

## E-POSTER PRESENTATION

fold, whereas 25OHD3 improved 4.5-fold when tested using the provided calibrator (CAL) and control (CTRL) samples. A linear correlation was observed for 25OHD2 ( $R^2=0.9895$ ;  $y=0.002x-0.0226$ ) and 25OHD3 ( $R^2=0.9856$ ;  $y=0.018x-0.0523$ ) at 50 nM, 150 nM and 250 nM concentrations, respectively.

**CONCLUSION:** Improvement of the method enabled the protocol to be used in a diagnostic laboratory setting, yielding more cost-effective, sensitive, and reliable results, although a proper method validation was necessary to achieve this goal.

**KEYWORDS:** Vitamin D Metabolite, 25-Hydroxyvitamin D, Cost-effective Diagnostic Tool.

## EP\_013

## ANTIVIRAL POTENTIAL OF KELULUT HONEY AGAINST SARS-COV-2

**Che Muhammad Khairul Hisyam Ismail<sup>1,2</sup>, Azlini Ismail<sup>3\*</sup>, Azzmer Azzar Abdul Hamid<sup>1,2</sup>, Mohd Ridzuan Mohd Abd Razak<sup>4</sup>, Khairani Idah Moktar<sup>3</sup>, Widya Lestari<sup>3</sup>, Basma Ezzat Mustafa Alahmad<sup>3</sup>**

<sup>1</sup>Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

<sup>2</sup>Research Unit for Bioinformatics & Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

<sup>3</sup>Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

<sup>4</sup>Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, 40170 Shah Alam, Selangor, Malaysia

\*Corresponding author: Azlini Ismail. dr\_azlini@iium.edu.my

**INTRODUCTION:** The ongoing spread of the SARS-CoV-2 Omicron variant continues to pose global health challenges, harbouring multiple sites of mutations. This variant exhibits enhanced immune evasion capabilities, raising concerns about the effectiveness of current vaccine strategies. Meanwhile, *kelulut* honey (KH) has emerged as a promising functional food, distinguished by its distinctive flavour and bioactive properties.

**OBJECTIVE(S):** This study aimed to investigate the antiviral potential of KH against SARS-CoV-2.

**MATERIALS & METHODS:** KH was obtained from Bukit Kuin 2, in Kuantan, Pahang, Malaysia ( $3^{\circ}52'54.9''N$   $103^{\circ}12'27.4''E$ ). The antiviral potential of KH was assessed by investigating its ability to inhibit both the wild-type and Omicron SARS-CoV-2-induced cytopathic effect (CPE) in Vero E6 cells (ATCC-CRL-1586). Nirmatrelvir was used as a reference drug. Experiments were done in biological and experimental replicates ( $n = 9$ ).

**RESULTS:** Both KH and nirmatrelvir caused dose-dependent inhibition of CPE-induced activity by both wild-type and Omicron SARS-CoV-2 variants. For the wild-type SARS-CoV-2, 1H and 4H-pretreatment with KH at a non-cytotoxic concentration of 2.5% (v/v) inhibited CPE-induced activity

by  $56.7 \pm 9.96\%$  ( $IC_{50} = 7.52\%$  v/v) and  $40.9 \pm 11.6\%$  ( $IC_{50} = 9.3\%$  v/v), respectively. Notably, KH at 2.5% (v/v) showed higher inhibition of CPE-induced activity against the Omicron variant, with  $114.3 \pm 7.84\%$  ( $IC_{50} = 2.36\%$  v/v) and  $92.7 \pm 4.44\%$  ( $IC_{50} = 1.76\%$  v/v) observed after 1H- and 4H-pretreatment, respectively. In comparison, nirmatrelvir at a concentration of 6.25  $\mu$ M exhibited  $111.89 \pm 23.55\%$  ( $IC_{50} = 1.8 \mu$ M) and  $121.6 \pm 15.25\%$  ( $IC_{50} = 2.11 \mu$ M) inhibition of CPE-induced activity against wild-type SARS-CoV-2 for 1H- and 4H-pretreatment, respectively. For the Omicron variant, nirmatrelvir showed  $140.3 \pm 11.1\%$  ( $IC_{50} = 2.14 \mu$ M) and  $117.1 \pm 7.05\%$  ( $IC_{50} = 2.24 \mu$ M) inhibition of CPE-induced activity at 6.25  $\mu$ M for 1H- and 4H-pretreatment.

**CONCLUSION:** KH exhibits antiviral activity against SARS-CoV-2 wild-type and Omicron variants, as indicated by its ability to inhibit the induced cytopathic effect upon viral infection onto Vero E6 cells. These findings suggest that KH could serve as a complementary or alternative therapeutic against CoV-2 infections.

**KEYWORDS:** Antiviral, Cytopathic Effect, *Kelulut* Honey, Omicron, SARS-CoV-2

## EP\_014

## BIOACCUMULATION OF HEAVY METALS IN SEAWEED FROM EAST MALAYSIA

**Wan Nurul Farah Wan Azmi<sup>1\*</sup>, Nurul Izzah Ahmad<sup>1</sup>, Zurahanim Fasha Anual<sup>1</sup>, Sarmiza Sarperi<sup>2</sup>, Ainun Jariah Jeropakal<sup>3</sup>**

<sup>1</sup>Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170 Shah Alam, Selangor, Malaysia

<sup>2</sup>Department of Agriculture Sarawak Head Quarters, 7th Floor, 12-14, 16-17, Menara Pelita, Jalan Tun Abdul Rahman Yakub Petra Jaya, 93050 Kuching, Sarawak

<sup>3</sup>Department of Fisheries Sabah Head Quarters, 4th Floor, Wisma Pertanian Sabah, Jalan Tasik, 88624 Kota Kinabalu, Sabah

\*Corresponding author: Wan Nurul Farah Wan Azmi. nurul.farah@moh.gov.my

**INTRODUCTION:** Heavy metal pollution in coastal areas is a global environmental and health concern due to its ability to bioaccumulate. Seaweed which is widely cultivated and sold in East Malaysia, may be affected by this contamination.

**OBJECTIVE(S):** This study aimed to determine the levels of heavy metals in seaweed samples collected from Sabah and Sarawak.

**MATERIALS & METHODS:** A total of 22 samples from seven seaweed species were collected from nine locations across Sabah and Sarawak, including seaweed farms and markets. Samples were freeze-dried, ground into fine powder, and digested using a multiwave digestion system. Heavy metal concentrations were then measured using inductively coupled plasma mass spectrometry (ICP-MS) for ten elements: arsenic (As), aluminium (Al), chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), cadmium (Cd), mercury (Hg), and lead (Pb).