

[Back](#)

Optimization of post-processing parameters for enhanced characterization in metal extrusion 3D printing of copper-polymer composites

[Discover Materials](#) • Article • Open Access • 2025 • DOI: 10.1007/s43939-025-00385-6

Iftekhar, Syed Fouzan^{a, b}; Aabid, Abdul^c ; Sukindar, Nor Aiman^b; Amir, Adibah^b; Baig, Muneer^c

^a Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia

[Show all information](#)

0

Citations

[View PDF](#)

[Full text](#)

[Export](#)

[Save to list](#)

[Document](#)

[Impact](#)

[Cited by \(0\)](#)

[References \(33\)](#)

[Similar documents](#)

Abstract

The high costs associated with metal additive manufacturing methods including expensive feedstock, energy-intensive lasers, and controlled environments have limited their widespread adoption in industries like aerospace and automotive, despite powder bed fusion success in producing intricate and high-precision components. As a cost-effective alternative, material extrusion 3D printing enables the fabrication of metal-polymer composites using simpler equipment. However, challenges remain in optimizing post-processing parameters to enhance mechanical performance and microstructural integrity. This study focuses on improving the post-processing of copper-filled PLA parts fabricated with an Artillery Sidewinder X1 material extrusion printer. A Taguchi design of experiments approach using an L_8 orthogonal array was employed to investigate the effects of debinding time, sintering time, and layer thickness. Results showed that shorter debinding compromised structural integrity in 25% of samples, while optimized settings

achieved a 30.59% shrinkage and a 12.5% hardness increase. These findings highlight the significance of proper thermal post-processing in controlling dimensional changes and improving part quality. © The Author(s) 2025.

Author keywords

3D Printing; Additive manufacturing; Debinding; Material extrusion; Metal; Polymer; Sintering

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Prince Sultan University See opportunities ↗		

Funding text

This research is supported by the Structures and Materials (S&M) Research Lab of Prince Sultan University and the authors acknowledge the support of Prince Sultan University for paying the article processing charges (APC) of this publication.

Corresponding authors

Corresponding author	A. Aabid
Affiliation	Department of Engineering Management, College of Engineering, Prince Sultan University, PO BOX 66833, Riyadh, 11586, Saudi Arabia
Email address	aabid@psu.edu.sa

[Author keywords](#)

[Funding details](#)

[Corresponding authors](#)

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2026 Elsevier B.V. ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

 RELX™