Impact in Agriculture

oz
JI!Impaxon

Review

Diffusion Models for Agricultural Imaging: A Systematic Review of Methods,

Applications and Future Prospects

Hewa Majeed Zangana !, Shuai Li 2 and Sharyar Wani % *

1Duhok Technical College, Duhok Polytechnic University, Kurdistan Region 42001, Iraq
2Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu 90570, Finland
3 Department of Computer Science, Kulliyyah of Information and Communication Technology, International Islamic

University Malaysia, Kuala Lumpur 53100, Malaysia
* Correspondence: sharyarwani@iium.edu.my (5.W.)

Abstract

Diffusion models are rapidly reshaping agricultural image analysis, offering high-fidelity synthetic data
generation where real datasets are limited, imbalanced, or costly to collect. Traditional augmentation
and GAN-based synthesis often struggle to preserve fine disease features and crop textures, leading to

suboptimal model performance in real field conditions. This review consolidates the latest research on

diffusion-based methods applied to plant disease diagnosis, fruit quality assessment, weed and pest

monitoring, nematode identification, green-wall health evaluation, and UAV-based phenotyping.

Reported literature demonstrates improved texture detail, lesion clarity, and better classification

accuracy when diffusion-generated images supplement training datasets. Techniques such as latent
diffusion and ControlNet enhance structure control, while text-guided models support domain transfer
and unseen class synthesis. Despite promising outcomes, challenges remain concerning computational

cost, real-world generalization across farms and seasons, and lack of standardized evaluation protocols.

Future progress is expected through multimodal diffusion integrating hyperspectral and thermal
inputs, efficient deployment on edge devices, and development of open benchmarks for comparative
analysis. This review positions diffusion models as a leading generative approach for agricultural Al

and outlines the research opportunities needed for practical adoption in large-scale farming

environments.
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1. Introduction

Image based analysis supports key tasks in crop and
horticultural research. These tasks include leaf disease
detection, fruit defect assessment, weed identification, pest
monitoring, and crop growth evaluation [1]. Each task

depends on high quality labelled datasets. Most datasets in
agriculture are small. They contain uneven class counts
and high visual noise. They also show strong variation due
to lighting, background clutter, and camera type. These
limits reduce the accuracy of deep models and make model
transfer difficult across farms and seasons. Several studies
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report severe accuracy drops when models trained on one
field move to new settings. For example, Yang et al
observed that maize segmentation models trained only on
tasseling-stage UAV (Unmanned Aerial Vehicle) images
performed poorly outside that growth phase. This
highlights the challenge of cross-stage generalization in
field conditions, a phenomenon analogous to reported
accuracy drops exceeding 20 percent in comparable
agricultural imaging tasks [2].

Basic augmentation methods increase the number of
images but do not add new structure [3-5]. They improve
robustness in common situations but fail when rare disease
stages or fine texture features are needed. Generative
Adversarial Networks (GANSs), a class of machine learning
models used for generating new data, can improve
diversity by synthesizing new images. However, GANs
often struggle with stability when trained on small datasets
and can produce blurry boundaries in images, such as on
the edges of leaves or the surface patterns of fruits [6]. They
often create blurred boundaries on leaves or incomplete
surface patterns on fruits. Many studies report mode bias
and low detail when the real dataset has fewer than 300
images per class [6,7]. These issues reduce the value of
GAN based augmentation for agricultural tasks.

Diffusion Models offer an alternative approach by
progressively adding noise to images and then learning to
reverse this process to generate new images. This is
referred as gradual denoising sequence. This approach
supports detailed structure and diverse outputs. It works
well in small datasets and preserves local patterns in
disease spots, fruit textures, weed shapes, and UAV scenes
[8-11]. Several studies report gains of 3 to 12 percent in
classification accuracy when diffusion-based images enter
the training set [9,12-14]. Other studies report improved
few shot performance with as few as ten real images per
class [10,15,16]. Diffusion models also support conditional
control. Some studies use ControlNet to create weeds with
specific shapes or color patterns. Others use latent
diffusion to support class balancing in leaf disease tasks.

Diffusion research in agriculture expanded after 2022.
Early studies focused on leaf disease generation. Recent
studies target fruit disease detection, jujube defect scoring,
nematode recognition, and aerial crop monitoring. Some
works use diffusion for super resolution in UAV imagery.
Others use text guided diffusion to support domain
transfer in vineyards. Several studies show that diffusion-
based augmentation improves generalization when real
field images shift due to climate, soil, or sensor change
[17,18].

The field still shows gaps. Many datasets are small
and lack standard splits. Few studies test models across
multiple farms or seasons. Most studies use RGB images
and do not include hyperspectral or thermal sensors. Only
a few works explore multimodal diffusion. There is limited
evidence on model stability in large scale training. Few
papers report hardware cost or time cost for deployment.
No common benchmark exists for diffusion-based
augmentation in agriculture.

Existing reviews cover plant disease detection or GAN
based augmentation but do not address diffusion-based
methods. No prior review has examined diffusion models
in agricultural imaging. The growth of studies since 2022
creates a need for a focused review. Researchers need a
clear summary of tasks, models, datasets, and outcomes.
Practitioners need guidance on when diffusion helps and
when it does not. A structured review supports both goals.

This review examines studies published between 2020
and 2025 that use diffusion-based image generation or
enhancement for agricultural tasks. It focuses on leaf
disease detection, fruit disease detection, weed and pest
recognition, and UAV based crop monitoring. It reports the
model types used in these studies. It summarizes dataset
size, training setups, and performance outcomes. It
highlights gains reported in classification, detection,
segmentation, and few shot learning. It also reports
common limits and directions for practical use in field
systems.

2. Methods

This review followed a structured process based on
PRISMA. The search used Scopus. Scopus was selected
because it indexes major journals in computer vision,
agriculture, and applied machine learning. Scopus
provides extensive coverage of interdisciplinary research
that is critical for the diverse applications of diffusion
models in agricultural imaging. While Web of Science and
IEEE Xplore are valuable resources, they were excluded
primarily due to Scopus’s broader interdisciplinary
coverage, and secondarily due to limited access to some of
the databases. The objective was to identify studies that
used diffusion models for image based agricultural tasks.

The search string was:

TITLE-ABS-KEY ( "diffusion model" OR
"denoising diffusion"™ OR "stable diffusion"
OR "diffusion probabilistic model"™ OR DDPM
OR "latent diffusion" )

AND
TITLE-ABS-KEY ( plant OR crop OR leaf OR
fruit OR agriculture )
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AND
TITLE-ABS-KEY ( image OR images OR "image
dataset" )
The screening process was performed by two independent
reviewers, who evaluated the titles, abstracts, and full texts
based on predefined inclusion and exclusion criteria. Any
discrepancies between the reviewers were resolved
through discussion and consensus. To ensure the accuracy
and reliability of the screening, a third reviewer was
involved to verify the final inclusion of studies, ensuring
consistency with the review protocol.
The search returned 240 records. The time window
was limited to 2020 to 2025. Diffusion models entered
applied use for image generation during this period.
Earlier studies did not use these models for agricultural
imaging. After applying the year filter and journal only, 95
records remained.
Screening took place in two steps. The first step used
titles and abstracts. The second step used full texts. Both
steps applied fixed inclusion and exclusion rules.
The inclusion criteria were:
1. Use of a diffusion model for image generation or
image enhancement.

2. Use of images as the primary data source.

3. A taskrelated to plants, crops, leaves, fruits, pests,
or weeds.

4. Use of deep learning.

5. Publication in a peer reviewed journal.
The exclusion criteria were:
1. No diffusion model in the method.
No link to plant, crop, leaf, fruit, weed, or pest
imaging.

3. No image-based task.

4. Use of physical or mathematical diffusion
unrelated to generative models.

5. Work in medical, industrial,
chemical, or materials domains.

6. Remote sensing tasks with no agricultural target.

7. Review papers or opinion papers.

The PRISMA flow is depicted in Figure 1. The search
identified 240 records. The year filter produced 95 records.
Screening removed 68 records. These records failed at least
one exclusion rule. Many did not use diffusion models.
Many did not address agricultural imaging. Several

atmospheric,

addressed medical or industrial tasks. Some used physical
diffusion rather than generative diffusion. Some did not
use images. Full text screening removed no additional
records. Twenty-seven studies met all rules and were
included in the review. These studies form the final dataset
for analysis.

Search Query
TITLE-ABS-KEY ( "diffusion model" OR "denoising diffusion” OR "stable diffusion”
OR "diffusion probabilistic model” OR DDPM OR "latent diffusion” )
AND
TITLE-ABS-KEY ( plant OR crop OR leaf OR fruit OR agriculture )
AND
TITLE-ABS-KEY { image OR images OR "image dataset" )

v

[ Records identified ( n = 240) }

+ Journal ( n=109)
« Conference proceeding ( n = 66)

+ Book series ( n = 65)

v

Records after year filter 2020-2025 and only journals ( n = 954

v

[ Records screened (title and abstract) ( n = 95) J

Records excluded ( n = 68)

* Not agricultural imaging ( n = 29)

« Diffusion not applied to agricultural images (n = 12)
* No diffusion model in method ( n = 15)
* Not image based (n =4)

+ Agricultural but method outside scope (n = 8)

v

Full text articles assessed ( n = 27)

v

Full text articles excluded ( n = 0)

v

Studies included in qualitative synthesis ( n = 27)

Figure 1. PRISMA flow diagram.

3. Background on Diffusion Models

Diffusion models generate images by learning a
controlled denoising trajectory. The forward process adds
Gaussian noise to an image until meaningful structure is
removed. The reverse process learns to recover the image
step by step by predicting and removing noise. The model
is trained so that each reverse step reduces noise while
preserving the underlying structure. This iterative process
produces outputs that follow the distribution of the
training data. The staged denoising sequence explains the
high stability and detail seen in diffusion-based synthesis.

Denoising Diffusion Probabilistic Models (DDPMs)
introduced the fixed forward noise schedule and a learned
reverse network that predicts noise at each timestep [19].
DDPMs typically use a U-Net architecture and are
optimized with a simple mean squared error loss between
true and predicted noise. Although early DDPMs required
hundreds of sampling steps, later improvements such as
DDIM [20] and improved noise schedules reduced
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sampling cost. DDPMs are robust on small datasets
because training does not involve adversarial optimization.
Several agricultural studies rely on DDPM variants for
expansion, including rapeseed  flower
segmentation [21], weed classification [9], grain quality
monitoring [22], and nematode recognition [10,16].

Latent Diffusion Models (LDMs) compress images
into a latent representation using an autoencoder and
apply diffusion in the latent space rather than pixel space
[23]. This reduces computation and memory cost. LDMs

dataset

support large text-conditioned models such as Stable
Diffusion. Many recent agricultural works rely on latent
diffusion for practical training, including image-to-image
disease transfer in grape and apple leaves [18], weed
synthesis with Stable Diffusion [13,24], and diffusion-
based enhancement of potato and jujube disease datasets
[25,26].

Conditional diffusion models guide sampling toward
specific classes, prompts, or attributes. Classifier-free
guidance is the most widely used method and combines
predictions  during
sampling [27]. Guidance strength controls how strongly
the condition shapes the final image. Agricultural studies
apply conditional diffusion to synthesize disease stages
[12], unseen disease classes [18], and species-specific weed
conditions [24].

ControlNet enhances diffusion models allowing for
the incorporation of external structures, such as
segmentation masks or edge maps, to guide the image
generation process more precisely [28]. This enables
spatially aligned generation. Agricultural studies have
used ControlNet to control weed shapes and backgrounds
in multi-class weed detection datasets [13,24]. It also
appears in generative frameworks for structured beetle
hindwing images [29].

Text-guided diffusion models use pretrained text
encoders such as CLIP to align textual descriptions with
image features. This expands data synthesis to classes not
seen in training. Studies applying text-guided diffusion in
agriculture include vineyard shoot detection under
domain shift [17] and semantic weed image generation
using prompt-based conditioning [24].

Diffusion models provide several advantages over
GANs. GANs often suffer from mode collapse, unstable
training, and low-frequency artifacts, especially on small
agricultural datasets with high class imbalance. These
issues appear in tasks that require fine lesion boundaries,
subtle color differences, or precise morphological texture.

conditional and wunconditional

Diffusion models avoid adversarial loss, produce more

stable gradients, and better preserve local detail. Empirical
evidence across included studies shows improvements in
classification accuracy, segmentation quality, and
robustness when replacing or supplementing GAN-based
augmentation with diffusion-based synthesis
[9,11,12,21,22,30].

These characteristics align well with agricultural
imaging challenges. Real-world agricultural datasets are
often small, imbalanced, noisy, and highly variable across
farms, seasons, and environmental conditions. Diffusion
models address these issues through stable optimization,
fine-grained  detail = reconstruction, and flexible
conditioning. The 27 studies included in this review
demonstrate the practical benefits of diffusion models
across tasks such as leaf disease diagnosis, fruit defect
detection, weed and pest recognition, nematode
classification, and UAV-based crop monitoring.

4. Results

This review synthesizes results from twenty-seven
studies published between 2020 and 2025, focusing on the
application of diffusion models in agricultural imaging
tasks. Diffusion models were used for data augmentation,
unseen class synthesis, disease severity scoring, weed
detection, UAV trait estimation, and super-resolution.
Most studies demonstrated improvements in performance,
with accuracy gains ranging from 1 to 14 percent. The use
of latent diffusion helped reduce computational costs in
some works. Some research focused on adding ControlNet
for structure control. Studies on leaf disease detection and
weed classification were the most common. A notable
increase in UAV-related studies in 2024 and 2025 was also
observed. Overall, the results underscore the potential of
diffusion models to enhance agricultural imaging,
especially when real data is scarce or limited.

4.1 Leaf disease image generation and classification

Table 1 summarizes recent studies that apply
diffusion models to leaf disease image generation and
classification tasks. Five studies focus on improving
disease recognition, data augmentation, or unseen disease
generation using diffusion-based approaches.

Study [12] LeafDisDiff, a diffusion driven model for
leaf disease recognition. It improved accuracy by nine
percent on Plant Village, Bangladesh Crop and Apple sets.
The model used diffusion denoising blocks inside a U Net
and trained well in low data settings. Study [18] generated
new disease classes using latent diffusion. Healthy grape
leaves were converted to diseased apple leaves. The
classifier trained on mixed real and synthetic samples
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detected apple disease that was unseen during training.
This supports cross class transfer when real data are
missing. Study [31] improved P. notoginseng disease
recognition. The diffusion model used an ECA attention
block to preserve small lesion structures. The model
reached accuracy near 99 percent when synthetic samples
were added. Study [26] used Stable Diffusion 1.5 to
produce eleven thousand potato leaf samples. A
Convolutional Vision Transformer trained on this set
reached high accuracy. Study [11] generated paired images
for lesion focused training. The model learned to separate
lesion areas from background noise and improved severity
grading.

Table 1. Leaf disease studies using diffusion

Study  Task Diffusion Role Dataset  Reported
No Used Outcome
[11] Leaf disease ~ Generates paired  Apple, +1 percent
severity healthy to Potato, accuracy
scoring diseased Tomato  improveme
samples for nt
lesion learning
[12] Leaf disease  Diffusion driven = Plant +9 percent
classification  classifier Village, accuracy
training Banglad
esh,
Apple
[18] Unseen Latent diffusion =~ Grapeto  Correct
disease generates apple Apple unseen
generation disease from transfer  disease
grape images detection
[31] Panax Improved Six leaf Accuracy
notoginseng  diffusion with disease up to 99.44
disease ECA attention classes percent
recognition

[26] Potato leaf Stable Diffusion ~ Potato CvT

dataset creates 11k leaves accuracy
expansion synthetic images near 84
percent

4.2 Fruit Quality, Ripeness and Fungal Disease Studies

Table 2 summarizes
addressing fruit quality assessment, ripeness modeling,
grain impurity detection, and fungal disease recognition.
Five studies applied diffusion models to enhance texture
realism, capture ripeness progression, and improve

diffusion-based studies

classification or segmentation performance under limited
or imbalanced data conditions.

Table 2. Fruit and Fungal Studies Summary

Study Task Type Model/Method  Dataset Outcome
No. Details
[6] Ripeness RipenessGAN Jujube Higher
generation vs diffusion ripeness realism,
(0-56 better stage
days) balance
[22] Grain DADM (DDPM  Corn, rice, ~ +5.07
impurity + attention) soybean percent
detection MIoU
[32] Mushroom Diffusion 110 +13.51
recognition augmentation mushroom  percent
species recall
[25] Jujube Transformer + Desert Accuracy
disease diffusion orchard 0.90, mAP
detection images strong
[26] Potato Stable Diffusion 11121 84 percent
disease +CvT synthetic accuracy
classification images

Diffusion helps leaf disease work for three reasons. It
produces lesion textures with clear borders. It fills missing
disease stages where real images are rare. It balances
uneven classes. GAN models often fail here due to unstable
learning and low detail. Traditional flips or rotations only
expand data count without adding new lesion structure.
These leaf studies give evidence that diffusion fits small
agricultural datasets.

Diffusion also supports disease transfer across crops
and unseen class creation. Latent diffusion is efficient in
low resource settings. High reported gains justify future
work on multi species disease libraries.

Study [6] tested RipenessGAN and compared results
against diffusion baselines. RipenessGAN showed strong
temporal control across 56 ripening days. Diffusion
produced higher texture detail but slower inference. This
shows diffusion is suitable for quality inspection tasks that
need fine skin patterns rather than pure speed.
Study [22] built DADM with a spatial and channel
attention block. Diffusion increased MlIoU by 5.07 percent
for grain segmentation across corn, rice and soybean. The
study showed fewer false regions than GAN.

Study [32] used diffusion for mushroom recognition.
Mean recall increased by 13.51 percent. Top 3 and Top 5
recall also increased. Study [25] fused transformer with
diffusion for jujube disease detection. Accuracy reached
0.90 and precision 0.93. The model performed better in
desert light where standard models fail. Study [26] trained
a CvT model using 11121 synthetic potato leaf images from
Stable Diffusion. Final accuracy was 84 percent on external
test images.

These studies suggest diffusion works well on fruit
and fungal images. Improvements were highest when
training data was small or imbalanced. Diffusion preserved
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fine texture that is critical in rot, mildew and fungal
detection.

4.3 Diffusion for Weed and Pest Imaging

Table 3 summarizes studies that apply diffusion
models to weed and pest imaging tasks, including image
synthesis, detection, recognition, and dataset expansion
under limited or uneven field data conditions. Across nine
studies, diffusion was primarily used to address class
imbalance, background variability, and scarcity of labeled
field images, leading to consistent improvements in
detection and classification performance.

Table 3. Weed and Pest Imaging Studies

Study  Task Diffusion Dataset / Outcome
ID Method Target
[24] Weed Stable 10 weed +1.26
generation Diffusion + classes field ~mAP@50-95
and detection  IP-Adapter images with
synthetic
mix
[33] Weed SAM + Field weeds  Higher
detection Stable mAP when
with Diffusion 10 percent
synthetic synthetic
pipeline used
[9] Weed Latent DeepWeeds  Up to 98.52
classification =~ DDPM + and others percent
Wiener accuracy
filtering
[34] Vineyard Text-to- Sticky trap ~ Faster
pest and image pests deployment
disease diffusion under low
detection data
[10] Nematode Latent Plant +7.34-14.66
recognition diffusion nematodes  percent
few-shot Top-1 gain
[35] Pest image Semantic Pestimages  Faster
generation diffusion recognition,
stable
detection
[13] Multi-class ControlNet 10 weed +1.4 percent
weed + Stable class mAP with
augmentation  Diffusion dataset mixed data
[16] Nematode Morphology  Quarantine  Higher
morphology constrained  nematodes  structure
synthesis latent fidelity
diffusion
[36] Thermal No Paddy Baseline
weed diffusion thermal reference
classification dataset only
baseline

Several studies focused on weed imaging. Study [24]
used Stable Diffusion with an IP-Adapter to generate
images of ten weed classes. The work inserted synthetic
weeds into real field scenes. YOLOv11 trained with mixed
data reached higher mAP. Study [33] built a training
pipeline that used SAM segmentation and Stable Diffusion
for dataset expansion. Small synthetic injection improved
weed detection. Study [9] used latent diffusion with
Wiener filtering. It improved frequency consistency and
reached high accuracy on DeepWeeds. Study [13] trained
ControlNet-Stable Diffusion for multi-class weed data.
Mixed training improved YOLOvVS. These works highlight
control modules as useful when target species vary in size
and shape.

Pest-related works followed similar patterns. Study
[34] generated vineyard data under seasonal limits.
Diffusion supported early model deployment when labels
were few. Study [10] and [16] used diffusion for nematode
recognition. Morphology-constrained diffusion showed
better class detail. Study [35] used semantic diffusion with
feature distillation. It improved detection speed. These
results show stable gains in pest pipelines when synthetic
data improve class spread.

One record, Study [36], worked on thermal weed
imaging without diffusion. It was kept as comparison. It
highlighted cases where thermal signals separate species
without synthetic data. It also shows that diffusion fits
problems with visual diversity. The evidence supports
diffusion for weeds and pests where field variation and
class imbalance reduce baseline accuracy.

4.4 Diffusion for UAV Based Crop Monitoring and
Phenotyping

Table 4 summarizes diffusion-based studies that
apply UAV imagery for crop monitoring, phenotyping,
segmentation, and temporal growth analysis. Four studies
demonstrate how diffusion models address challenges
inherent to UAV data, including uneven sampling, motion
blur, illumination variation, and seasonal changes in crop
appearance.

Study [37] introduced Agricrafter for crop growth
video generation across corn, wheat, rice, and soybean. The
model learns temporal structure and outputs full growth
sequences. The work shows the use of diffusion beyond
single images. The reported sequences preserve shape and
color traits through time. This reduces manual phenology
documentation work.

Study [2] developed DiffKNet-TL with confidence-
aware diffusion for maize phenology. The method refines
tassel and leaf boundaries and improves segmentation
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over baseline K-Net. IoU increased by 2.55 percent for
tassel regions. The study highlights diffusion strength in
small object edges.

Study [21] used DDPM augmentation for rapeseed
inflorescence segmentation under UAV. IoU was 0.886,
with high precision and recall. The approach works well in
cluttered yellow flower scenes. Diffusion helped balance
classes when flowers were sparse.

Study [17] applied text-guided diffusion for domain
adaptive vineyard shoot detection. It improved average
precision for BBox detection by 28.65 percent. The model
transfers vineyard data across backgrounds and lighting.
The method reduced annotation needs.

Table 4. UAV and Phenotyping Studies

Study Task Diffusion Dataset Outcome
No Role or Target
Crop
[37] Growth cycle ~ Temporal Corn, Realistic
video diffusion wheat, full-cycle
generation synthesis rice, video
soybean sequences
[2] Phenology Confidence- Maize IoU
detection aware UAV improved
diffusion images by 2.55
refinement percent
[21] Flower DDPM Rapeseed  IoU 0.886
segmentation  augmentation RFSD with high
UAV recall
[17] Vineyard Text-guided Vineyard  +28.65
shoot diffusion UAV percent AP
detection domain increase
transfer

Across studies, diffusion improves image quality,
segmentation, and trait extraction. UAV datasets often face
low contrast, motion blur, and seasonal variation.
Diffusion helps fill missing patterns and build varied
samples. Phenotyping benefits when growth stages
change. Diffusion supports trait tracking and annotation
saving.

4.5 Other Agricultural Applications

Table 5 summarizes studies that apply diffusion
models to agricultural domains beyond mainstream crop
disease detection, weed analysis, and UAV imaging. These
works focus on microscopy, entomology, plant wilt
progression, and morphology-sensitive recognition tasks,
where data collection is slow, samples are scarce, or
intermediate states are missing.

Study [29] generated beetle hindwing datasets using
Stable Diffusion with ControlNet. The synthetic data

preserved structural veins and wing geometry with high
SSIM and low FID. This supports insect morphology
research where sample access is restricted. Study [38] built
a DDPM based approach for microscopic herb images. It
improved rare-class identification due to balanced
synthesis of cells that appear in less than one percent of
samples. This result shows value when rare biological
patterns drive failure in standard networks.

Study [39] generated wilt stages for green wall plants
using diffusion interpolation. It bridged gaps between
healthy and wilted categories. This supports severity
classification when intermediate states are not present in
real datasets. Study [30] reached similar goals and added
soft labels during training. This helped -classification
models learn progressive decline rather than two-class
jumps.

Study [16] proposed morphology constrained latent
diffusion for nematode recognition. The model retained
shape detail using geometric constraints. The Top-1
improvement reached 7.34 to 14.66 percent across low
sample settings. This shows that structural conditioning
helps biological forms where geometry matters more than
texture alone.

Table 5. Other Applications of Diffusion Models

Study  Task/ Diffusion Dataset Key
No. Domain Method Context Outcome
Used
[29] Beetle Stable 200 High SSIM
hindwing Diffusion + hindwing and realistic
generation ControlNet samples structure
[38] Microscopic ~ Conditional =~ Rare CMH 24 percent
herb DDPM microscopic  improvement
imaging samples for rare
features
[39] Green-wall  Diffusion Healthy vs Better
wilt stage interpolation  wilted classification
synthesis samples from new
intermediate
states
[16] Nematode Morphology  Few-shot +7.34 to 14.66
recognition  constrained biosecurity =~ percent Top-
latent images 1 accuracy
diffusion
[30] Plant health  Diffusion Green wall ~ More stable
severity soft label and health severity
scoring generation states grading

These results show that diffusion models help
research areas with morphological scarcity, slow data
collection, or missing intermediate states. Applications
include insects, microscopy, nematodes, and green wall
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monitoring. The results remain promising but still need
more open datasets and cross-site trials. Table 5 shows the
task, diffusion role, and outcome across these studies.

5. Comparison with Other Generative Models

Table 6 provides a consolidated comparison of
diffusion models with GAN-based synthesis, VAE-based
generation, and
agricultural imaging tasks. This section interprets the
quantitative and qualitative evidence reported in the
reviewed studies to clarify where diffusion models offer
advantages and where alternative methods remain useful.

5.1 Diffusion Models vs GANSs

GANs remain widely used for synthetic data
generation due to fast sampling and sharp outputs.
However, GAN training requires a balanced dataset and
adversarial stability, which is often difficult in agriculture
where samples are few, unevenly distributed, or visually

traditional augmentation across

noisy. Mode collapse and texture loss are common when
classes represent rare disease stages or small lesions.

Studies reporting GAN baselines confirm drops in fidelity
and detail, particularly in delicate structures such as leaf
veins and fruit surface patterns.

Diffusion models avoid adversarial optimization and
rely on noise prediction, which improves convergence and
structural preservation. Evidence from included works
shows consistent superiority over GANs in image realism
and downstream task performance. Diffusion improved
segmentation in grain harvesting by enhancing impurity
and kernel features, outperforming GAN augmentation
(study [22]). In Panax notoginseng disease classification, a
diffusion-based generator reduced FID by 74.7% relative to
the GAN baseline (study [31]). RipenessGAN used GANs
but acknowledged diffusion as more realistic for temporal
fruit synthesis, positioning GAN as efficiency-focused
while diffusion preserved appearance better during long
growth cycles (study [6]). The advantage of diffusion
becomes evident in small datasets, where GANs frequently
exhibit class-dependent failure while diffusion maintains
structure diversity across samples.

Table 6. Comparative performance of traditional augmentation, GANs, VAEs, and diffusion models across agricultural imaging tasks.

Task Domain Traditional GAN Effect VAE Effect Diffusion Performance Task Domain
Augmentation Effect (Reviewed Studies)

Leaf disease Moderate gains, no High risk of mode Smooth textures, Best results; +1-9.2% Leaf disease

classification new symptoms collapse detail loss accuracy [12,18,26,31] classification

Fruit ripeness / Limited stage variation =~ Temporal GAN strong  Not ideal for high Stable growth synthesis; Fruit ripeness /

quality but unstable detail fruit texture higher realism [6,22] quality

Weed and pest Unsuitable for class GAN often unstable Rare detail loss +1-1.4% mAP improvement =~ Weed and pest

detection imbalance with field variation [13,24,36] detection

UAV Rotation/color GAN fails on small VAE blurry at pixel Better segmentation + super- UAV

phenotyping insufficient objects scale resolution [2,21,35] phenotyping

Few-shot datasets ~ Minimal effect Unreliable training

Blurry, low detail

+7-14% accuracy Few-shot datasets

improvement [16,30]

5.2 Diffusion Models vs Variational Autoencoders (VAEs)

VAEs generate smooth and coherent features but
often blur high-frequency details. Agricultural images
contain micro-textures such as fungal spots, chlorosis
boundaries, nematode morphology, and pest structural
traits. These details are essential for diagnosis, making
VAE reconstructions insufficient for classification-driven
augmentation.

Study [10] compared VAE, GAN, and diffusion
architectures for scientific imaging and showed diffusion
outperformed VAE in perceptual alignment and scientific
validity. VAE outputs lacked discriminative lesion edges in
leaf data and produced lower CLIPScore alignment with

target structures. In nematode recognition (study [16]),
latent diffusion preserved species-level morphology more
accurately than VAE-style encodings, improving Top-1
accuracy by up to 14.6% in few-shot settings. VAEs remain
useful for feature compression and latent embedding
analysis, but for high-resolution augmentation and class
balancing, diffusion provided better fidelity across all
reviewed experiments.
5.3 Diffusion vs Traditional Augmentation

Conventional image augmentation (crop, rotate, flip,
color jitter) increases dataset volume without creating new

phenotypes. It does not model unseen disease progression
or generate samples of rare classes, which limits
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generalization and increases bias toward majority classes.
Multiple studies reported accuracy plateaus when only
geometric transformations were used.

Diffusion augmentation introduced new visual
patterns that traditional augmentation cannot replicate. For
mushrooms, diffusion-based augmentation raised recall by
13.5% across 110 species (study [32]). In plant disease tasks,
diffusion improved classification by 1-9% across multiple
benchmarks (study [12,26,31]). In weed detection,
diffusion-generated samples increased mAP by 1.2-1.4%
on YOLO architectures (study [13,24]). In vineyard shoot
detection (study [17]), text-guided diffusion raised mAP by
up to 28.6%, far beyond what rotation-based augmentation
achieved. Traditional augmentation remains beneficial as a
baseline pre-processing step, but the reviewed evidence
suggests diffusion has become the preferred augmentation
method when dataset imbalance or rare symptom stages
exist.

Diffusion consistently outperforms alternative
methods when rare symptoms, limited datasets, or subtle
morphological traits are present. GANs remain faster and
useful for temporal modeling, VAEs for representation
learning, and traditional augmentation as preprocessing,
but diffusion emerges as the most practical generator for
agriculture under realistic field data constraints.

6. Challenges in Applying Diffusion Models to
Agricultural Imaging

Diffusion models improve data diversity and enhance
classification performance across crop, fruit, and leaf
datasets. However, several factors restrict their practical
adoption in agricultural pipelines.

High computational cost remains the largest barrier.
Diffusion sampling requires many inference steps, and
training demands long GPU hours. Most studies employed
single-task datasets with controlled environments
[2,9,11,12,18,24,26]. Only few works tested scalability to
multi-crop or multi-season datasets. Latent diffusion
reduces cost, but real-time deployment is still unrealistic
for edge devices in farms. Lightweight variants exist but
lack benchmarking against field-grade data.

Training instability increases when real datasets are
small. Agricultural datasets often contain 200-800 images
per class. This leads to noise-amplified artifacts during
synthesis. Works on nematodes [10,16] and mushrooms
[32] highlight gains in low-sample regimes, but controlled
tuning was required. Most studies used curated datasets
and laboratory settings, not raw field images with blur,
shadows, moisture or occlusion. Results from weed studies

[9,13,24,33] show strong improvements, yet failure cases
were not reported.

Generalization beyond local farm conditions also
remains limited. Models trained on one region struggle
when soil color, sun angle, leaf age or pest species differ.
Only [13,17,25,33,34] tested cross-domain transfer.
Vineyard [17] and green wall studies [30,39] address
domain adaptation, but results are early. No study reports
cross-country validation. Farm-to-farm robustness remains
unclear.

Public datasets for diffusion-based agriculture are
scarce. Only a few open releases exist such as beetle
hindwing library [29], nematode dataset [10,16], potato
dataset [26], green wall sets [30,39], and weed sets
[9,13,24,33]. Many studies rely on private datasets. Lack of
dataset access slows replication and prevents fair
comparison.

Evaluation protocols are inconsistent. Metrics vary
widely across the 27 studies. Some use FID and IS. Others
report mAP, accuracy, recall or IoU. Few report perceptual
quality or expert agronomic scoring. No benchmark exists
for assessing synthetic realism in plant disease progression
or fruit surface texture. Absence of standard metrics limits
comparison and prevents estimating real utility across
tasks.

Diffusion models therefore show strong promise but
face technical, practical, and infrastructural barriers. More
work is needed on model efficiency, domain transfer,
multi-farm validation, open benchmarks, and unified
evaluation standards.

7. Future Directions

Future work in diffusion-based agricultural imaging
needs to address scale, modality, and deployment. Most
studies use RGB images. Multimodal diffusion integrating
hyperspectral, multispectral, thermal, and LiDAR data
would strengthen disease detection under field variability.
No study among the reviewed works used hyperspectral
diffusion, despite clear value for early stress detection.

Foundation models trained on large agricultural
corpora could reduce dependence on small datasets.
Existing work fine-tunes Stable Diffusion or latent models
for single crops or diseases. A wunified pretrained
agricultural diffusion backbone would support domain
transfer across fruit, leaf, weed, and UAV imaging tasks.

On-device diffusion would reduce latency for field
robotics. Current models run on desktop GPUs. Efficient
variants using distillation or latent compression are needed
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for mobile sprayers, drones, and edge computing systems
for real-time decisions.

A public large-scale generative benchmark is missing.
Dataset standardization with fixed splits would enable
reproducibility and fair comparison across future research.

Real-time  synthetic pipelines
integrated into monitoring provide
continuous learning under changing seasons and climates.
This direction connects diffusion models to operational
agriculture rather than laboratory settings.

augmentation
systems  will

8. Conclusion

Diffusion models have become a key method for
synthetic image generation in agriculture. They address
limits common to field datasets such as class imbalance,
rare disease stages, inconsistent lighting, and low sample
diversity. This review analyzed 27 Scopus-indexed studies
published between 2020 and 2025 that applied DDPM,
latent diffusion, ControlNet-based diffusion, or related
variants for agricultural imaging tasks. The largest share of
research focused on plant leaf disease classification and
green wall plant health monitoring, followed by weed
detection, nematode recognition, fruit disease assessment,
and UAV-based crop phenotyping. Most studies reported
accuracy gains when diffusion-based augmentation was
used for training, with improvements ranging from small
incremental boosts to notable increases above 10 percent in
several cases.

Diffusion models surpassed GAN-based
augmentation in handling fine texture details and rare
phenotypes, particularly when dataset size was limited.
Latent diffusion models reduced computational load and
supported more flexible conditioning. Text-guided and
ControlNet-guided approaches further enabled task-
specific generation, such as unseen disease synthesis or
controlled weed morphology. However, challenges
remain. Training still requires non-trivial compute. Scaling
to multi-farm environments and new crops is not
established. Common datasets and evaluation protocols
have not yet emerged, making direct comparison across
studies difficult.

Future work should explore multimodal diffusion
combining RGB, hyperspectral, thermal, and LiDAR
inputs. Foundation-scale models trained on large
agricultural corpora could support general downstream
adaptation. Lightweight diffusion for mobile or edge
deployment will improve real-field usability. Real-time
augmentation pipelines integrated into phenotyping, pest
detection, and harvesting systems would move diffusion

from research to operations. Building shared benchmarks
and open synthetic datasets will accelerate progress and
improve reproducibility across research groups.
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