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Abstract  

Diffusion models are rapidly reshaping agricultural image analysis, offering high-fidelity synthetic data 

generation where real datasets are limited, imbalanced, or costly to collect. Traditional augmentation 

and GAN-based synthesis often struggle to preserve fine disease features and crop textures, leading to 

suboptimal model performance in real field conditions. This review consolidates the latest research on 

diffusion-based methods applied to plant disease diagnosis, fruit quality assessment, weed and pest 

monitoring, nematode identification, green-wall health evaluation, and UAV-based phenotyping. 

Reported literature demonstrates improved texture detail, lesion clarity, and better classification 

accuracy when diffusion-generated images supplement training datasets. Techniques such as latent 

diffusion and ControlNet enhance structure control, while text-guided models support domain transfer 

and unseen class synthesis. Despite promising outcomes, challenges remain concerning computational 

cost, real-world generalization across farms and seasons, and lack of standardized evaluation protocols. 

Future progress is expected through multimodal diffusion integrating hyperspectral and thermal 

inputs, efficient deployment on edge devices, and development of open benchmarks for comparative 

analysis. This review positions diffusion models as a leading generative approach for agricultural AI 

and outlines the research opportunities needed for practical adoption in large-scale farming 

environments. 
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1. Introduction  

Image based analysis supports key tasks in crop and 

horticultural research. These tasks include leaf disease 

detection, fruit defect assessment, weed identification, pest 

monitoring, and crop growth evaluation [1]. Each task 

depends on high quality labelled datasets. Most datasets in 

agriculture are small. They contain uneven class counts 

and high visual noise. They also show strong variation due 

to lighting, background clutter, and camera type. These 

limits reduce the accuracy of deep models and make model 

transfer difficult across farms and seasons. Several studies 
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report severe accuracy drops when models trained on one 

field move to new settings. For example, Yang et al. 

observed that maize segmentation models trained only on 

tasseling‑stage UAV (Unmanned Aerial Vehicle) images 

performed poorly outside that growth phase. This 

highlights the challenge of cross‑stage generalization in 

field conditions, a phenomenon analogous to reported 

accuracy drops exceeding 20 percent in comparable 

agricultural imaging tasks [2]. 

Basic augmentation methods increase the number of 

images but do not add new structure [3–5]. They improve 

robustness in common situations but fail when rare disease 

stages or fine texture features are needed. Generative 

Adversarial Networks (GANs), a class of machine learning 

models used for generating new data, can improve 

diversity by synthesizing new images. However, GANs 

often struggle with stability when trained on small datasets 

and can produce blurry boundaries in images, such as on 

the edges of leaves or the surface patterns of fruits [6]. They 

often create blurred boundaries on leaves or incomplete 

surface patterns on fruits. Many studies report mode bias 

and low detail when the real dataset has fewer than 300 

images per class [6,7]. These issues reduce the value of 

GAN based augmentation for agricultural tasks. 

Diffusion Models offer an alternative approach by 

progressively adding noise to images and then learning to 

reverse this process to generate new images. This is 

referred as gradual denoising sequence. This approach 

supports detailed structure and diverse outputs. It works 

well in small datasets and preserves local patterns in 

disease spots, fruit textures, weed shapes, and UAV scenes 

[8–11]. Several studies report gains of 3 to 12 percent in 

classification accuracy when diffusion-based images enter 

the training set [9,12–14]. Other studies report improved 

few shot performance with as few as ten real images per 

class [10,15,16]. Diffusion models also support conditional 

control. Some studies use ControlNet to create weeds with 

specific shapes or color patterns. Others use latent 

diffusion to support class balancing in leaf disease tasks. 

Diffusion research in agriculture expanded after 2022. 

Early studies focused on leaf disease generation. Recent 

studies target fruit disease detection, jujube defect scoring, 

nematode recognition, and aerial crop monitoring. Some 

works use diffusion for super resolution in UAV imagery. 

Others use text guided diffusion to support domain 

transfer in vineyards. Several studies show that diffusion-

based augmentation improves generalization when real 

field images shift due to climate, soil, or sensor change 

[17,18]. 

The field still shows gaps. Many datasets are small 

and lack standard splits. Few studies test models across 

multiple farms or seasons. Most studies use RGB images 

and do not include hyperspectral or thermal sensors. Only 

a few works explore multimodal diffusion. There is limited 

evidence on model stability in large scale training. Few 

papers report hardware cost or time cost for deployment. 

No common benchmark exists for diffusion-based 

augmentation in agriculture. 

Existing reviews cover plant disease detection or GAN 

based augmentation but do not address diffusion-based 

methods. No prior review has examined diffusion models 

in agricultural imaging. The growth of studies since 2022 

creates a need for a focused review. Researchers need a 

clear summary of tasks, models, datasets, and outcomes. 

Practitioners need guidance on when diffusion helps and 

when it does not. A structured review supports both goals. 

This review examines studies published between 2020 

and 2025 that use diffusion-based image generation or 

enhancement for agricultural tasks. It focuses on leaf 

disease detection, fruit disease detection, weed and pest 

recognition, and UAV based crop monitoring. It reports the 

model types used in these studies. It summarizes dataset 

size, training setups, and performance outcomes. It 

highlights gains reported in classification, detection, 

segmentation, and few shot learning. It also reports 

common limits and directions for practical use in field 

systems. 

2. Methods 

This review followed a structured process based on 

PRISMA. The search used Scopus. Scopus was selected 

because it indexes major journals in computer vision, 

agriculture, and applied machine learning. Scopus 

provides extensive coverage of interdisciplinary research 

that is critical for the diverse applications of diffusion 

models in agricultural imaging. While Web of Science and 

IEEE Xplore are valuable resources, they were excluded 

primarily due to Scopus’s broader interdisciplinary 

coverage, and secondarily due to limited access to some of 

the databases. The objective was to identify studies that 

used diffusion models for image based agricultural tasks. 

The search string was: 
TITLE-ABS-KEY ( "diffusion model" OR 

"denoising diffusion" OR "stable diffusion" 

OR "diffusion probabilistic model" OR DDPM 

OR "latent diffusion" ) 

AND 

TITLE-ABS-KEY ( plant OR crop OR leaf OR 

fruit OR agriculture ) 
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AND 

TITLE-ABS-KEY ( image OR images OR "image 

dataset" ) 

The screening process was performed by two independent 

reviewers, who evaluated the titles, abstracts, and full texts 

based on predefined inclusion and exclusion criteria. Any 

discrepancies between the reviewers were resolved 

through discussion and consensus. To ensure the accuracy 

and reliability of the screening, a third reviewer was 

involved to verify the final inclusion of studies, ensuring 

consistency with the review protocol. 

The search returned 240 records. The time window 

was limited to 2020 to 2025. Diffusion models entered 

applied use for image generation during this period. 

Earlier studies did not use these models for agricultural 

imaging. After applying the year filter and journal only, 95 

records remained. 

Screening took place in two steps. The first step used 

titles and abstracts. The second step used full texts. Both 

steps applied fixed inclusion and exclusion rules. 

The inclusion criteria were: 

1. Use of a diffusion model for image generation or 

image enhancement. 

2. Use of images as the primary data source. 

3. A task related to plants, crops, leaves, fruits, pests, 

or weeds. 

4. Use of deep learning. 

5. Publication in a peer reviewed journal. 

The exclusion criteria were: 

1. No diffusion model in the method. 

2. No link to plant, crop, leaf, fruit, weed, or pest 

imaging. 

3. No image-based task. 

4. Use of physical or mathematical diffusion 

unrelated to generative models. 

5. Work in medical, industrial, atmospheric, 

chemical, or materials domains. 

6. Remote sensing tasks with no agricultural target. 

7. Review papers or opinion papers. 

The PRISMA flow is depicted in Figure 1. The search 

identified 240 records. The year filter produced 95 records. 

Screening removed 68 records. These records failed at least 

one exclusion rule. Many did not use diffusion models. 

Many did not address agricultural imaging. Several 

addressed medical or industrial tasks. Some used physical 

diffusion rather than generative diffusion. Some did not 

use images. Full text screening removed no additional 

records. Twenty-seven studies met all rules and were 

included in the review. These studies form the final dataset 

for analysis. 

 
Figure 1. PRISMA flow diagram. 

3. Background on Diffusion Models 

Diffusion models generate images by learning a 

controlled denoising trajectory. The forward process adds 

Gaussian noise to an image until meaningful structure is 

removed. The reverse process learns to recover the image 

step by step by predicting and removing noise. The model 

is trained so that each reverse step reduces noise while 

preserving the underlying structure. This iterative process 

produces outputs that follow the distribution of the 

training data. The staged denoising sequence explains the 

high stability and detail seen in diffusion-based synthesis. 

Denoising Diffusion Probabilistic Models (DDPMs) 

introduced the fixed forward noise schedule and a learned 

reverse network that predicts noise at each timestep [19]. 

DDPMs typically use a U-Net architecture and are 

optimized with a simple mean squared error loss between 

true and predicted noise. Although early DDPMs required 

hundreds of sampling steps, later improvements such as 

DDIM [20] and improved noise schedules reduced 



Impact in Agriculture 2025, 1, 3  4 of 11 

 

 

sampling cost. DDPMs are robust on small datasets 

because training does not involve adversarial optimization. 

Several agricultural studies rely on DDPM variants for 

dataset expansion, including rapeseed flower 

segmentation [21], weed classification [9], grain quality 

monitoring [22], and nematode recognition [10,16]. 

Latent Diffusion Models (LDMs) compress images 

into a latent representation using an autoencoder and 

apply diffusion in the latent space rather than pixel space 

[23]. This reduces computation and memory cost. LDMs 

support large text-conditioned models such as Stable 

Diffusion. Many recent agricultural works rely on latent 

diffusion for practical training, including image-to-image 

disease transfer in grape and apple leaves [18], weed 

synthesis with Stable Diffusion [13,24], and diffusion-

based enhancement of potato and jujube disease datasets 

[25,26]. 

Conditional diffusion models guide sampling toward 

specific classes, prompts, or attributes. Classifier-free 

guidance is the most widely used method and combines 

conditional and unconditional predictions during 

sampling [27]. Guidance strength controls how strongly 

the condition shapes the final image. Agricultural studies 

apply conditional diffusion to synthesize disease stages 

[12], unseen disease classes [18], and species-specific weed 

conditions [24]. 

ControlNet enhances diffusion models allowing for 

the incorporation of external structures, such as 

segmentation masks or edge maps, to guide the image 

generation process more precisely [28]. This enables 

spatially aligned generation. Agricultural studies have 

used ControlNet to control weed shapes and backgrounds 

in multi-class weed detection datasets [13,24]. It also 

appears in generative frameworks for structured beetle 

hindwing images [29]. 

Text-guided diffusion models use pretrained text 

encoders such as CLIP to align textual descriptions with 

image features. This expands data synthesis to classes not 

seen in training. Studies applying text-guided diffusion in 

agriculture include vineyard shoot detection under 

domain shift [17] and semantic weed image generation 

using prompt-based conditioning [24]. 

Diffusion models provide several advantages over 

GANs. GANs often suffer from mode collapse, unstable 

training, and low-frequency artifacts, especially on small 

agricultural datasets with high class imbalance. These 

issues appear in tasks that require fine lesion boundaries, 

subtle color differences, or precise morphological texture. 

Diffusion models avoid adversarial loss, produce more 

stable gradients, and better preserve local detail. Empirical 

evidence across included studies shows improvements in 

classification accuracy, segmentation quality, and 

robustness when replacing or supplementing GAN-based 

augmentation with diffusion-based synthesis 

[9,11,12,21,22,30]. 

These characteristics align well with agricultural 

imaging challenges. Real-world agricultural datasets are 

often small, imbalanced, noisy, and highly variable across 

farms, seasons, and environmental conditions. Diffusion 

models address these issues through stable optimization, 

fine-grained detail reconstruction, and flexible 

conditioning. The 27 studies included in this review 

demonstrate the practical benefits of diffusion models 

across tasks such as leaf disease diagnosis, fruit defect 

detection, weed and pest recognition, nematode 

classification, and UAV-based crop monitoring. 

4. Results  

This review synthesizes results from twenty-seven 

studies published between 2020 and 2025, focusing on the 

application of diffusion models in agricultural imaging 

tasks. Diffusion models were used for data augmentation, 

unseen class synthesis, disease severity scoring, weed 

detection, UAV trait estimation, and super-resolution. 

Most studies demonstrated improvements in performance, 

with accuracy gains ranging from 1 to 14 percent. The use 

of latent diffusion helped reduce computational costs in 

some works. Some research focused on adding ControlNet 

for structure control. Studies on leaf disease detection and 

weed classification were the most common. A notable 

increase in UAV-related studies in 2024 and 2025 was also 

observed. Overall, the results underscore the potential of 

diffusion models to enhance agricultural imaging, 

especially when real data is scarce or limited. 

4.1 Leaf disease image generation and classification 

Table 1 summarizes recent studies that apply 

diffusion models to leaf disease image generation and 

classification tasks. Five studies focus on improving 

disease recognition, data augmentation, or unseen disease 

generation using diffusion-based approaches. 

Study  [12] LeafDisDiff, a diffusion driven model for 

leaf disease recognition. It improved accuracy by nine 

percent on Plant Village, Bangladesh Crop and Apple sets. 

The model used diffusion denoising blocks inside a U Net 

and trained well in low data settings. Study [18] generated 

new disease classes using latent diffusion. Healthy grape 

leaves were converted to diseased apple leaves. The 

classifier trained on mixed real and synthetic samples 



Impact in Agriculture 2025, 1, 3  5 of 11 

 

 

detected apple disease that was unseen during training. 

This supports cross class transfer when real data are 

missing. Study [31] improved P. notoginseng disease 

recognition. The diffusion model used an ECA attention 

block to preserve small lesion structures. The model 

reached accuracy near 99 percent when synthetic samples 

were added. Study [26] used Stable Diffusion 1.5 to 

produce eleven thousand potato leaf samples. A 

Convolutional Vision Transformer trained on this set 

reached high accuracy. Study [11]  generated paired images 

for lesion focused training. The model learned to separate 

lesion areas from background noise and improved severity 

grading. 

Table 1. Leaf disease studies using diffusion 

Study 

No 

Task Diffusion Role Dataset 

Used 

Reported 

Outcome 

[11] Leaf disease 

severity 

scoring 

Generates paired 

healthy to 

diseased 

samples for 

lesion learning 

Apple, 

Potato, 

Tomato 

+1 percent 

accuracy 

improveme

nt 

[12] Leaf disease 

classification 

Diffusion driven 

classifier 

training 

Plant 

Village, 

Banglad

esh, 

Apple 

+9 percent 

accuracy 

[18] Unseen 

disease 

generation 

Latent diffusion 

generates apple 

disease from 

grape images 

Grape to 

Apple 

transfer 

Correct 

unseen 

disease 

detection 

[31] Panax 

notoginseng 

disease 

recognition 

Improved 

diffusion with 

ECA attention 

Six leaf 

disease 

classes 

Accuracy 

up to 99.44 

percent 

[26] Potato leaf 

dataset 

expansion 

Stable Diffusion 

creates 11k 

synthetic images 

Potato 

leaves 

CvT 

accuracy 

near 84 

percent 

 

Diffusion helps leaf disease work for three reasons. It 

produces lesion textures with clear borders. It fills missing 

disease stages where real images are rare. It balances 

uneven classes. GAN models often fail here due to unstable 

learning and low detail. Traditional flips or rotations only 

expand data count without adding new lesion structure. 

These leaf studies give evidence that diffusion fits small 

agricultural datasets. 

Diffusion also supports disease transfer across crops 

and unseen class creation. Latent diffusion is efficient in 

low resource settings. High reported gains justify future 

work on multi species disease libraries.  

4.2 Fruit Quality, Ripeness and Fungal Disease Studies 

Table 2 summarizes diffusion-based studies 

addressing fruit quality assessment, ripeness modeling, 

grain impurity detection, and fungal disease recognition.  

Five studies applied diffusion models to enhance texture 

realism, capture ripeness progression, and improve 

classification or segmentation performance under limited 

or imbalanced data conditions. 

Table 2. Fruit and Fungal Studies Summary 

Study 

No. 

Task Type Model/Method Dataset 

Details 

Outcome  

[6] Ripeness 

generation 

RipenessGAN 

vs diffusion 

Jujube 

ripeness 

(0–56 

days) 

Higher 

realism, 

better stage 

balance 

[22] Grain 

impurity 

detection 

DADM (DDPM 

+ attention) 

Corn, rice, 

soybean 

+5.07 

percent 

MIoU 

[32] Mushroom 

recognition 

Diffusion 

augmentation 

110 

mushroom 

species 

+13.51 

percent 

recall 

[25] Jujube 

disease 

detection 

Transformer + 

diffusion 

Desert 

orchard 

images 

Accuracy 

0.90, mAP 

strong 

[26] Potato 

disease 

classification 

Stable Diffusion 

+ CvT 

11121 

synthetic 

images 

84 percent 

accuracy 

 

Study [6] tested RipenessGAN and compared results 

against diffusion baselines. RipenessGAN showed strong 

temporal control across 56 ripening days. Diffusion 

produced higher texture detail but slower inference. This 

shows diffusion is suitable for quality inspection tasks that 

need fine skin patterns rather than pure speed. 

Study [22] built DADM with a spatial and channel 

attention block. Diffusion increased MIoU by 5.07 percent 

for grain segmentation across corn, rice and soybean. The 

study showed fewer false regions than GAN. 

Study [32] used diffusion for mushroom recognition. 

Mean recall increased by 13.51 percent. Top 3 and Top 5 

recall also increased. Study [25] fused transformer with 

diffusion for jujube disease detection. Accuracy reached 

0.90 and precision 0.93. The model performed better in 

desert light where standard models fail. Study [26] trained 

a CvT model using 11121 synthetic potato leaf images from 

Stable Diffusion. Final accuracy was 84 percent on external 

test images. 

These studies suggest diffusion works well on fruit 

and fungal images. Improvements were highest when 

training data was small or imbalanced. Diffusion preserved 
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fine texture that is critical in rot, mildew and fungal 

detection.  

4.3 Diffusion for Weed and Pest Imaging 

Table 3 summarizes studies that apply diffusion 

models to weed and pest imaging tasks, including image 

synthesis, detection, recognition, and dataset expansion 

under limited or uneven field data conditions. Across nine 

studies, diffusion was primarily used to address class 

imbalance, background variability, and scarcity of labeled 

field images, leading to consistent improvements in 

detection and classification performance. 

Table 3. Weed and Pest Imaging Studies 

Study 

ID 

Task Diffusion 

Method 

Dataset / 

Target 

Outcome 

[24] Weed 

generation 

and detection 

Stable 

Diffusion + 

IP-Adapter 

10 weed 

classes field 

images 

+1.26 

mAP@50-95 

with 

synthetic 

mix 

[33] Weed 

detection 

with 

synthetic 

pipeline 

SAM + 

Stable 

Diffusion 

Field weeds Higher 

mAP when 

10 percent 

synthetic 

used 

[9] Weed 

classification 

Latent 

DDPM + 

Wiener 

filtering 

DeepWeeds 

and others 

Up to 98.52 

percent 

accuracy 

[34] Vineyard 

pest and 

disease 

detection 

Text-to-

image 

diffusion 

Sticky trap 

pests 

Faster 

deployment 

under low 

data 

[10] Nematode 

recognition 

few-shot 

Latent 

diffusion 

Plant 

nematodes 

+7.34–14.66 

percent 

Top-1 gain 

[35] Pest image 

generation 

Semantic 

diffusion 

Pest images Faster 

recognition, 

stable 

detection 

[13] Multi-class 

weed 

augmentation 

ControlNet 

+ Stable 

Diffusion 

10 weed 

class 

dataset 

+1.4 percent 

mAP with 

mixed data 

[16] Nematode 

morphology 

synthesis 

Morphology 

constrained 

latent 

diffusion 

Quarantine 

nematodes 

Higher 

structure 

fidelity 

[36] Thermal 

weed 

classification 

baseline 

No 

diffusion 

Paddy 

thermal 

dataset 

Baseline 

reference 

only 

 

Several studies focused on weed imaging. Study [24] 

used Stable Diffusion with an IP-Adapter to generate 

images of ten weed classes. The work inserted synthetic 

weeds into real field scenes. YOLOv11 trained with mixed 

data reached higher mAP. Study [33] built a training 

pipeline that used SAM segmentation and Stable Diffusion 

for dataset expansion. Small synthetic injection improved 

weed detection. Study [9] used latent diffusion with 

Wiener filtering. It improved frequency consistency and 

reached high accuracy on DeepWeeds. Study [13] trained 

ControlNet-Stable Diffusion for multi-class weed data. 

Mixed training improved YOLOv8. These works highlight 

control modules as useful when target species vary in size 

and shape. 

Pest-related works followed similar patterns. Study 

[34] generated vineyard data under seasonal limits. 

Diffusion supported early model deployment when labels 

were few. Study [10] and [16] used diffusion for nematode 

recognition. Morphology-constrained diffusion showed 

better class detail. Study [35] used semantic diffusion with 

feature distillation. It improved detection speed. These 

results show stable gains in pest pipelines when synthetic 

data improve class spread. 

One record, Study [36], worked on thermal weed 

imaging without diffusion. It was kept as comparison. It 

highlighted cases where thermal signals separate species 

without synthetic data. It also shows that diffusion fits 

problems with visual diversity. The evidence supports 

diffusion for weeds and pests where field variation and 

class imbalance reduce baseline accuracy.  

4.4 Diffusion for UAV Based Crop Monitoring and 

Phenotyping 

Table 4 summarizes diffusion-based studies that 

apply UAV imagery for crop monitoring, phenotyping, 

segmentation, and temporal growth analysis. Four studies 

demonstrate how diffusion models address challenges 

inherent to UAV data, including uneven sampling, motion 

blur, illumination variation, and seasonal changes in crop 

appearance. 

Study [37] introduced Agricrafter for crop growth 

video generation across corn, wheat, rice, and soybean. The 

model learns temporal structure and outputs full growth 

sequences. The work shows the use of diffusion beyond 

single images. The reported sequences preserve shape and 

color traits through time. This reduces manual phenology 

documentation work. 

Study [2] developed DiffKNet-TL with confidence-

aware diffusion for maize phenology. The method refines 

tassel and leaf boundaries and improves segmentation 
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over baseline K-Net. IoU increased by 2.55 percent for 

tassel regions. The study highlights diffusion strength in 

small object edges. 

Study [21] used DDPM augmentation for rapeseed 

inflorescence segmentation under UAV. IoU was 0.886, 

with high precision and recall. The approach works well in 

cluttered yellow flower scenes. Diffusion helped balance 

classes when flowers were sparse. 

Study [17] applied text-guided diffusion for domain 

adaptive vineyard shoot detection. It improved average 

precision for BBox detection by 28.65 percent. The model 

transfers vineyard data across backgrounds and lighting. 

The method reduced annotation needs. 

Table 4. UAV and Phenotyping Studies 

Study 

No 

Task Diffusion 

Role 

Dataset 

or Target 

Crop 

Outcome 

[37] Growth cycle 

video 

generation 

Temporal 

diffusion 

synthesis 

Corn, 

wheat, 

rice, 

soybean 

Realistic 

full-cycle 

video 

sequences 

[2] Phenology 

detection 

Confidence-

aware 

diffusion 

refinement 

Maize 

UAV 

images 

IoU 

improved 

by 2.55 

percent 

[21] Flower 

segmentation 

DDPM 

augmentation 

Rapeseed 

RFSD 

UAV 

IoU 0.886 

with high 

recall 

[17] Vineyard 

shoot 

detection 

Text-guided 

diffusion 

domain 

transfer 

Vineyard 

UAV 

+28.65 

percent AP 

increase 

 

Across studies, diffusion improves image quality, 

segmentation, and trait extraction. UAV datasets often face 

low contrast, motion blur, and seasonal variation. 

Diffusion helps fill missing patterns and build varied 

samples. Phenotyping benefits when growth stages 

change. Diffusion supports trait tracking and annotation 

saving.  

4.5 Other Agricultural Applications 

Table 5 summarizes studies that apply diffusion 

models to agricultural domains beyond mainstream crop 

disease detection, weed analysis, and UAV imaging. These 

works focus on microscopy, entomology, plant wilt 

progression, and morphology-sensitive recognition tasks, 

where data collection is slow, samples are scarce, or 

intermediate states are missing. 

Study [29] generated beetle hindwing datasets using 

Stable Diffusion with ControlNet. The synthetic data 

preserved structural veins and wing geometry with high 

SSIM and low FID. This supports insect morphology 

research where sample access is restricted. Study [38] built 

a DDPM based approach for microscopic herb images. It 

improved rare-class identification due to balanced 

synthesis of cells that appear in less than one percent of 

samples. This result shows value when rare biological 

patterns drive failure in standard networks. 

Study [39] generated wilt stages for green wall plants 

using diffusion interpolation. It bridged gaps between 

healthy and wilted categories. This supports severity 

classification when intermediate states are not present in 

real datasets. Study [30] reached similar goals and added 

soft labels during training. This helped classification 

models learn progressive decline rather than two-class 

jumps. 

Study [16] proposed morphology constrained latent 

diffusion for nematode recognition. The model retained 

shape detail using geometric constraints. The Top-1 

improvement reached 7.34 to 14.66 percent across low 

sample settings. This shows that structural conditioning 

helps biological forms where geometry matters more than 

texture alone. 

Table 5. Other Applications of Diffusion Models 

Study 

No. 

Task / 

Domain 

Diffusion 

Method 

Used 

Dataset 

Context 

Key 

Outcome 

[29] Beetle 

hindwing 

generation 

Stable 

Diffusion + 

ControlNet 

200 

hindwing 

samples 

High SSIM 

and realistic 

structure 

[38] Microscopic 

herb 

imaging 

Conditional 

DDPM 

Rare CMH 

microscopic 

samples 

24 percent 

improvement 

for rare 

features 

[39] Green-wall 

wilt stage 

synthesis 

Diffusion 

interpolation 

Healthy vs 

wilted 

samples 

Better 

classification 

from new 

intermediate 

states 

[16] Nematode 

recognition 

Morphology 

constrained 

latent 

diffusion 

Few-shot 

biosecurity 

images 

+7.34 to 14.66 

percent Top-

1 accuracy 

[30] Plant health 

severity 

scoring 

Diffusion 

soft label 

generation 

Green wall 

and health 

states 

More stable 

severity 

grading 

 

These results show that diffusion models help 

research areas with morphological scarcity, slow data 

collection, or missing intermediate states. Applications 

include insects, microscopy, nematodes, and green wall 
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monitoring. The results remain promising but still need 

more open datasets and cross-site trials. Table 5 shows the 

task, diffusion role, and outcome across these studies. 

5. Comparison with Other Generative Models 

Table 6 provides a consolidated comparison of 

diffusion models with GAN-based synthesis, VAE-based 

generation, and traditional augmentation across 

agricultural imaging tasks. This section interprets the 

quantitative and qualitative evidence reported in the 

reviewed studies to clarify where diffusion models offer 

advantages and where alternative methods remain useful.  

5.1 Diffusion Models vs GANs 

GANs remain widely used for synthetic data 

generation due to fast sampling and sharp outputs. 

However, GAN training requires a balanced dataset and 

adversarial stability, which is often difficult in agriculture 

where samples are few, unevenly distributed, or visually 

noisy. Mode collapse and texture loss are common when 

classes represent rare disease stages or small lesions. 

Studies reporting GAN baselines confirm drops in fidelity 

and detail, particularly in delicate structures such as leaf 

veins and fruit surface patterns. 

Diffusion models avoid adversarial optimization and 

rely on noise prediction, which improves convergence and 

structural preservation. Evidence from included works 

shows consistent superiority over GANs in image realism 

and downstream task performance. Diffusion improved 

segmentation in grain harvesting by enhancing impurity 

and kernel features, outperforming GAN augmentation 

(study [22]). In Panax notoginseng disease classification, a 

diffusion-based generator reduced FID by 74.7% relative to 

the GAN baseline (study [31]). RipenessGAN used GANs 

but acknowledged diffusion as more realistic for temporal 

fruit synthesis, positioning GAN as efficiency-focused 

while diffusion preserved appearance better during long 

growth cycles (study [6]). The advantage of diffusion 

becomes evident in small datasets, where GANs frequently 

exhibit class-dependent failure while diffusion maintains 

structure diversity across samples. 

Table 6. Comparative performance of traditional augmentation, GANs, VAEs, and diffusion models across agricultural imaging tasks. 

Task Domain Traditional 

Augmentation Effect 

GAN Effect VAE Effect Diffusion Performance 

(Reviewed Studies) 

Task Domain 

Leaf disease 

classification 

Moderate gains, no 

new symptoms 

High risk of mode 

collapse 

Smooth textures, 

detail loss 

Best results; +1–9.2% 

accuracy [12,18,26,31] 

Leaf disease 

classification 

Fruit ripeness / 

quality 

Limited stage variation Temporal GAN strong 

but unstable 

Not ideal for high 

detail fruit texture 

Stable growth synthesis; 

higher realism [6,22] 

Fruit ripeness / 

quality 

Weed and pest 

detection 

Unsuitable for class 

imbalance 

GAN often unstable 

with field variation 

Rare detail loss +1–1.4% mAP improvement 

[13,24,36] 

Weed and pest 

detection 

UAV 

phenotyping 

Rotation/color 

insufficient 

GAN fails on small 

objects 

VAE blurry at pixel 

scale 

Better segmentation + super-

resolution [2,21,35]  

UAV 

phenotyping 

Few-shot datasets Minimal effect Unreliable training Blurry, low detail +7–14% accuracy 

improvement [16,30] 

Few-shot datasets 

5.2 Diffusion Models vs Variational Autoencoders (VAEs) 

VAEs generate smooth and coherent features but 

often blur high-frequency details. Agricultural images 

contain micro-textures such as fungal spots, chlorosis 

boundaries, nematode morphology, and pest structural 

traits. These details are essential for diagnosis, making 

VAE reconstructions insufficient for classification-driven 

augmentation. 

Study [10] compared VAE, GAN, and diffusion 

architectures for scientific imaging and showed diffusion 

outperformed VAE in perceptual alignment and scientific 

validity. VAE outputs lacked discriminative lesion edges in 

leaf data and produced lower CLIPScore alignment with 

target structures. In nematode recognition (study [16]), 

latent diffusion preserved species-level morphology more 

accurately than VAE-style encodings, improving Top-1 

accuracy by up to 14.6% in few-shot settings. VAEs remain 

useful for feature compression and latent embedding 

analysis, but for high-resolution augmentation and class 

balancing, diffusion provided better fidelity across all 

reviewed experiments. 

5.3 Diffusion vs Traditional Augmentation 

Conventional image augmentation (crop, rotate, flip, 

color jitter) increases dataset volume without creating new 

phenotypes. It does not model unseen disease progression 

or generate samples of rare classes, which limits 
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generalization and increases bias toward majority classes. 

Multiple studies reported accuracy plateaus when only 

geometric transformations were used. 

Diffusion augmentation introduced new visual 

patterns that traditional augmentation cannot replicate. For 

mushrooms, diffusion-based augmentation raised recall by 

13.5% across 110 species (study [32]). In plant disease tasks, 

diffusion improved classification by 1–9% across multiple 

benchmarks (study [12,26,31]). In weed detection, 

diffusion-generated samples increased mAP by 1.2–1.4% 

on YOLO architectures (study [13,24]). In vineyard shoot 

detection (study [17]), text-guided diffusion raised mAP by 

up to 28.6%, far beyond what rotation-based augmentation 

achieved. Traditional augmentation remains beneficial as a 

baseline pre-processing step, but the reviewed evidence 

suggests diffusion has become the preferred augmentation 

method when dataset imbalance or rare symptom stages 

exist. 

Diffusion consistently outperforms alternative 

methods when rare symptoms, limited datasets, or subtle 

morphological traits are present. GANs remain faster and 

useful for temporal modeling, VAEs for representation 

learning, and traditional augmentation as preprocessing, 

but diffusion emerges as the most practical generator for 

agriculture under realistic field data constraints. 

6. Challenges in Applying Diffusion Models to 

Agricultural Imaging 

Diffusion models improve data diversity and enhance 

classification performance across crop, fruit, and leaf 

datasets. However, several factors restrict their practical 

adoption in agricultural pipelines. 

High computational cost remains the largest barrier. 

Diffusion sampling requires many inference steps, and 

training demands long GPU hours. Most studies employed 

single-task datasets with controlled environments 

[2,9,11,12,18,24,26]. Only few works tested scalability to 

multi-crop or multi-season datasets. Latent diffusion 

reduces cost, but real-time deployment is still unrealistic 

for edge devices in farms. Lightweight variants exist but 

lack benchmarking against field-grade data. 

Training instability increases when real datasets are 

small. Agricultural datasets often contain 200–800 images 

per class. This leads to noise-amplified artifacts during 

synthesis. Works on nematodes [10,16] and mushrooms 

[32] highlight gains in low-sample regimes, but controlled 

tuning was required. Most studies used curated datasets 

and laboratory settings, not raw field images with blur, 

shadows, moisture or occlusion. Results from weed studies 

[9,13,24,33] show strong improvements, yet failure cases 

were not reported. 

Generalization beyond local farm conditions also 

remains limited. Models trained on one region struggle 

when soil color, sun angle, leaf age or pest species differ. 

Only [13,17,25,33,34] tested cross-domain transfer. 

Vineyard [17] and green wall studies [30,39] address 

domain adaptation, but results are early. No study reports 

cross-country validation. Farm-to-farm robustness remains 

unclear. 

Public datasets for diffusion-based agriculture are 

scarce. Only a few open releases exist such as beetle 

hindwing library [29], nematode dataset [10,16], potato 

dataset [26], green wall sets [30,39], and weed sets 

[9,13,24,33]. Many studies rely on private datasets. Lack of 

dataset access slows replication and prevents fair 

comparison. 

Evaluation protocols are inconsistent. Metrics vary 

widely across the 27 studies. Some use FID and IS. Others 

report mAP, accuracy, recall or IoU. Few report perceptual 

quality or expert agronomic scoring. No benchmark exists 

for assessing synthetic realism in plant disease progression 

or fruit surface texture. Absence of standard metrics limits 

comparison and prevents estimating real utility across 

tasks. 

Diffusion models therefore show strong promise but 

face technical, practical, and infrastructural barriers. More 

work is needed on model efficiency, domain transfer, 

multi-farm validation, open benchmarks, and unified 

evaluation standards. 

7. Future Directions 

Future work in diffusion-based agricultural imaging 

needs to address scale, modality, and deployment. Most 

studies use RGB images. Multimodal diffusion integrating 

hyperspectral, multispectral, thermal, and LiDAR data 

would strengthen disease detection under field variability. 

No study among the reviewed works used hyperspectral 

diffusion, despite clear value for early stress detection. 

Foundation models trained on large agricultural 

corpora could reduce dependence on small datasets. 

Existing work fine-tunes Stable Diffusion or latent models 

for single crops or diseases. A unified pretrained 

agricultural diffusion backbone would support domain 

transfer across fruit, leaf, weed, and UAV imaging tasks. 

On-device diffusion would reduce latency for field 

robotics. Current models run on desktop GPUs. Efficient 

variants using distillation or latent compression are needed 
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for mobile sprayers, drones, and edge computing systems 

for real-time decisions. 

A public large-scale generative benchmark is missing. 

Dataset standardization with fixed splits would enable 

reproducibility and fair comparison across future research. 

Real-time synthetic augmentation pipelines 

integrated into monitoring systems will provide 

continuous learning under changing seasons and climates. 

This direction connects diffusion models to operational 

agriculture rather than laboratory settings. 

8. Conclusion 

Diffusion models have become a key method for 

synthetic image generation in agriculture. They address 

limits common to field datasets such as class imbalance, 

rare disease stages, inconsistent lighting, and low sample 

diversity. This review analyzed 27 Scopus-indexed studies 

published between 2020 and 2025 that applied DDPM, 

latent diffusion, ControlNet-based diffusion, or related 

variants for agricultural imaging tasks. The largest share of 

research focused on plant leaf disease classification and 

green wall plant health monitoring, followed by weed 

detection, nematode recognition, fruit disease assessment, 

and UAV-based crop phenotyping. Most studies reported 

accuracy gains when diffusion-based augmentation was 

used for training, with improvements ranging from small 

incremental boosts to notable increases above 10 percent in 

several cases. 

Diffusion models surpassed GAN-based 

augmentation in handling fine texture details and rare 

phenotypes, particularly when dataset size was limited. 

Latent diffusion models reduced computational load and 

supported more flexible conditioning. Text-guided and 

ControlNet-guided approaches further enabled task-

specific generation, such as unseen disease synthesis or 

controlled weed morphology. However, challenges 

remain. Training still requires non-trivial compute. Scaling 

to multi-farm environments and new crops is not 

established. Common datasets and evaluation protocols 

have not yet emerged, making direct comparison across 

studies difficult. 

Future work should explore multimodal diffusion 

combining RGB, hyperspectral, thermal, and LiDAR 

inputs. Foundation-scale models trained on large 

agricultural corpora could support general downstream 

adaptation. Lightweight diffusion for mobile or edge 

deployment will improve real-field usability. Real-time 

augmentation pipelines integrated into phenotyping, pest 

detection, and harvesting systems would move diffusion 

from research to operations. Building shared benchmarks 

and open synthetic datasets will accelerate progress and 

improve reproducibility across research groups. 
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