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Abstract

Accurate ridership forecasting is crucial for optimizing public
transportation operations, including scheduling, capacity planning, and
resource allocation. KTM Komuter, one of Malaysia’s primary rail
services, experiences fluctuations in daily ridership due to factors such
as peak-hour demand, weekends, public holidays, and economic
conditions. This study aims to evaluate the effectiveness of the
Seasonal Autoregressive Integrated Moving Average (SARIMA)
model in forecasting the daily KTM Komuter ridership. The dataset
obtained from Malaysia’s official open data portal, spans from the
period of October 1, 2023 to January 31, 20235, captures daily trip
counts across KTM Komuter stations. The analysis involved
exploratory data analysis, stationarity testing, diagnostic checking, and
SARIMA modeling to identify the optimal model. The results indicate
that the SARIMA(O, 0, 2)(0, 1, 2),; model successfully captures
ridership patterns, achieving a mean absolute percentage error
(MAPE) of 9.17%, thereby, demonstrating reliable forecasting
accuracy. The findings highlight SARIMA’s potential in improving
train scheduling, capacity planning, and resource allocation. However,
the model’s reliance on historical data may limit its adaptability to
sudden disruptions, such as service interruptions or external economic
shifts. Future research should consider integrating external factors,
such as weather conditions and macroeconomic indicators, or
exploring advanced machine learning models to enhance predictive

accuracy and adaptability.
1. Introduction

Public transportation plays a crucial role in urban life, providing a more
sustainable and affordable alternative to private vehicles. Accurate ridership
forecasting is essential to optimize train schedules, allocate resources
effectively, and enhance the overall passenger experience. In Malaysia,
Keretapi Tanah Melayu Berhad (KTMB) manages the Keretapi Tanah
Melayu (KTM) Komuter system, which was established in 1995 to offer
local rail services in Kuala Lumpur and its surrounding suburban areas
within the Klang Valley. The Klang Valley Komuter Line features two main
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routes, Tanjung Malim to Port Klang and Batu Caves to Pulau Sebang
(Tampin). Both routes experience heavy ridership, especially during peak
hours. Meanwhile, the Northern Komuter Line, introduced in September
2015, operates between Padang Besar and Butterworth and Padang Rengas
to Bukit Mertajam, catering to both daily commuters and long-distance
travelers [1]. By connecting residential areas with business hubs and major
transit points, KTM Komuter plays a vital role in keeping Malaysia moving
forward.

Ridership patterns in KTM Komuter services show clear differences
between weekdays and weekends, indicating varied commuter behaviors.
Weekday ridership mainly includes office workers, students, and commuters,
peaking during morning and evening rush hours. In contrast, weekend
ridership is influenced by leisure activities, shopping, and tourism-related
travel. Ridership can experience additional fluctuations due to public
holidays, school vacations, and economic conditions. Given these dynamic
factors, developing a reliable forecasting model for daily KTM Komuter
ridership is essential to mitigate congestion, enhance operational efficiency,
and support strategic transportation planning. However, forecasting ridership
remains challenging due to the seasonal, non-stationary, and dynamic nature
of transit demand [2].

Recent studies have demonstrated the efficacy of autoregressive
integrated moving-average (ARIMA) models in forecasting public
transportation ridership. For instance, reference [3] employed ARIMA to
predict metro passenger traffic in Xi’an, China, highlighting its utility in
medium-term forecasting. Similarly, ARIMA was used in Monterey County,
California, to forecast ridership impacts of the SURF! Busway and Bus
Rapid Transit Project, projecting significant increases in transit usage over
two decades [4]. This demonstrated the model’s capability not only for long-
term forecasts but also for assessing short-term demand. Reference [5]
further assessed the forecasting power of ARIMA models for intercity rail
demand, finding them effective in predicting daily passenger flows.
Furthermore, ARIMA has been applied to post-pandemic transit ridership
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forecasting, helping public transit agencies adapt to fluctuating demand
patterns [6]. A recent study by [7] demonstrated that ARIMA is effective in
forecasting short-term passenger flow for urban rail transit, making it a
valuable tool for optimizing metro operations and managing congestion.
While ARIMA has been proven to be effective, it may not adequately
account for seasonal variations in ridership, which are often influenced by
weather, holidays, and work schedules.

Given the significant seasonal fluctuations in transit ridership,
researchers have increasingly utilized the seasonal ARIMA (SARIMA)
model, which is an extension of ARIMA that includes seasonal components.
SARIMA has been widely applied to urban rail and bus networks,
demonstrating superior performance in capturing periodic ridership patterns.
For instance, a study in Dubai utilized the SARIMA model to predict metro
ridership, confirming its effectiveness in modeling seasonal variations and
long-term trends [8]. Another study used SARIMA to forecast passenger
demand for train services between Surabaya and Jakarta, demonstrating its
effectiveness in identifying seasonal peaks, especially during holiday periods
when ridership demand significantly increases [9].

Furthermore, SARIMA has been applied to forecast passenger demand
in Light Rail Transit (LRT) systems, where ridership exhibits strong
seasonal variations due to holiday periods and peak-hour travel demand. A
study on Palembang’s LRT system found that SARIMA effectively predicted
ridership trends, supporting mobility planning and optimizing transit
operations by enabling authorities to adjust capacity based on demand
forecasts [10]. SARIMA has also been used to forecast subway ridership
during disruptions such as the COVID-19 pandemic, with a study on New
York City’s subway showing its effectiveness in capturing shifts in demand,
especially when combined with data-driven change-point detection
algorithms [11].

In Malaysia, SARIMA has been used to forecast monthly passenger
ridership on the Ampang Line LRT, with results confirming its effectiveness
in predicting ridership patterns [12]. Similarly, recent research comparing
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SARIMA and the prophet method in forecasting public transportation
demand found that SARIMA outperformed Prophet by achieving a lower
error [13]. Studies in West Sumatra and Java, Indonesia, also confirm
SARIMA’s effectiveness in forecasting railway passenger demand by
accurately capturing seasonal fluctuations and predicting peak ridership
during festive seasons [14, 15]. This highlights SARIMA’s ability to assist
railway operators in anticipating demand surges and optimizing service

capacity.

2. Literature Review

Recent advancements have increasingly utilized SARIMA to improve
forecasting accuracy in transit systems. For example, reference [16] applied
the SARIMA model using multi-source data collected via Internet of Things
(IoT) devices and sensor networks to predict short-term urban rail transit
passenger flows in Beijing. Their study showed that SARIMA effectively
captured the seasonal and periodic variations in passenger traffic,
highlighting its strength in modeling the linear and seasonal patterns of
urban rail transit data.

Other approaches have explored the integration of decomposition
techniques and transfer learning to enhance the accuracy of short-term
passenger flow forecasting, particularly during periods of irregular demand
fluctuations. For instance, a decomposition-based forecasting model that
incorporates transfer learning is proposed to improve railway passenger flow
predictions during holidays [17]. The study highlighted that traditional
models often struggle to capture seasonal variations and holiday-related
demand shifts, resulting in suboptimal forecasting performance. The findings
suggest that the proposed model significantly outperformed conventional
forecasting methods. Chuwang and Chen [18] developed a time series-based
forecasting model to predict daily and weekly passenger demand at urban
rail transit stations, emphasizing the importance of structured temporal
dependencies in improving prediction accuracy.

Recent advancements in deep learning have introduced more complex
models, such as Long Short-Term Memory (LSTM) networks, Convolutional
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Neural Networks (CNNs), and Deep Belief Networks (DBNs), which have
been applied to transit forecasting [19]. These models are capable of
capturing nonlinear relationships and external influencing factors such as
weather conditions, economic fluctuations, and urban mobility patterns. For
instance, Liu and Chen [20] developed an LSTM-based model for short-term
metro ridership prediction, demonstrating its ability to learn from historical
patterns. Moreover, studies have introduced sequence-to-sequence learning
and attention mechanisms to enhance short-term ridership forecasting in
metro systems [21]. Despite their strong predictive capabilities, deep
learning models require large datasets, significant computational resources,
and extensive hyperparameter tuning. This dependence may limit their
practicality in certain ridership forecasting applications, especially when
data availability is constrained.

Due to the limitations, this study utilized the SARIMA model as the
main approach for forecasting. However, its effectiveness in predicting daily
ridership trends for KTM Komuter has not been thoroughly investigated.
Therefore, this study proposes to forecast daily ridership for KTM Komuter
in Malaysia using the SARIMA model and to evaluate its predictive
performance by applying standard error metrics, including mean absolute
error (MAE), root mean square error (RMSE), and mean absolute percentage
error (MAPE).

The paper is organized as follows: the first section presents the
introduction, including the problem statement, background of the research,
and a review of relevant literature. The subsequent sections present the
methodology, followed by the findings, and conclude with key insights and
directions for future research.

3. Materials and Methods

3.1. Data collection

This study utilized a dataset from Malaysia’s official open data portal
(https://data.gov.my). The dataset contains daily trip counts, referred to as

ridership, for the KTM Komuter service from 1 October 2023 to 31 January
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2025. The dataset was divided into a training set (October 1, 2023, to
December 13, 2024) and a testing set (December 14, 2024, to January 31,
2025) for model evaluation using Python. The data were pre-processed to
check for inconsistencies and outliers, and no missing values were identified.

3.2. Seasonal autoregressive integrated moving average (SARIMA)
model

The SARIMA model is an extension of the Autoregressive Integrated
Moving Average (ARIMA) model, designed to incorporate both trend and
seasonal components in time series forecasting. The SARIMA model
effectively captures seasonal effects, long-term trends, periodic changes, and
random disturbances in ridership data. The general form of the
SARIMA (p, d, q)(P, D, Q),, can be expressed as equation (1):

0p(B*)9,(B)VOV?y, = ©,(B*)6,(BY)a,, (1)

where p, d, g are the non-seasonal components, and P, D, Q are the seasonal
components. The p and g parameters refer to the order of the non-seasonal
autoregressive (AR) and moving average (MA) terms, respectively, while
d represents the degree of differencing required to make the time series
stationary. Similarly, P, D, and Q represent the seasonal autoregressive
order, seasonal differencing order, and seasonal moving average order,
respectively. The parameter s denotes the seasonal period length, which is
set based on the observed seasonality in the dataset; meanwhile, a;

represents the random error term.

In time series modelling, SARIMA follows four key steps: model
identification, parameter estimation, diagnostic checking, and forecasting.
The first step involved checking for stationarity using the Augmented
Dickey-Fuller (ADF) test [22]. If the test indicated non-stationarity, then
differencing was applied to the time series to remove trends and stabilize the
variance.

Next, we focus on analyzing autocorrelation function (ACF) and partial
autocorrelation function (PACF) plots to determine the appropriate values
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for p, g, P, and Q. These parameters were further refined based on Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC)
values, where the model with the lowest AIC and BIC scores was considered

optimal for prediction accuracy.

The third step in SARIMA model development involved diagnostic
checking to ensure the adequacy of the fitted model. The Ljung-Box Q test
was applied to assess whether the residuals exhibit white noise behavior,
confirming the absence of significant autocorrelation.

The final step was forecasting, where the validated SARIMA model was
used to predict future values based on historical data. The accuracy of the
forecast was assessed using metrics like mean absolute percentage error
(MAPE), mean absolute error (MAE), and root mean squared error (RMSE)
to measure the difference between predicted and actual values. Prediction
intervals were also constructed to account for uncertainty, providing a range
within which future observations are expected to fall. Figure 1 summarizes
the SARIMA modelling process and evaluates its performance in forecasting
daily KTM ridership.
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Figure 1. Flowchart of SARIMA modelling.
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3.3. Evaluation metrics

Three error metrics; MAPE, MAE and RMSE, were computed to assess
the forecasting performance of the SARIMA model. These metrics quantify
the deviations between predicted and actual ridership values and are defined
in equations (2) to (4):

n
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where y; represents the actual ridership, j; represents the predicted

ridership, and » is the number of observations in predicted and actual data by
identifying the best model with the smallest error. MAE and RMSE are
commonly used scale-dependent metrics and are sensitive to the data’s
magnitude [23], whereas MAPE is unit-free and widely adopted for
comparing performance across multiple time series [24]. Lower values for
MAPE, MAE, and RMSE indicate better predictive performance. These
metrics provide an objective evaluation of the SARIMA model’s ability to

accurately capture ridership trends and fluctuations.

4. Results and Discussion

The descriptive statistics of the ridership data, including mean, standard
deviation, minimum, and maximum values, are summarized in Table 1. The
analysis provides insights into the overall distribution and variability of daily
ridership, ensuring a comprehensive understanding of transit demand
patterns over time. The results indicate an average daily ridership of 35,288
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passengers, with a standard deviation of 6,594, suggesting moderate
variability, while the minimum and maximum ridership values are 20,236
and 89,320, respectively.

Table 1. The daily ridership KTM Komuter from 1st October 2023 to 31%
January 2025

Mean Std. dev. Minimum Maximum

35288.29 6594.69 20236 89320

The time series plot in Figure 2 illustrates the fluctuations in ridership
over this period, with the x-axis representing the date and the y-axis denoting
ridership. The daily ridership exhibits a seasonal trend, with higher
passenger volumes on weekdays compared to weekends. Although there is
no clear trend of increasing or decreasing ridership over time, the data shows

consistent fluctuations, suggesting possible seasonal effects.
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Figure 2. Daily KTM Komuter ridership from 1st October 2023 to 31st
January 2025.

Based on Figure 2, irregular fluctuations are observed in daily passenger
volumes, with some days experiencing sharp increases or decreases. The
most significant spike in ridership appears in early January 2024, which may
be attributed to a major event, a public holiday, or a temporary service
adjustment. Apart from this anomaly, the data maintains a generally stable
fluctuation pattern, reinforcing the possibility of underlying seasonal trends.
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The data was then split into training and testing based on a ratio of 90:10 for
model development and validation, respectively. The training set comprised
440 observations, covering the period from Ist October 2023 to 13th
December 2024. Meanwhile, the testing set spanned from 14th December
2024 to 31st January 2025, and included 49 observations. Before modeling,
the dataset was examined for stationarity, as non-stationary data can affect
the accuracy of forecasting models. The stationarity of the time series data
was assessed using the Box-Cox transformation, where the estimated Box-
Cox parameter was A = 0.2202, with a 95% confidence interval of [0.1654,
0.3427], indicating that the data on daily KTM Komuter ridership was not
stationary in variance. As a result, the natural logarithm was used to stabilize
the variance and improve model performance. The ADF test on the log-
transformed series confirmed stationarity in mean, with a statistic of —2.8684
and a p-value of 0.000. This conclusion is further supported by the ACF and
PACF plots in Figure 3. Based on Figure 3, the ACF plot exhibits a rapid
decay, while the PACF plot shows a significant cut-off at lower lags,
indicating that the data is stationary in both mean and variance. Therefore,

no further non-seasonal differencing is required (d = 0). However, seasonal

differencing may still be necessary if seasonal patterns are present in the

data, requiring an appropriate seasonal differencing order (D) to ensure

stationarity in the seasonal component.
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Figure 3. ACF and PACF plots after transformation.

After confirming that the data is stationary, differencing was applied to
remove seasonality. Seasonal differencing was performed with the seasonal
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period set to s =7 accounting for the weekly pattern in the data. The
SARIMA model was then specified as SARIMA (p. d, q)(P, D, Q); to

serve as the predictive model for daily KTM Komuter ridership. The final
model selection was based on the lowest AIC or BIC to optimize forecasting
performance. The application of the auto.arima function with seasonal
components in Python identified SARIMA (0, 0, 2)(0, 1, 2), as the optimal
model for forecasting KTM Komuter ridership. The Ljung-Box test for the
SARIMA (0, 0, 2)(0, 1, 2); yielded p-values above 0.05, indicating no

evidence of autocorrelation, as shown in Figure 4.
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Figure 4. ACF plot of the residuals from SARIMA (0, 0, 2)(0, 1, 2)..

The prediction error indicators were computed and summarized in Table
2. The MAE = 2806.50 represents the average absolute difference between
the actual and predicted values for the testing dataset. Meanwhile, MAPE
quantifies the mean of the absolute percentage errors in the forecasts. As a
relative measure, MAPE expresses forecast errors as a percentage of actual
values, making it an intuitive metric for evaluating prediction accuracy. This
measure is particularly useful due to its simplicity in interpreting error
magnitude. Figure 5 presents a comparison between the actual and
forecasted KTM Komuter ridership using the SARIMA (0, 0, 2)(0, L, 2),

with the model and demonstrates strong predictive performance, with only
minimal differences between the forecasted and actual ridership data,
resulting in a MAPE of 9.17%. Therefore, the SARIMA (0, 0, 2)(0, L, 2),
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model has been identified as an optimal approach for forecasting daily KTM
Komuter ridership trends, ensuring reliable and accurate predictions.

Table 2. Calculated forecast error indicator

Model MAPE MAE RMSE
SARIMA (0, 0, 2)(0, 1, 2); 9.17 2806.50 3576.64
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Figure 5. Actual vs forecasting plot of the SARIMA (0, 0, 2)(0. 1, 2)-.

5. Conclusion

The findings of this study address the research objective of evaluating
the SARIMA model’s suitability for forecasting public transport ridership.
The selected SARIMA (0, 0, 2)(0, 1, 2), model achieved a low MAPE

of 9.17% [25], indicating strong forecasting accuracy. This supports the
theoretical basis of time series modeling, particularly the importance of
capturing seasonality and stationarity in prediction. The model effectively
identifies underlying ridership patterns, enabling KTM Komuter operators to
optimize scheduling, adjust service frequency, and allocate resources more
efficiently. These forecasts can help improve passenger experience, reduce
congestion, and enhance system reliability.

Despite its strengths, the SARIMA model is limited by its reliance on
historical data and may not respond well to sudden disruptions such as
service failures, economic shifts, or extreme weather. Future research should
consider integrating external variables such as fuel prices, road conditions,
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macroeconomic indicators, or adopting hybrid or machine learning-based
models like LSTM to improve adaptability and forecasting performance.
Nonetheless, this study demonstrates that SARIMA remains a practical and
effective tool for short-term ridership forecasting, offering valuable insights
for public transport planning and decision-making.
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