (EC) enables local processing and storage of sensitive data, thereby
preserving privacy and facilitating faster access to critical information during security
investigations [7]. In addition, EC offers advantages such as reduced latency, improved
bandwidth efficiency, and enhanced privacy and security [8]. The EC architecture, shown
in Figure 1, is typically organized into three layers: the edge devices layer, the edge nodes
(or gateway) layer, and the cloud. Edge devices, such as IoT sensors, smartphones, cameras,
or industrial machines, are primarily responsible for generating or collecting data. Due
to limited processing capabilities, these devices typically perform only basic functions.
The edge node layer consists of intermediate devices such as routers, edge servers, or micro
data centers, which perform more advanced processing and data aggregation. This process-
ing is further complicated by device heterogeneity and resource limitations. The cloud layer,
in turn, handles complex computations, long-term data storage, and advanced analytics
that exceed the capabilities of edge nodes. Connectivity among edge devices, edge nodes,
and the cloud is supported through WiFi, 5G, or wired infrastructure to ensure efficient data
transmission. Edge-driven IoT systems distribute heterogeneous resources across the net-
work to achieve flexibility and scalability, supporting applications such as smart cities and
autonomous vehicles. However, edge servers and devices remain constrained by limited
power and processing capacity, and offloading large volumes of data and computational
tasks can overload the network.
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Figure 1. Edge computing architecture.

1.1. Motivations

The integration of EC with IoT introduces challenges due to inherent differences. IoT
systems encompass a diverse range of hardware platforms and communication protocols,
and their success depends on a unified framework that ensures seamless interoperability
between IoT devices and edge nodes. Security and privacy remain primary concerns,
complicated further by device heterogeneity and resource limitations such as memory
capacity and battery power [9]. As a result, edge devices and servers are highly vulnerable
to attacks, and a breach at any point can compromise the entire network. To address
these risks, lightweight and robust security mechanisms tailored to the distributed and
heterogeneous nature of IoT systems are essential. Several strategies have been proposed
to mitigate security challenges in EC. Conventional measures include intrusion detection
systems (IDS) to monitor malicious activity, strong access control to regulate permissions,
encryption to protect data at rest and in transit, and authentication mechanisms to verify
user and device identities. Beyond these methods, advanced technologies such as artificial
intelligence (AI) and machine learning (ML) are increasingly used for real-time anomaly
detection and adaptive defense against evolving threats [10]. Machine learning–based
modeling attacks can learn and replicate the behavior of a PUF with high accuracy, thereby
undermining its security. In contrast, blockchain-based approaches aim to ensure trans-
action integrity [8,11]. In parallel, Physical Unclonable Functions (PUFs) have garnered
attention as hardware-based security primitives that provide device authentication, se-
cure key generation, and cryptographic support. PUFs exploit manufacturing variations
to generate unique device-specific identifiers that safeguard against cloning and other
hardware-based attacks. Field Programmable Gate Arrays (FPGAs), known for their flexi-
bility, reconfigurability, and rapid prototyping, are well-suited for implementing PUFs [12].
Moreover, PUFs can be integrated with intellectual property (IP) cores in FPGA-based
systems, making them practical for real-world deployments [13,14].

Meanwhile, ML techniques such as Support Vector Machines, Logistic Regression,
and Deep Neural Networks are increasingly used in hardware security to detect hard-
ware Trojans, identify counterfeit integrated circuits (ICs), and evaluate the reliability of
PUFs [15]. At the edge, ML models are also applied to analyze data streams and detect
anomalies, intrusions, and malicious activities in real time. However, ML models deployed
on resource-constrained edge devices are themselves vulnerable to adversarial threats,
including poisoning attacks that corrupt training data, evasion attacks that deceive models
with crafted inputs, inference attacks that extract sensitive information, and exploratory
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attacks that exploit model weaknesses or replicate behavior. ML-based modeling attacks
use ML methods to learn and reproduce the behavior of a PUF with very high accuracy,
which can undermine its security. An adversary can construct a numerical model of the
PUF by obtaining a portion of its challenge response pairs through eavesdropping or
any other form of unauthorized access [16]. Adversaries typically exploit ML systems
by targeting different stages of the learning pipeline. Training data can be poisoned to
corrupt the learned model or to implant backdoors, while testing data may be manipulated
to expose vulnerabilities and influence model predictions. In addition, privacy-oriented
attacks aim to infer sensitive information from the trained model or its gradients [17].
Several studies have reported successful ML-based attacks on various types of physically
unclonable functions, including RO-PUFs, using logistic regression and neural network-
based models [18]. Among delay-based PUF architectures, RO-PUFs generally offer higher
reliability than SRAM PUFs because their responses are less sensitive to environmental
variations such as temperature and supply voltage. Although SRAM PUFs demonstrate
strong resistance to modeling attacks, they are more susceptible to cloning and invasive
attacks. To further enhance resistance against modeling, XOR PUFs introduce nonlinearity
by combining the outputs of multiple identical PUF instances through an XOR operation,
which makes them harder to model than single arbiter or ring oscillator PUFs. Neverthe-
less, when an optimal set of challenge–response pairs is available, XOR PUFs can still be
effectively compromised using ML-based attacks [19]. These risks are exacerbated by the
limited storage and computational capabilities of edge devices. To mitigate such vulnera-
bilities, integrating FPGA-based PUFs with ML frameworks offers a promising approach
to strengthening edge security [20]. PUF-derived keys can be employed to encrypt ML
models or authenticate devices contributing training data, protecting against tampering
and data leakage. Leveraging FPGAs for PUF design provides flexibility, rapid prototyping,
and reconfigurability, while seamless integration with other IP cores enables robust and
scalable security solutions. The placement and routing of ring oscillators (ROs) on an FPGA
play a critical role in determining the quality of PUF responses, as the physical locations of
logic slices directly influence the inherent delay variations. Consequently, the oscillation
frequencies of ROs are strongly dependent on their spatial distribution across the FPGA
die. To counter machine learning–based modeling attacks, several mitigation strategies
have been proposed, including the introduction of non-linearity into PUF architectures,
XOR combination of multiple individual PUF responses, random selection of response sub-
strings, and challenge randomization. While these approaches enhance resistance against
modeling attacks, they often increase the architectural complexity of the PUF or complicate
protocol-level protections, thereby impacting implementation efficiency and scalability [21].

1.2. Research Contributions

This research presents a comprehensive investigation into the design, implementation,
and security evaluation of a RO-PUF on an FPGA, with an emphasis on ML-based modeling,
resistance analysis, and statistical randomness analysis. The main contributions of this
work are summarized as follows:

• FPGA-Based Design and Implementation of RO PUF: The study successfully im-
plemented a configurable RO-PUF architecture on an FPGA platform. A dedicated
testbench was developed to acquire large-scale challenge–response datasets under
controlled operating conditions, verifying the reproducibility and uniqueness of the
PUF behavior across multiple FPGA instances.

• Comprehensive Evaluation of PUF Metrics: The implemented RO PUF was analyzed
using standard performance metrics such as uniformity, uniqueness, and reliability
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(intra-Hamming distance). The proposed design demonstrated balanced uniformity
near the ideal 50%.

• Machine Learning-Based Attack and Accuracy Estimation: To assess the resilience of
the proposed RO-PUF against modeling attacks, various ML algorithms, including Lo-
gistic Regression (LR), Support Vector Machine (SVM), Multilayer Perceptron (MLP),
and k-Nearest Neighbor (k-NN), were employed. Confusion matrix analysis revealed
that linear models, such as LR, failed to capture the nonlinear challenge–response rela-
tionship, while nonlinear models (SVM, MLP, and k-NN) performed moderately better
but exhibited trade-offs between precision and recall. The findings confirmed that
none of the models achieved strong predictive accuracy, highlighting the robustness
and unpredictability of the proposed RO-PUF against ML-based cloning attempts.

• Randomness Validation Using NIST SP 800-22 test suite: The randomness qual-
ity of the generated CRP responses was validated using the NIST statistical test
suite, covering tests such as frequency, runs, block frequency, and cumulative sums.
The majority of the tests yielded p-values greater than 0.01, confirming that the PUF
outputs exhibit strong statistical randomness and are suitable for cryptographic and
authentication applications.

2. Related Works
Shen et al. proposed an integrated security framework for EC that combines ML

and cryptographic techniques to monitor and detect abnormal activities on the network.
The study provides valuable insights into the use of Support Vector Machine (SVM), k-
Nearest Neighbor (k-NN), and Long Short-Term Memory (LSTM) models for time series
prediction, evaluated using performance metrics such as precision, recall, and F1-score [22].
In the Collaborative Edge Computing (CEC) model, the edge layer handles data storage
and processing in a distributed manner. Given the limited processing capacity of individ-
ual edge devices, these devices cooperate to offload tasks among themselves, a process
known as load balancing. The researchers in [23] employed PUFs to authenticate edge
devices during load balancing, eliminating the need to store a database of CRPs locally.
Cheng et al. integrated blockchain technology with certificateless cryptography, elliptic
curve cryptography, and pseudonym-based cryptography to enable mutual authentication
between edge servers and IoT devices [24]. The study in [25] proposed a privacy-preserving
edge computing approach that utilizes federated learning to train a unified deep learning
model across multiple end users collaboratively. Instead of sharing raw data, only model
parameters (i.e., gradients) are exchanged between participants. The parameters from
local deep learning models on various edge nodes are aggregated at the edge and then
distributed to all participants. Through several iterations of local training and parameter
aggregation, a deep learning model is developed that preserves user privacy without the
need to share raw data. Zhang and colleagues introduced a configurable tristate PUF that
can operate as an arbiter PUF, a ring oscillator PUF, or a bistable ring PUF. The design uses
a bitwise XOR-based obfuscation mechanism to hide the relationship between challenges
and responses. As a result, machine learning models fail to build accurate prediction model,
with all attack accuracies remaining between 50% and 60%, which is effectively the same
as random guessing [26]. The authors of [27] introduced an authentication method that
employs arbiter PUFs together with three protection strategies called challenge splitting,
challenge scrambling, and challenge padding. Each strategy disrupts the structure or visi-
bility of the challenge so that machine learning models cannot form an accurate numerical
model of the PUF. In ref. [28], a hybrid secure deduplication scheme is introduced that
ensures data privacy on the server side while enhancing network performance on the client
side. Additionally, an additive homomorphic encryption method is proposed to enable
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efficient deduplication operations on resource-constrained edge nodes. Intrusion detection
systems (IDS) are vital for the security of IoT systems, as they detect traces of known
attacks and unusual behavior in IoT devices and their connecting networks [29]. However,
the majority of IDS algorithms use conventional encryption and cryptographic techniques.
Unfortunately, these approaches are vulnerable to physical attacks, as they primarily rely
on storing secret keys in the device’s local memory. Blockchain is considered an ideal ap-
proach to store the huge amount of data generated by IoT devices with utmost privacy and
security using a distributed ledger. However, the resource-constrained IoT devices cannot
meet the computational requirements of data mining in blockchain networks. Sarkar et al.
have proposed a robust PUF-based authentication system to replace the popular consensus
algorithms [30].

A PUF design based on Generalized Galois Ring Oscillators (GenGARO) was imple-
mented on Artix-7 FPGAs, Advanced Micro Devices (AMD), Santa Clara, CA 95054, USA
using both 11-LUT and 3-LUT configurations. The proposed design demonstrates strong
resilience against various ML models, including Decision Trees (DT), Random Forests (RF),
k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), and Multilayer Perceptrons
(MLP) [19]. Another approach, the Structure-Obfuscated PUF (SO-PUF), is built on a config-
urable ring oscillator (CRO) framework and dynamically removes NOT gates at each stage
based on the challenge input. As reported in [31], SO-PUF was implemented on an Xilinx
Spartan-6 FPGA, AMD, Santa Clara, CA 95054, USA and achieved near-random prediction
accuracy. Kareem et al. [32] investigated the vulnerability of three RO-PUF designs to
ML attacks and evaluated their prediction accuracy using models such as DT, RF, k-NN,
and SVM. Abulibdeh et al. introduced the Algorithmically Optimized Configurable Ring
Oscillator PUF (AOCRO), which demonstrated strong resistance to ML modeling attacks.
In their evaluation, five different ML algorithms (SVM, MLP, LR, CNN, and CMA ES) were
trained on a dataset of one million CRPs, achieving an average prediction accuracy of 61.3%,
indicating enhanced robustness compared to conventional CRO PUF designs [33]. Jack
Miskelly et al. investigated the impact of ML attacks on Configurable RO PUFs. The study
simulated 128-bit CRO PUFs and multi-PUF variants with datasets ranging from 1000
to 10,000 CRPs. The results showed that conventional CRO PUFs could be accurately
modeled using an LR, ML model, achieving prediction accuracies exceeding 98–99% [34].
Laguduva et al. proposed a non-invasive, architecture-independent attack on PUFs using
CRPs. This method achieved a cloning accuracy of 93.5% without requiring any prior
knowledge of the PUF’s internal architecture [35]. A summary of the results obtained by
the above-mentioned researchers is shown in Table 1.

Table 1. ML model accuracy (%) against RO PUFs.

Article KNN SVM MLP RF DT LR

[19] 56.76–63.24 49.76–69.71 50.10–70.86 62.67–75.81 57.90–72.00
[31] 49.75 63.13 49.63
[32] 74.6 66.2 72.3 64.6
[36] 56.64 58.04 51.9
[37] 58.59–61.95

3. Physical Unclonable Functions (PUFs)
Researchers have identified PUFs as robust security primitives that can guarantee

the three pillars of security, namely confidentiality, authenticity, and privacy, of IoT data.
PUFs extract unique information from the physical characteristics of the IoT devices [38].
PUF-based authentication protocols enhance the security of resource-constrained edge
devices without requiring them to store credentials in their limited non-volatile memory.
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They utilize the inherent random variations introduced during manufacturing to generate
secret keys dynamically. PUFs provide essential security functions such as authentica-
tion and secret key generation, especially in resource-constrained environments like the
IoT [39]. The inherent unclonability of PUFs stems from numerous uncontrollable ran-
dom parameters introduced during fabrication. When a PUF receives an input, known
as a challenge (C), it produces a corresponding output response (R). Figure 2 illustrates
that physical variations in the fabrication of integrated circuits (ICs) can result in two ICs
yielding different responses to the same challenge. This relationship between the input and
output is referred to as a CRP [40]. Traditional authentication methods rely on storing secret
credentials in a device’s memory, which makes them unsuitable for physically unprotected
IoT devices. Attackers can exploit physical vulnerabilities to compromise the entire system.
PUFs mitigate such risks in two key ways: first, they generate volatile secrets that are not
stored in digital memory but are intrinsically embedded in the hardware structure; second,
the uniqueness of each PUF enables it to serve as a unique identifier for individual IoT
devices [41].

Figure 2. PUFs Challenge & Response Pair (CRP) generation [42].

3.1. PUFs Classification

PUFs can be placed into two groups based on the number of CRPs they can generate:
strong and weak. The limited number of CRPs in a weak PUF is typically proportional
to the number of components used in its construction. In contrast, strong PUFs provide
a vast number of CRPs, making polynomial-time modeling attacks computationally im-
practical [43]. Strong PUFs are typically employed in authentication and key establishment
protocols, whereas weak PUFs are mainly used for identification and secure key storage
applications [44]. Examples of strong PUFs include the Arbiter PUF, the XOR Arbiter
PUF, and the Lightweight PUF. In contrast, weak PUFs are represented by designs such
as the SRAM PUF, Ring Oscillator (RO) PUF, Anderson PUF, Memristor PUF, Thyristor
PUF, and One-Time Programmable (OTP) PUF [45]. Additionally, PUFs can be classified as
silicon-based and non-silicon PUFs, depending on the manufacturing process adopted. Sili-
con PUFs rely on fabrication mismatches inherent in integrated circuits and can be further
divided into delay-based PUFs and memory-based PUFs. In contrast, non-silicon PUFs
are based on physical irregularities in systems composed of non-electronic components.
Memory-based PUFs utilize the initial binary states of memory upon power-up, whereas
delay-based PUFs exploit variations in signal propagation delays within circuits.

3.2. RO PUFs

Due to inherent random variations in the manufacturing process, two similar ROs do
not generate identical oscillation frequencies. The frequency differences between selected
RO pairs form the output response of the PUF. An RO PUF consists of an odd number of
NOT logic gates arranged in a ring, causing the output to oscillate between logic ‘1’ and
‘0’ at a specific frequency [46]. The basic architecture of an RO PUF, as shown in Figure 3,
includes an odd number of inverter gates and an AND gate to enable or disable the feedback
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loop. The conventional RO-PUF consists of several essential components: n ring oscillators
(ROs), two n-to-1 multiplexers (MUXs), two counters, and a comparator circuit. The outputs
of each RO are routed to the inputs of both MUXs, whose selected outputs serve as clock
signals for the counters. Each counter increments according to the oscillation frequency
of the specific RO selected by its respective MUX. Finally, the comparator compares the
values stored in the two counters to produce the RO-PUF response corresponding to the
applied challenge inputs. The frequency of each RO depends on the delay of the inverters,
which is influenced by variations in the manufacturing process.

Figure 3. Ring Oscillator (RO) PUF.

The oscillation frequency of the RO PUF, as shown in Equation (1) is inversely pro-
portional to both the odd number of gates (n) and their average propagation delay (tpd).
Consequently, fosc is sensitive to inherent variations in gate delay, which causes each
instance of the RO structure to exhibit a slightly different oscillation frequency [47].

fosc =
1

2ntpd
(1)

The delay of each not gate is modelled by Equation (2), where µpd is the nominal delay
and δk is a zero-mean random deviation, often approximated by gaussian, N (0, σ2

pd).

tpd,k = µpd + δk (2)

The fundamental operation of the proposed RO PUF is outlined in Algorithm 1.
Initially, multiple ROs are instantiated, each consisting of an odd number of inverters
connected in a closed loop chain, causing continuous oscillation due to intrinsic gate delays.
For every response bit, a corresponding challenge input selects a pair of ROs through
multiplexers. The oscillation frequencies of two selected ROs are recorded over a fixed
time interval using counters. If the first RO exhibits a higher count, indicating a higher
oscillating frequency, a response bit of ‘1’ is generated; otherwise, a ‘0’ is assigned.
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Algorithm 1 Ring Oscillator PUF (RO-PUF) Algorithm

Require: Challenge input C = {Sel_A, Sel_B}, Time window T
Ensure: Response bit R

1: Initialize N Ring Oscillators: RO[0], RO[1], . . . , RO[N − 1]
2: Initialize two N-to-1 MUXs, two Counters: Counter_A, Counter_B, and a Comparator
3: Select RO_A = RO[Sel_A] via MUX A
4: Select RO_B = RO[Sel_B] via MUX B
5: Connect RO_A output to Counter_A clock
6: Connect RO_B output to Counter_B clock
7: Enable Counter_A and Counter_B for fixed time window T
8: During T, increment counters on each RO oscillation pulse
9: After T, disable both counters

10: if Counter_A > Counter_B then
11: R← 1
12: else
13: R← 0
14: end if
15: return R

3.3. PUF Performance Metrices

PUF performance metrics serve as key indicators of functional behavior and security
robustness. Hamming distance (HD) serves as a critical metric for measuring the degree
of dissimilarity between two responses generated by a PUF and is further distinguished
into intra-PUF and inter-PUF comparisons. The intra-PUF HD indicates the dissimilarity
between the responses of a single PUF, highlighting the internal consistency or variability
of the PUF. In contrast, the inter-PUF Hamming distance compares responses from two
different PUFs, offering a gauge of the uniqueness and distinguishability of each PUF’s
responses. According to the classification presented by Pahlevi et al., the evaluation
framework can be grouped into three main categories [48]. The first category, conventional
PUF evaluations, includes metrics such as uniqueness, uniformity, and reliability. These
metrics assess how distinguishable the responses are between different devices, how evenly
distributed the output bits appear, and how consistently the PUF can reproduce the same
response under varying environmental or operational conditions. The second category
focuses on authentication-oriented metrics, which evaluate the practical suitability of PUFs
for real-world security applications. Metrics such as the False Acceptance Rate (FAR) and
False Rejection Rate (FRR) measure authentication accuracy, while bit aliasing and the bit
error rate (BER) capture bit-level stability and possible device bias. Entropy estimation
is also included in this category to quantify the randomness present in the response set.
The third category comprises ML-based attack evaluations, which determine how well the
PUF can withstand modern modeling attacks aimed at predicting its behavior.

The performance of access control mechanisms is evaluated using four fundamental
metrics derived from the confusion matrix, which are defined in Equations (3)–(6): the
false acceptance rate (FAR), the false rejection rate (FRR), the true acceptance rate (TAR),
and the true rejection rate (TRR). The confusion matrix serves as a security evaluation tool
for assessing the effectiveness and dependability of a PUF-based authentication system.
FAR indicates instances where unauthorized individuals are mistakenly granted access,
while FRR reflects cases where legitimate users are unfairly denied access, highlighting
critical error dimensions that must be minimized [49].

FRR =
Number of False Rejections

Total Number of Genuine Attempts
× 100% (3)
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FAR =
Number of False Acceptances

Total Number of Impostor Attempts
× 100% (4)

TRR =
Number of True Rejections

Total Number of Impostor Attempts
× 100% (5)

TAR =
Number of True Acceptances

Total Number of Genuine Attempts
× 100% (6)

The use of a confusion matrix to evaluate an authentication system highlights its
importance in assessing how effectively the system differentiates between legitimate access
attempts and potential security breaches.

• Uniqueness: It is used to quantify how different devices respond to the same input
challenge. In other words, it is defined as the inter-device Hamming Distance (HD)
between different devices, and its ideal value is 50%. The HD of Equation (7) estimates
the uniqueness of CRPs, where n is the total number of devices, Ri and Rj are the
respective responses of the ith and jth devices under the same challenge, HD(·, ·) is
the Hamming Distance operator, and m is the bit length of each response.

Uniqueness =
2

n(n− 1)

n−1

∑
i=1

n

∑
j=i+1

HD(Ri, Rj)

m
(7)

• Uniformity: It is the probability that the 0 s and 1 s are uniformly distributed in PUF’s
response. Uniformity measures the balance between zeros and ones in the responses
generated by a PUF. It is obtained by computing the average Hamming weight of the
responses, as expressed in Equation (8).

Uniformity =
1
k

k

∑
l=1

Rl (8)

• Reliability: It indicates the ability of a PUF to reproduce the same response bit for a
given challenge input even when environmental conditions, such as supply voltage
and temperature, vary. An ideal reliability close to 100% means that no bit flips occur
across repeated measurements. However, achieving perfect reliability is difficult
because PUF outputs are inherently sensitive to these variations.

HDintra(R, R′) =
m

∑
b=1

∣∣Rb − R′b
∣∣ (9)

A standard metric for reliability is the intra-class Hamming Distance, which is illus-
trated in Equation (9), where R and R’ are two responses from the same device under
the same challenge.

• Bit aliasing: It complements uniqueness and uniformity by verifying whether a given
bit exhibits enough variation. Ideally, each bit appears randomly as 0 or 1 with a
typical value of 50%, signifying minimal bias. The aliasing factor for the bth bit is
represented in Equation (10), where Ri,b is the bth bit of the ith device’s response.

Aliasing(b) =
1
n

n

∑
i=1

Ri,b (10)

• Bit Error Rate (BER): The BER defined in Equation (11) gives an estimate of how often
a PUF produces incorrect or flipped bits when the same challenge input is applied

https://doi.org/10.3390/network6010006

https://doi.org/10.3390/network6010006


Network 2026, 6, 6 11 of 30

multiple times under varying environmental conditions, such as temperature and
supply voltage.

BER =
Number of flipped bits

Total bits measured
(11)

• Entropy: It is used to evaluate the overall randomness of PUF outputs, particularly
against advanced modeling attacks and side channel attacks. A higher entropy value
reflects a larger and more unpredictable response space. The most widely used metric
for this purpose is Shannon entropy, which is defined in Equation (12) as follows:

H(R) = −∑
ω

p(ω) log2 p(ω) (12)

where ω represents every possible output pattern, and p(ω) denotes the probability
associated with each pattern [40].

3.4. ML Modelling Attacks

Resistance and reliability against ML attacks are two major concerns for the overall
viability of PUF-based authentication protocols [50]. ML-based attacks on PUFs can be
classified as semi-invasive attacks, as adversaries exploit the PUF by intercepting the
communication channel between the PUF client and the server. The intercepted data are
then preprocessed, and a parametric numerical model is constructed using ML algorithms
that can successfully predict PUF responses [51,52]. Adversaries carry out PUF modeling
attacks using deep learning, LR, support vector machine, and evolution strategy, assuming
access to CRPs [53]. Countermeasures against ML attacks on PUFs typically involve
increasing the nonlinearity and complexity of the PUF model or integrating additional
modules that enable more complex operating modes and communication protocols with
the verifier [54].

Machine Learning

An ML model is developed by analyzing available training data on a computing
platform. The presence or absence of labels, which represent target values, plays a critical
role in model development. Based on the use of labels, ML methods are broadly classified
into supervised and unsupervised learning approaches. Supervised learning relies on
labeled training data, whereas unsupervised learning extracts patterns without requiring
labels. In contrast, reinforcement learning employs automated feedback mechanisms to
iteratively improve model behavior [55]. Each learning paradigm has distinct advantages
and limitations, and no single technique can be considered universally optimal without
considering application-specific constraints [56]. Like many transformative technologies,
ML presents both significant opportunities and challenges. Its widespread adoption is
expected to reshape the cyber threat landscape in the coming years. When integrated
into malicious workflows, ML techniques can enable attacks that are more adaptive, more
resilient, and less detectable by existing defense mechanisms, facilitating the emergence of
novel threat vectors. Consequently, the application of ML in security systems introduces
new attack surfaces that adversaries can exploit. In particular, several supervised learning
algorithms are being investigated to optimize attack strategies and to automate tasks
that traditionally require manual statistical analysis [57]. Identifying an appropriate ML
model is a challenging task due to the availability of a wide spectrum of classification and
regression strategies. Thus, picking a particular model involves evaluating key tradeoffs
such as accuracy, computational efficiency, interpretability, and model complexity and often
requires iterative experimentation. In this work, four supervised ML models are chosen for
modeling DDoS attacks in IoT networks. These algorithms are examined to evaluate their
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effectiveness in enabling more adaptive and intelligent attack strategies. A brief discussion
of these models is presented below.

• Support Vector Machine (SVM): It identifies a hyperplane that best separates data
points belonging to two different classes. In a two-dimensional feature space, this
hyperplane is represented as a line, while in an n-dimensional space, where n denotes
the number of features, it becomes a plane or higher dimensional decision boundary.
Among the many possible separating hyperplanes, the SVM algorithm selects the
optimal one by maximizing the margin between the two classes. Training an SVM
directly on raw data often results in suboptimal performance due to issues such as
missing values, outliers, and redundant information. Therefore, data preprocessing is
essential and typically includes data cleaning to address missing values and outliers,
followed by feature extraction or selection to retain the most informative attributes.
When linear separation of classes is not feasible, kernel functions are employed to
project the data into a higher dimensional space, where a clear separation becomes
achievable [58,59].

y = f (x) = WTx + b =
N

∑
i=1

wixi + b (13)

SVM separates data across a hyperplane f (x) = 0, by solving a constrained quadratic
optimization problem. The input data xi (i = 1, 2, . . . , N) consists of objects with
different labels corresponding to the two classes, namely the positive and negative
classes. Equation (13) represents a hyperplane that separates the given data. where N
is the number of samples, W is an N-dimensional vector, and b is a scalar. The vector
W and scalar b are used to define the position of the separating hyperplane.

• Multi-Layer Perceptron (MLP): is used as an Artificial Neural Network (ANN) clas-
sification algorithm. It belongs to a class of nonlinear statistical models comprising
of multiple layers of nodes arranged in a directed graph, where each layer is fully
connected to the subsequent layer. Typically, MLP consists of three types of layers,
namely the input layer, one or more hidden layers, and the output layer. The output y
of a neural model against input data xi (i = 1, 2, . . . , N) is shown in Equation (14).

y = f (WTx) = f

(
N

∑
i=1

wixi + b

)
(14)

where f is the activation function, N is the number of neurons, W are the ANN model
weights, and b is the bias vector.

• Logistic Regression (LR): Its a statistical modeling technique, commonly associated
with the sigmoid function, that is used to predict a binary outcome based on one or
more predictor variables. Binary logistic regression is applied when the dependent
variable has two possible outcomes, while multinomial logistic regression is employed
when the outcome variable consists of more than two categories [60]. The logistic
regression model is expressed as logistic (sigmoid) function, in Equation (15).

σ(z) =
1

1 + e−z (15)

where z is a linear summation of input features and their coefficients. As illustrated
in Equation (16), the model predicts the probability p that the dependent variable y
equals 1 given input x for binary classification.

p(x) =
1

1 + e−(β0+β1x)
(16)
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where β0 is the intercept and β1 is the coefficient for the input feature. The odds of
the event are expressed as p

1−p , in Equation (17), representing a linear relationship
between the features and the log-odds [61].

ln
(

p
1− p

)
= β0 + β1x1 + β2x2 + · · ·+ βnxn (17)

• k-Nearest Neighbors (k-NN): It is a non-parametric ML algorithm applied to both
classification and regression tasks. It assigns a class label or predicts a value for a query
sample based on the majority class or the average value of its nearest neighbors in the
feature space. The algorithm is simple to implement and does not require an explicit
training phase. However, its performance deteriorates with high-dimensional data,
and it incurs high inference time and memory overhead due to the need to store and
compare all training samples. The k-NN algorithm operates in three main stages. First,
it computes the distance between the query point and all training samples. Second, it
selects the k closest neighbors based on the chosen distance metric. Finally, it predicts
the class label or value of the query point using majority voting for classification or
mean aggregation for regression.

4. Experimental Setup and Implementation
The experimental setup and synthesized netlist statistics of the proposed RO-PUF

are shown in Figure 4. The proposed architecture is implemented and verified using
Cyclone IVE FPGA chips (EP4CE10F17C8), Intel, Santa Clara, CA 95054, USA in the
AX4010 development board. Intel Quartus Prime 18.1 Lite Edition, Santa Clara, CA 95054,
USA is used to develop and verify the RO-PUF design prior to configuring the FPGA
device. The Cyclone IV E EP4CE10F17C8 is a low-cost, low-power FPGA developed by
Intel. It features 10,320 logic elements, 414 Kbits of embedded memory, 179 user I/O pins,
and four PLLs for flexible clock management, all packaged in a 256-pin FBGA. The RO-
PUF design, implemented in VHDL, is interfaced with the onboard GPIO pins of the
AX4010 development board. All control signals, including challenge inputs and response
outputs, are connected to a 16-channel logic analyzer through these GPIO pins. The design
incorporates 512 ring oscillators (ROs) comprising five inverters. The outputs of the ROs
are routed to two sets of 256-to-1 multiplexers (MUXes). Each MUX selects one RO output
based on the challenge input, thereby determining which RO signal is passed to the output.
The final response is generated by comparing the frequencies of two counters, Counter_A
and Counter_B. An 8-bit linear feedback shift register (LFSR) is used to generate the
challenge signals, based on the characteristic polynomial P(x) = x8 + x4 + 1.

(a) Experimental setup (b) Post synthesis netlist statistics

Figure 4. FPGA implementation of proposed RO-PUF.
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The ML hyperparameters listed in the Table 2 govern both the structural configuration
and the learning behavior of a model. Their selection has a direct impact on convergence
speed, generalization capability, and computational efficiency. Careful tuning of hyper-
parameters helps achieve an appropriate balance between underfitting and overfitting,
increases robustness to noise, and improves predictive performance on previously unseen
data. The ML models, such as SVM, LR, MLP, and k-NN, require careful parameter tuning
to achieve optimal performance. For example, as illustrated in Table 3, SVM depends on
the choice of kernel and gamma values, LR relies on regularization strength and iteration
limits, MLP depends on hidden layer sizes, learning rates, and solver selection, while
k-NN requires the selection of an appropriate number of neighbors and distance metrics.
The training process involves preparing the PUF CRP dataset by separating the features
from the responses and then splitting the data into training and testing sets for supervised
learning. Validation and evaluation are carried out using metrics such as accuracy and
confusion matrices to assess model performance. While train-test splits provide an ini-
tial measure of effectiveness, applying cross-validation techniques can further enhance
reliability by reducing variance and ensuring the models generalize well to unseen CRPs.

Table 2. Hyperparameters of Machine Learning Models

Model Hyperparameters

Support Vector Machine (SVM) Kernel function, regularization parameter C, kernel
coefficient gamma, polynomial degree, class weight,
tolerance, shrinking heuristic

Multilayer Perceptron (MLP) Number of hidden layers, number of neurons per
layer, activation function, optimizer, learning rate,
learning rate schedule, batch size, maximum epochs,
L2 regularization alpha, momentum, early stopping

Logistic Regression (LR) Regularization type, regularization strength C, solver,
maximum iterations, class weight, tolerance, multi-
class strategy

K Nearest Neighbors (KNN) Number of neighbors k, distance metric, distance
power p, weight function, search algorithm, leaf size

Table 3. Comparison of Machine Learning Models.

Criterion SVM MLP LR KNN

Learning type Supervised Supervised Supervised Supervised

Model nature Margin based Neural network Linear probabilistic Instance based

Nonlinear capability kernels Yes No Yes

Interpretability Medium Low High Medium

Training complexity Medium to high High Low Very low

Inference complexity Low Low Low High

Scalability Medium High High Low

Overfitting risk Medium High Low Medium

Performance on small
datasets High Low High High

High dimensional data
handling Excellent Good Good Poor

4.1. NIST Randomness Test

Randomness plays a fundamental role in cryptography, as the strength of many secu-
rity mechanisms relies on the unpredictability of generated sequences. However, generating

https://doi.org/10.3390/network6010006

https://doi.org/10.3390/network6010006


Network 2026, 6, 6 15 of 30

truly random numbers is inherently challenging, and equally important is the rigorous
evaluation of the quality of the generated data. To assess randomness, statistical tests are
commonly employed, which yield a p-value. The p-value quantifies the probability that
a truly random number generator would produce a sequence exhibiting less apparent
randomness than the sequence under evaluation. In other words, it provides a statisti-
cal measure of how well the tested sequence aligns with the characteristics of an ideal
random source.

Most empirical randomness tests, such as those included in the National Institute
of Standards and Technology (NIST) Statistical Test Suite (STS), are built on the princi-
ples of statistical hypothesis testing. The NIST STS consists of 15 well-defined tests that
evaluate binary sequences for signs of non-randomness. These tests analyze both local
and global properties of the data. At the local level, they assess features such as the
balance between zeros and ones, or the frequency of specific bit patterns within smaller
segments of the sequence. At the global level, they examine broader statistical behavior
across the entire bitstream to determine overall randomness. To further refine detection,
the bitstream is often partitioned into multiple large segments, where each segment is
analyzed independently. The results from these segments are then aggregated into final
test statistics, which help to identify localized irregularities or systematic deviations from
randomness. This multi-layered evaluation ensures that both subtle and significant weak-
nesses in the sequence can be detected, providing a comprehensive measure of its suitability
for cryptographic applications.

In the context of the NIST STS, interpreting p-values is crucial. For each test, a signifi-
cance level (commonly set at 0.01) is defined. If the p-value obtained from a sequence is
greater than or equal to 0.01, the sequence is considered to have passed that particular ran-
domness test, indicating no strong evidence of non-random behavior. Conversely, a p-value
below 0.01 suggests that the sequence may deviate significantly from randomness. Ideally,
when a large number of independent sequences are tested, the distribution of p-values
across all tests should be uniform within the interval [0,1]. This uniformity demonstrates
that the data behaves consistently with what is expected from a true random source. There-
fore, both the proportion of sequences passing each test and the uniformity of their p-value
distribution are essential criteria in validating the randomness of cryptographic data.

Each NIST STS test is defined by a specific test statistic, which falls into one of
three categories:

• Bits: Analyzes characteristics such as proportion of bits, frequency of bit changes,
and cumulative sums.

• m-bit blocks: Analyzes distribution of m-bit blocks (m < 30) within the sequence or
its parts.

• M-bit parts: Analyzes complex properties of M-bit parts (M > 1000), such as matrix
rank, sequence spectrum, or linear complexity.

Most tests are parameterized by n (sequence length) and may include a second param-
eter m or M, depending on the test. Table 4 summarizes the number of sub-tests included
in the NIST STS suite. Notably, the non-overlapping template matching test has a variable
number of sub-tests determined by m [62].
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Table 4. Recommended bitstream parameters.

# Name of the Test n M or m Sub-Test #

1 Frequency n ≥ 100 – 1
2 Frequency within a block n ≥ 100 20 ≤ M ≤ n/100 1
3 Runs n ≥ 100 – 1
4 Longest run of ones n ≥ 128 – 1
5 Rank n > 38, 912 – 1
6 Spectral n ≥ 1000 – 1
7 Non-overlapping Template Matching n ≥ 8m− 8 2 ≤ m ≤ 21 148
8 Overlapping Template Matching n ≥ 106 – 1
9 Maurer’s Universal n > 387, 840 – 1
10 Linear Complexity n ≥ 106 500 ≤ M ≤ 5000 1
11 Serial – 2 < m < [log2 n]− 2 2
12 Approximate Entropy – m < [log2 n]− 5 1
13 Cumulative Sums n ≥ 100 – 2
14 Random Excursions n ≥ 106 – 8
15 Random Excursions variant n ≥ 106 – 18

4.1.1. Brief Description of NIST Randomness Tests

• Frequency (Monobit) test: Checks whether the number of ones and zeros is approxi-
mately equal.

• Frequency within a block test: Evaluates proportion of zeros and ones in M-bit blocks;
expected frequency of ones is M/2.

• Runs test: Measures consecutive runs of zeros and ones; checks if transitions occur at
expected frequencies.

• Longest run of ones in a block test: Examines if the longest run of ones (and zeros) in
M-bit blocks matches the expected distribution.

• Random binary matrix rank test: Evaluates the rank of sub-matrices to detect linear
dependencies in the sequence.

• Discrete Fourier Transform (Spectral) test: Detects periodic features using DFT
peak heights.

• Non-overlapping template matching test: Detects excessive occurrences of aperiodic
m-bit patterns using a sliding window that resets after each match.

• Overlapping template matching test: Counts occurrences of target substrings; window
slides by one bit to allow overlaps.

• Maurer’s Universal Statistical test: Measures compressibility of the sequence; overly
compressible sequences indicate non-randomness.

• Linear complexity test: Estimates the length of the feedback register required to
reproduce the sequence; shorter lengths indicate predictability.

• Serial test: Examines frequency of all overlapping m-bit patterns.
• Approximate Entropy test: Compares frequencies of overlapping m-bit and (m+ 1)-bit

patterns to detect regularity.
• Cumulative Sum (Cusum) test: Evaluates maximal deviation from zero in the cumula-

tive sum of bits mapped to {−1,+1}.
• Random Excursions test: Measures the number of cycles with exactly K visits in

cumulative sum random walks.
• Random Excursions Variant test: Analyzes frequency of visits to specific states in

cumulative sum random walks to detect non-random patterns.
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4.1.2. Calibration

Calibration plays a critical role in ensuring the accuracy, reliability, and reproducibility
of CRP acquisition when implementing PUFs on FPGAs. Since PUF responses are highly
sensitive to environmental conditions such as temperature, voltage fluctuations, and aging,
as well as to measurement artifacts including timing misalignment, noise, and signal
distortions, calibration methods are employed to minimize errors before the data are fed
into ML-based security models.

• Timing Calibration: Logic analyzers capture digital signals at high sampling rates
ranging from hundreds of MHz to several GHz. However, any misalignment be-
tween challenge signals, response outputs, and control clocks can result in corrupted
CRPs. The calibration strategies used to address these misalignment issues are
discussed below.

(i) Use a known reference signal, such as the FPGA internal clock or a test pattern
generator, to align acquisition channels.

(ii) Apply trigger-based synchronization in the logic analyzer to ensure consistent
alignment of challenge vectors with corresponding responses.

• Voltage and Signal Level Calibration: FPGA output signals may degrade due to voltage
drop, temperature variations, or I/O mismatches. This can cause the logic analyzer to
misinterpret logical ‘0’ and ‘1’ levels. The calibration techniques adopted are,

(i) Adjust threshold voltage levels on the logic analyzer to match FPGA I/O
standards (e.g., LVTTL, LVCMOS).

(ii) Periodically recalibrate using known test vectors to verify that digital transi-
tions are accurately captured.

• Environmental Calibration: PUF responses are known to vary with temperature,
supply voltage, and device aging. Environmental calibration ensures that CRPs
remain stable and consistent under varying conditions. Calibration strategies include,

(i) Use environmental profiling, where CRPs are collected across controlled
temperature and voltage ranges, followed by applying corrective models.

(ii) Apply ML-based preprocessing such as normalization or majority voting to
compensate for environmental drift.

• Noise Filtering and Signal Cleaning: High-frequency noise or transient glitches can
distort CRP acquisition and lead to unstable datasets. Techniques used in noise
filtering and signal conditioning are,

(i) Apply digital filtering techniques (e.g., glitch removal, debouncing) during
data preprocessing.

(ii) Perform repeated measurements followed by majority voting to ensure tran-
sient noise does not bias the dataset.

• Data Alignment and Synchronization: During multi-channel CRP acquisition, timing
skew between channels can lead to incorrect challenge–response mapping. The cali-
bration methods used for data alignment and synchronization include,

(i) Perform multi-channel skew calibration by applying the same known signal
to all acquisition channels and adjusting offsets accordingly.

(ii) Use post-processing alignment algorithms to re-synchronize challenge–
response mapping before ML training.

• Statistical Calibration for ML Training: Before feeding CRPs into machine learning
models, statistical calibration ensures data integrity and uniformity for reliable analy-
sis. The calibration techniques include,
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(i) Compute intra-class and inter-class metrics to evaluate the reliability and
uniqueness of CRPs.

(ii) Apply whitening techniques (e.g., Linear Feedback Shift Register (LFSR) or
hash-based methods) to eliminate bias in raw PUF data.

(iii) Normalize datasets to prevent ML models from being influenced by imbal-
anced or skewed response distributions.

Intel Quartus Prime, illustrated in Figure 5, was employed to achieve timing alignment
and voltage level adjustment, with on-chip phase-locked loops providing accurate clock
alignment. The Timing Analyzer conducted static timing analysis across the entire design
by evaluating specified data times, data arrival times, and clock arrival times in order to
verify correct operation and identify potential timing violations. It establishes the timing
relationships that must be satisfied for reliable system functionality. Signal synchronization
across different clock domains is specified using Synopsys Design Constraints, including
clock definitions and input-output delay constraints, to ensure positive setup and hold time
margins. During implementation, the LVTTL IO standard was assigned to each pin through
the Pin Planner, guaranteeing voltage compatibility with the external logic analyzer.

(a) Timing analyzer

(b) Pin Planner

Figure 5. Intel Quartus Prime Tools.
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5. Results and Discussion
PUFs exploit the device’s inherent physical randomness to generate unique and

repeatable responses corresponding to challenge inputs. The key metric for measuring
randomness, i.e., the balance between 0 s and 1 s in the output, is the relative frequency of bit
1 across all generated responses. This frequency provides a mathematical means to assess
how uniformly bit 1 appears, which is critical in determining the PUF’s effectiveness for
security purposes. In security applications, high unpredictability and an even distribution
of binary values are essential. As expressed in Equation (18), relative frequency is calculated
by dividing the total number of 1 s by the total number of response bits, thus providing an
absolute indicator of the PUF’s randomness and, by extension, its reliability and suitability
for security applications.

p =
1

KL

K

∑
k=1

L

∑
l=1

bk,l (18)

where p and K represent the relative frequency of bit 1 in all responses and the total number
of responses, while L denotes the response length. In contrast, k and l refer to the response
kth and the position lth bit in the response output, respectively.

H = − log2 max(p, 1− p) (19)

Table 5 lists the uniqueness and uniformity values, which fall within the range of
published RO PUF designs, but its reliability is noticeably lower than that of most prior
works. However, lower reliability strengthens resilience against ML attacks as it introduces
label noise into the challenge response pairs, making the PUF’s input–output mapping
harder to learn.

Table 5. Comparison of RO PUF metrics reported in the literature.

Reference Uniqueness Uniformity Reliability Description

[63] 47.64%,
45.15%

49.8%, 48% 98.5%, 96% RO PUF using three and five stage
oscillators on Artix seven FPGA
with XOR and inverter logic.

[64] 50.1% 49.45% 98.33% CLU-based design using XOR and
XNOR to create a low hardware
CRO PUF.

[65] 49.23% 49.76% 98.05% A lightweight configurable RO PUF
that combines RRAM with CMOS
inverters.

[66] 48.64% 46.78% 86% Strong RO PUF (BST RPUF) de-
signed for improved CRP count and
stable responses.

[67] 49.2% 49.8% 97.6% RO PUF design used as a hardware
security primitive for IoT applica-
tions.

[68] 44.46%,
47.33%,
47.48%

59.61%,
60.62%,
62.89%

97.96%,
98.09%,
99.16%

Uses one hundred RO blocks with
five, eleven, and twenty stages for
response generation.

[66] 48.64% 46.78% BER < 10−9 Highly reliable BST RPUF robust
against ML-based modeling attacks.

This work 49.1% 56.86% 60.13% A configurable RO PUF architecture
is implemented on an FPGA plat-
form and its resilience against ML
attacks is measured.

https://doi.org/10.3390/network6010006

https://doi.org/10.3390/network6010006


Network 2026, 6, 6 20 of 30

To assess the randomness of a bit sequence, Equation (19) defines H as the minimum
entropy anticipated from PUF outputs to exhibit a uniform distribution. H peaks at 1 when
p = 0.5 and reaches its lowest at 0 when p = 0 or p = 1. The optimal value of p is 0.5 for a
binary system, as it produces the maximum entropy of 1 bit and represents the maximum
uncertainty or randomness in a system. It also provides the strongest unpredictability
and ensures resilience against cloning and prediction. The bitwise probability p and
entropy H are plotted against varying CRPs in Figure 6. This study also conducts a
vulnerability assessment of the proposed FPGA-based RO-PUF design against machine
learning (ML) modeling attacks. The challenge–response pair (CRP) data is split into
training and testing sets in an 80% to 20% ratio to build the attack model. This setup
enables a clear and meaningful evaluation of the prediction accuracy of various ML models,
with CRP lengths scaling up to 80,000. The graph shown in Figure 7 illustrates that the
security of the PUF decreases as more CRPs become available. LR and MLP achieve the
highest prediction accuracy, meaning they pose the most effective modeling threat, while
the SVM also shows moderate attack capability. In contrast, k-NN performs poorly with
low and unstable accuracy, indicating strong resistance against such attacks. Accuracy
values rise with increasing challenge response pairs and peak around 32,000 to 33,000,
after which improvements saturate or slightly decline. Since lower accuracy corresponds
to stronger security, the physical unclonable function remains most robust against attacks
with limited challenge response pairs and when weaker models like k-NN are used.

Figure 6. Bitwise probability (P) and entropy (H) against CRP numbers.

Figure 7. ML accuracy (%) versus varying number of CRP’s.
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The confusion matrix shown in Figure 8 evaluates the performance of a classification
model. The top-left cell represents true positives (TP), indicating the positive instances
correctly identified by the model. The bottom-left cell shows false positives (FP), which are
negative cases incorrectly classified as positive, also known as type I errors. The top-right
cell displays the number of false negatives (FN), referring to positive instances that were
mistakenly predicted as negative. Finally, the bottom-right cell indicates true negatives
(TN), where the model correctly identified negative instances. The sum of these four
values gives the total number of predictions made by the model. Metrics such as accuracy,
precision, recall, and F1-score can be derived from the confusion matrix to provide deeper
insight into the model’s performance. Equation (20) presents an estimation of model
accuracy based on the values in the confusion matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
(20)

Figure 8. Confusion matrix of ML models (trained using 35K CRPs).

Modeling attacks has become a significant security concern, aiming to imitate the
challenge–response behavior of PUFs and replicate their secret authentication keys. In the
context of lightweight PUF-based systems, these attacks are generally classified into three
main types: (a) machine learning (ML)-based software attacks, (b) side-channel attacks,
and (c) hybrid attacks that combine ML techniques with side-channel analysis. A generic
model, often polynomial, is used in ML-based modeling attacks for approximating CRP
datasets. Adversaries divide the compromised CRP dataset into training and testing subsets.
An iterative process is carried out in which challenges are input into the developed PUF
model and the corresponding responses are predicted. The error between the predicted
and actual response is used to estimate a loss function; subsequently, the model parameters
are updated using optimization strategies such as gradient descent in logistic regression
(LR) or maximum likelihood estimation for support vector machines (SVMs). Finally,
the model’s ability to replicate the actual PUF behavior is validated using the test set [69].
However, the effectiveness and precision of ML-based attacks decline as the structural
complexity of the PUF increases. In particular, strong PUFs, such as Ring Oscillator (RO)
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and Arbiter PUFs, which incorporate a high degree of nonlinear logic are more resistant to
such modeling efforts.

5.1. Randomness Results

Table 6 summarizes the results of the NIST randomness tests conducted on the RO
PUF CRP data. The p-value represents the likelihood that the observed bit sequence could
have been produced by an ideal random source under the null hypothesis. In general,
a sequence is considered random if its p-value exceeds the predefined significance level,
typically 0.01, whereas values below this threshold indicate potential nonrandom behavior.
It is important to emphasize that no single p-value alone confirms perfect randomness.
Instead, a robust PUF should yield p-values that are uniformly distributed between 0 and 1
across various tests and sequences. Such a uniform distribution, along with the majority
of p-values surpassing the 0.01 threshold, indicates that the CRP data exhibit statistical
characteristics consistent with true randomness. Thus, it is concluded that the FPGA-
based RO-PUF can effectively resist ML modeling attacks, as evidenced by the results in
Table 7. The ML models perform no better than random guessing (50% accuracy for binary
responses), and the RO-PUF successfully prevents learning patterns, given that the highest
accuracy achieved is approximately 60%.

Table 6. RO PUF NIST statistical test results.

Tests p-Values

Block Frequency 0.444570
Cumulative sums 0.907298
FFT 0.561658
Frequency Test 0.583604
Runs 0.677681
Longest run of ones 0.164698
Rank 0.945607
Non overlapping Template matching 0.51082702 (Average)
Overlapping template matching 0.711526
Universal statistical 0.829717
Approximate entropy 0.120839
Random excursions 0.332701
Random excursions variant 0.447202222
Serial test 0.2013255
Linear complexity 0.420000

Table 7. ML model accuracy (%) against varying CRPs.

Algorithm 25K 26K 27K 28K 29K 30K 31K 32K 33K 34K 35K

SVM 52.7 51.27 53.46 55.71 56.81 57.65 59.02 59.94 59.94 58.44 57.43
LR 52.68 51.85 53.09 54.66 56.16 57.27 58.82 59.56 59.91 57.9 56.96

MLP 52.17 51.77 53.46 55.71 56.81 57.65 59.02 59.94 59.94 58.44 57.43
KNN 51.94 48.87 50.19 50.30 54.28 49.43 54.16 55.91 51.18 53.6 52.19

5.2. Correlation Matrix

The correlation matrix of the RO PUF CRP data in Figure 9 illustrates the degree of
dependency between different output-bit values generated by the RO PUF. Each cell in the
matrix represents a correlation coefficient between two response bits, ranging from −1 to
+1. The diagonal elements show perfect correlation (value of 1), indicating that each bit is
fully correlated with itself.
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Figure 9. RO PUF Correlation Matrix.

The colors transition from red along the diagonal to blue in the off-diagonal regions,
reflecting varying levels of inter-bit correlation. From the heatmap, it can be observed that
adjacent bits exhibit a moderate degree of correlation, while distant bits tend to be weakly
correlated or nearly independent. This pattern suggests that neighboring ring oscillators
may share certain environmental or structural influences, such as local routing, power
distribution, or temperature variations, thereby introducing partial dependency among
nearby bits. However, as the distance between bits increases, the influence diminishes,
and the correlation between them approaches zero. The overall low inter-bit correlation
indicates that the RO PUF produces outputs that are largely independent and random,
thereby fulfilling one of the key requirements of a strong PUF design. The slight correlation
observed between adjacent bits is expected in practical implementations due to physical
proximity effects. To further enhance independence, post-processing techniques such as
XOR-based bit mixing or improved oscillator placement strategies can be employed. In sum-
mary, the correlation matrix demonstrates that the RO PUF achieves good randomness and
uniqueness characteristics, making it suitable for secure identification and authentication
in hardware security applications.

5.3. Receiver Operating Characteristic (ROC)

The ROC analysis for the RO-PUF in Figure 10 shows that all models—Logistic
Regression, Random Forest, Gradient Boosting, SVM, and MLP—produced Area Under
the Curve (AUC) values close to 0.49, with ROC curves nearly overlapping the diagonal
reference line. This behavior indicates that none of the models could distinguish the RO-
PUF responses from random guessing, thereby confirming its strong resistance to ML-based
prediction. The intrinsic randomness and frequency-based variations of the oscillators
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introduce complex, nonlinear behavior that conventional ML algorithms cannot capture
effectively using standard training procedures.

Figure 10. Receiver Operating Characteristic of RO PUF.

5.4. Deep Learning

Deep learning is a specialized branch of machine learning and artificial intelligence
that employs multi-layered neural network architectures. In these models, data propagate
through several successive layers, where early layers extract low-level features and deeper
layers progressively combine them to form higher-level, more abstract representations.
This hierarchical feature learning makes deep learning particularly effective for large-
scale data analytics and statistical learning, such as the identification of cyber threats in
intelligent and adaptive security systems. However, implementing large and complex deep
learning models in edge computing environments remains challenging due to constraints on
computation, memory, and energy resources [70]. Deep neural networks can approximate
highly complex functions, with their representational power determined by the number
of hidden layers and the number of neurons per layer. Among various deep learning
architectures, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) have demonstrated strong performance in many real-world applications [71].
CNNs are feedforward networks that exploit convolutional operations to automatically
extract discriminative features from input data. A typical CNN architecture comprises
convolutional layers, pooling layers for dimensionality reduction, and fully connected
layers for classification, making CNNs highly effective for feature extraction and pattern
recognition tasks [72]. In contrast, RNNs are designed with internal memory mechanisms
that enable them to model temporal and sequential dependencies. By processing inputs
in a sequence rather than independently, RNNs are well suited for applications involving
time-dependent or ordered data [73].

As shown in Figure 11, a 1D CNN is developed using the Sequential API, compris-
ing two Conv1D layers that successively extract low-level and then high-level temporal
features, followed by a MaxPooling1D layer, which performs dimensionality reduction.
The resulting feature maps are flattened and fed into a fully connected dense layer to
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capture global relationships, while a dropout layer is incorporated to mitigate overfitting.
The network concludes with a single-neuron output layer that generates a single prediction
value, thereby making the model suitable for both regression and binary classification
tasks. In addition, an RNN-based model employing a Long Short-Term Memory (LSTM)
architecture is implemented to assess the learnability of the RO-PUF responses.

(a) CNN model parameters

(b) RNN model parameters

Figure 11. Deep Neural Networks modeling parameters.

The evaluation results in Figure 12 indicate that both the CNN and RNN (LSTM-
based) models exhibit very close performance metrics. On the test dataset, each model
achieves an accuracy of 0.5668 with a corresponding loss of 0.6842, suggesting comparable
generalization capabilities. During training, the CNN and RNN reach nearly identical
final training accuracies of approximately 0.569, while their final validation accuracies are
also closely matched at about 0.568. This consistency between training and validation
performance implies stable learning behavior with no significant overfitting; however the
relatively modest accuracy values indicate that both models face challenges in effectively
learning the underlying patterns present in the RO-PUF responses.

Figure 12. DNN models accuracy percentage.

6. Conclusions
Advances in machine learning represent a double-edged sword. While they enable

powerful data-driven solutions, they have also become increasingly affordable and easy
to deploy due to the availability of mature frameworks such as TensorFlow and OpenAI
Gym. Coupled with the growing accessibility of high-performance computing platforms,
these developments have lowered the barrier to using machine learning algorithms for
malicious purposes, including modeling attacks on security primitives. Physically Unclon-
able Functions offer a cost-effective and reliable method for authenticating IoT devices
due to their unique physical characteristics and ease of implementation. Nevertheless,
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despite being labeled as unclonable, PUFs can be vulnerable to modeling attacks if an
adversary gains access to a portion of their challenge–response pairs (CRPs). RO PUFs
offer a lightweight, hardware-rooted security primitive that aligns well with the constraints
of edge-based IoT systems. Their low power consumption and minimal hardware footprint
make them suitable for large-scale deployments while enabling scalable device authen-
tication and secure key generation at the network edge. Interoperability with existing
security protocols can be achieved by leveraging RO PUF outputs as root-of-trust anchors,
rather than replacing established cryptographic frameworks. Furthermore, the robustness
of RO-PUF-based security mechanisms can be enhanced by combining PUF-derived keys
with post-quantum cryptographic schemes, thereby strengthening resilience against future
computational threats. In this work, we present a machine learning (ML)-resistant strong
Ring Oscillator PUF (RO-PUF) architecture implemented on an FPGA. The design utilizes
512 RO chains, each consisting of five inverters, and employs an eight-bit challenge to
generate each response bit. Experimental results demonstrate that the proposed RO-PUF
significantly improves resilience against ML-based modeling attacks, effectively hindering
adversaries from constructing accurate predictive models.
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EC Edge Computing
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FPGAs Field Programmable Gate Arrays
ICs Integrated Circuits
IDS Intrusion Detection Systems
IoT Internet of Things
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MiTM Man in the Middle
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NIST National Institute of Standards and Technology
PUF Physical Unclonable Function
RF Random Forests
RO Ring Oscillator
STS Statistical Test Suite
SVM Support Vector Machine
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