Utilising MRI Data and VOI-Based Analysis for Enhanced Epilepsy Prediction: A Translational Approach from Bench to Bedside

Nur Arif Che Mat¹, Nur Nadiah Mohd Rais², Mohd Zulfaezal Che Azemin³, Intan Bazilah Abu Bakar⁴, Iqbal Jamaludin^{2,5*}

ABSTRACT

Background: Epilepsy is one of the most prevalent neurological disorders globally, profoundly impacting patient's quality of life and stretching healthcare resources. Despite technological advances in neuroimaging, early and accurate detection of epileptic foci remains elusive, especially when standard MRI scans appear structurally normal. For clinicians, radiologists and neurologists, the limitations of subjective interpretation underscore an urgent need for objective diagnostic methods. This study addresses that gap by introducing Volume of Interest (VOI)-based analysis as an innovative tool to detect microstructural brain abnormalities associated with epilepsy. Methods: This study involves a retrospective analysis of 30 brain MRI images (T1-Weighted MPRAGE), comprising of 12 epilepsy patients and 18 matched controls (11 males, 19 females; mean age 42.7 ± 17.2 years). The images were converted from the DICOM format into the Brain Imaging Data Structures (BIDS) standard using the fMRIPrep platform, which were then normalised following the standard Montreal Neurological Institute (MNI) template. The images were segmented into Grey Matter, White Matter and Cerebrospinal Fluid. The segmented Grey Matter regions have then been analysed using VOIbased analysis from the Harvard-Oxford Cortical Structural Atlas. The VOI-based analysis results were then statistically tested using ANCOVA with False Detection Rate (FDR) correction. Results: Three regions show statistically significant ANCOVA results, which were Superior Frontal Gyrus (p=0.041), Superior Parietal Lobule (p=0.026) and Lingual Gyrus (p=0.036). However, all three regions fail the FDR correction (q=0.36). Conclusion: This work shows that combining MRI data with VOI-based analysis can reveal subtle structural patterns in the superior frontal gyrus, superior parietal lobule and lingual gyrus that may contribute to the understanding of epilepsy risk. Although these patterns were not sustained after FDR correction, they offer a promising direction for more objective predictive tools. Continued research with larger cohorts is essential to confirm these early signals and strengthen their relevance for epilepsy prediction.

Keywords:

MRI; VOI-Based Analysis; Epilepsy Prediction; Brain

INTRODUCTION

Epilepsy is a long-standing neurological condition marked Magnetic Resonance Imaging (MRI) plays a central role in by recurrent, unprovoked seizures that can affect many evaluating aspects of a person's life. With an estimated 50 million information that informs diagnosis and treatment people affected globally, the disorder continues to place a planning. While advanced MRI technologies hold great significant burden on individuals, families and healthcare potential, clinical interpretation still relies heavily on systems (World Health Organisation, 2023; Beghi, 2020). In qualitative assessment, and subtle abnormalities can Malaysia, the prevalence has been estimated at 7.8 cases easily go unnoticed (Bernasconi et al., 2019). per 1,000 people, reflecting a substantial public health concern (Fong et al., 2021). Certain groups such as younger adults, males and individuals with focal epilepsy or poorly controlled seizures remain at higher risk of complications, including Sudden Unexpected Death in Epilepsy (SUDEP) (Khor et al, 2021; 2022). These factors highlight the continuing need to improve the tools used for early

detection and accurate diagnosis.

providing essential epilepsy,

Recent studies have shown that combining structural MRI with computational analysis can markedly improve diagnostic accuracy; for example, machine learning approaches such as Support Vector Machines (SVM) have achieved up to 94% accuracy in distinguishing epileptic from non-epileptic scans (Jamaludin al., 2022). These

E-mail address: iabaljamaludin@iium.edu.my

¹Radiology Department, Hospital Tengku Ampuan Afzan, 25100 Kuantan, Pahang, Malaysia

²Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang,

³Department of Optometry and Visual Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang,

⁴Department of Radiology, Kullivyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

⁵Integrated Omics Research Group (IORG), Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

^{*} Corresponding author.

findings suggest that data-driven methods may help (SASRC) (Reference Number: IIUM/423/013/14/1/SRG25capture features that traditional visual diagnosis may miss, 072-0072). particularly in focal epilepsy where small structural variations may influence treatment decisions (Caldairou et MRI Acquisition al., 2022; Bank et al., 2023). Fractal analysis has gained attention in neuroimaging for its ability to quantify The MRI system used was 3 Tesla Siemens Magnetom structural complexity within the brain. By estimating Spectra Scanner (Siemens Medical Solutions, Erlangen, Fractal Dimension (FD), researchers can detect subtle Germany). Its gradient strength is 33 mT/m with slew rate changes in grey matter structures that may not be of 125 T/m/s. The standard T1-Weighted 3D-MPRAGE (3Dapparent on the routine scans (Gleichgerrcht et al., 2021; Magnetisation Prepared Rapid Gradient Echo) protocol Ziukelis et al., 2022). This type of quantitative assessment was used, with TR value of 1880 ms, TE of 3 ms and TA of offers an objective way to characterise brain morphology 4.23 minute. The voxel size of 1.0 mm x 1.0 mm x 1.0 mm and has shown promise in various neurological conditions. was used, with the FoV in the read direction of 250 mm.

Volume of Interest (VOI)-based analysis, has been used to brain to the left direction. The number of slices per image identify fine-detailed structural differences across specific slab was 176. The raw imaging data were originally stored regions. Studies have demonstrated effectiveness of this approach in detecting intricate (DICOM) format within clinical archives. neuroanatomical variations linked to cognitive and neurological traits (Jamaludin et al., 2022). Applying VOI- A total of thirty T1-weighted MPRAGE brain MRI images based analysis to epilepsy may therefore offer a powerful from the scans conducted between the year 2020 until extension to conventional MRI interpretation by capturing 2024 were retrieved, representing twelve patients regional patterns associated with the condition.

traction, the potential of VOI-based analysis for predicting criteria are epilepsy patients diagnosed based on clinical epilepsy remains largely unexplored. Current diagnostic history, EEG, and MRI results for epilepsy group, while practices still depend heavily on subjective MRI healthy controls were confirmed with no history of interpretation, microstructural changes that characterise epileptogenic for both groups were 18 to 60 years old, for both male and brain tissues. Bridging this gap is important for improving female. Patients with comorbid neurological conditions (e.g., diagnostic reliability and for advancing objective, image- stroke, dementia). MRI contraindications (e.g., metal based markers of epilepsy. In response, this study aimed implants) and active pregnancy were excluded from this to determine whether an automated, atlas-based VOI study. Both groups were matched for age and gender. The volumetric pipeline applied to high-resolution T1- sample size was determined using the Power and Sample weighted MRI of brain can discriminate patients with Size Program, guided by parameters published by Chang et epilepsy from healthy controls. Through these objectives, al. (2023), and all eligible cases in the archive were used the study seeks to contribute to a more rigorous and for this retrospective study. objective approach to epilepsy prediction using structural MRI.

MATERIALS AND METHODS

Study Design and Data Overview

This study was conducted using a retrospective design Department of Radiology, Sultan Ahmad Shah Medical Committee (KPGRC) (ID Number: KAHS 40/25), 2) IIUM

The slice thickness during acquisition was set at 45.5% More recently, local or regional assessment such as where the phase encoding was set from right part of the the in native Digital Imaging and Communication in Medicine

clinically diagnosed with epilepsy (confirmed by EEG test results) and eighteen matched healthy controls (11 males, Although quantitative imaging methods are gaining 19 females; mean age 42.7 ± 17.2 years). The inclusion which may overlook the subtle neurological disorders by radiologist and neurologist. Age

Preprocessing Pipeline

Image conversion and preparation

The raw imaging data were originally stored in native Digital Imaging and Communication in Medicine (DICOM) format within clinical archives. To ensure a uniform data structure suitable for automated neuroimaging pipelines, involving structural brain MRI scans obtained from the the scans were converted into the Brain Imaging Data Structure (BIDS) standard. This conversion was facilitated Centre (SASMEC @IIUM). Three ethical clearances were by a custom workflow built around the script obtained; 1) Kulliyyah Postgraduate and Research dcm_to_mni.py, which systematically detected DICOM series for each subject and executed conversion using Research Ethical Committee (IREC) (IREC Number: IREC heudiconv. The script first attempted the standard reproin 2025-086) and 3) SASMEC @IIUM Research Committee heuristic to identify the T1-weighted anatomical series. In

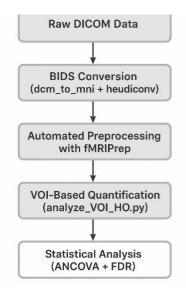
instances where this approach did not create BIDS- preprocessing, and rigorous analysis to advance MRIcompliant directory structure, a fallback custom heuristic based biomarkers for more accurate epilepsy diagnosis. routed the MPRAGE sequence into the appropriate anatomical folder within the BIDS hierarchy. The resulting Statistical Analysis dataset conformed to the BIDS specification, with each within a cleanly organised directory structure.

Spatial Normalisation

All BIDS datasets were subsequently processed using the fMRIPrep platform, with additional preprocessing steps orchestrated via dcm to mni.py. Each subject's T1weighted image was skull-stripped, bias-field corrected, and spatially normalised to the MNI152NLin2009cAsym template at 1-mm isotropic resolution. fMRIPrep also produced tissue probability maps for grey matter, white matter and cerebrospinal fluid. These outputs formed the foundation for the study's volumetric analysis, which focused on the extraction of both global tissue estimates and region-specific grey-matter volumes.

Tissue segmentation

Tissue segmentation was performed automatically through fMRIPrep's anatomical workflow. Grey matter, white matter and cerebrospinal fluid volumes were estimated by summing voxel-wise tissue probabilities, allowing the computation of global tissue measures expressed in millilitres. Total intracranial volume was estimated as the sum of the grey matter, white matter and cerebrospinal fluid; and was later included as a covariate in the group-comparison analysis.


VOI-Based Regional Analysis

Regional morphometric analysis was conducted using a **VOI-based** framework implemented in analyse_VOI_HO.py. This process involved integrating the Harvard-Oxford Cortical Structural Atlas with the greymatter probability maps produced by fMRIPrep. For each subject, the atlas was resampled to match the individual's grey-matter anatomical space, ensuring spatial correspondence between atlas labels and tissue probabilities. Regional volumes were calculated by applying atlas-defined masks to the grey-matter probability maps and converting the resulting weighted sums into millilitres measurements. The script generated a consolidated dataset containing demographic information, global tissue measurements and regional Figure 1: Automated T1-weighted MRI workflow: DICOM→BIDS VOI-based grey-matter volumes for all subjects.

This automated framework supports a repeatable, objective, and clinically transferable neuroimaging pipeline, integrating standardised conversion, robust

participant assigned a unique subject identifier located. To assess neuroanatomical differences between epilepsy and control groups, an Analysis of Covariance (ANCOVA) was performed for each global and regional volume, using Statistical Package for the Social Sciences (SPSS) version 29. The models incorporated age and intracranial volume as covariates to account for inherent biological variability. Group differences were evaluated using ANOVA-derived F statistics extracted from each model. Given the large number of atlas-derived regions analysed, the Benjamini-Hochberg False Discovery Rate (FDR) correction was applied to adjust for multiple comparisons. Regions meeting an adjusted significance threshold of q<0.05 were considered to show statistically robust volumetric differences between groups.

> This study presents a fully automated structural MRI pipeline designed to characterise epilepsy-related neuroanatomical differences from T1-weighted images (Figure 1). The workflow standardises preprocessing and segmentation to generate MNI-normalised images and tissue probability maps, enabling consistent extraction of atlas-based regional grey-matter volumes. These volumetric biomarkers are then compared between groups using ANCOVA with FDR correction. Overall, the pipeline supports transparent, reproducible analysis with potential for translation into routine neuroimaging workflows.

(heudiconv), preprocessing with fMRIPrep (MNI-space outputs, tissue maps), Harvard-Oxford atlas grey-matter volumetry, and group comparison using ANCOVA with FDR correction.

RESULTS

Demographic Characteristics and Data Pre-Processing

This study used retrospective MRI brain images data from 30 participants, comprising of 12 individuals diagnosed with epilepsy and 18 age- and gender-matched healthy control subjects. The overall demographic profile indicated a mean age of 42.7 ± 17.2 years and a gender distribution Critically, following FDR control for multiple comparisons, of 11 males and 19 females.

sequences were acquired and utilised for all subsequent values and the resulting FDR-corrected 1-values for the morphometric analysis. Data preparation involved a rigorous and reproducible pipeline: images were first using the fMRIPrep platform. These data were subsequently normalised to the standard MNI template space. Following normalisation, images were meticulously segmented into grey matter, white matter and cerebrospinal fluid. Grey matter volume (GMV) were then derived using a VOI-based analysis across all 48 predefined cortical regions outlined by the Harvard-Oxford Cortical Structural Atlas.

Analysis of Covariance (ANCOVA) Findings (Uncorrected)

ANCOVA was used to statistically evaluate the inter-group differences in regional grey matter volume, adjusting for age and total intracranial volume (TIV) as covariates to mitigate potential confounding effects. Gender was excluded from the covariates as the images were retrieved retrospectively, and the limitation in getting the large number of images during the data collection process.

The initial inferential analysis performed using an uncorrected significance threshold of p<0.05, identified three specific cortical regions that exhibited a statistically significant volume alteration in the epilepsy group compared to controls. In all three regions, the epilepsy group demonstrated a reduced mean grey matter volume. The statistical details of these uncorrected findings are summarised in Table 1.

Table 1: Cortical VOIs showing statistically significant differences in grey matter volume between the epilepsy and control group using an uncorrected threshold (p<0.05).

		\i ,		
Region	Mean	Mean	Difference	p-
	(Epilepsy)	(Control)		value
Superior	0.6791	0.6791	0.621	0.026
Parietal				
Lobule				
Lingual Gyrus	0.3798	0.3798	0.267	0.036
Superior	0.2326	0.2326	0.093	0.041
Frontal Gyrus				

Correction for Multiple Comparisons

Given the high number of concurrent statistical tests (n=48) performed across the anatomical atlas, the False Discovery Rate (FDR) method was applied to the entire pvalue distribution to control the expected proportion of false positive findings (Type 1 errors).

no cortical VOI maintained a statistically significant difference at the controlled threshold of q < 0.05. Table 2 High-resolution T1-weighted MPRAGE structural MRI presents the comparison between the uncorrected pthree regions identified in the initial analysis.

converted from the DICOM format to the BIDS standard Table 2: q=FDR-corrected p-value for regions identified in the uncorrected ANCOVA analysis. No region met the significance threshold after controlling the False Discovery Rate across all 48 VOI tests.

Region	Corrected q-	Partial	**95% CI for
	value (*FDR)	η²	Partial η ²
Superior	0.36	0.089	0.000 to > 1.0
Parietal Lobule			
Lingual Gyrus	0.48	0.094	0.000 to > 1.0
Superior Frontal	0.51	0.106	0.000 to > 1.0
Gyrus			

*FDR: False Discovery Rate

** Note: Upper confidence limits for Partial η² are unbounded due to the properties of the noncentral F distribution at moderate F values and sample size.

The comparison of the VOI-based values between the epilepsy and control groups showed small but detectable effects across the three regions of interest (ROIs). For the Superior Parietal Lobule, the group difference yielded F(1,48) = 4.6938 with a corresponding partial η^2 of 0.089. For the Lingual Gyrus, the analysis produced F(1,48) =4.9816 and a partial η^2 of 0.094. For the Superior Frontal Gyrus, the observed effect was F(1,48) = 5.7179, reflecting a partial η^2 of 0.106.

The 95% confidence intervals (CIs) for partial η^2 showed lower bounds approximating 0.000 for all three ROIs, while the upper bounds were unbounded. This is a known consequence of inverting the noncentral F distribution in situations with modest F values and moderate sample sizes. The unbounded upper interval does not represent a computational error but reflects the limited precision with which the true effect size can be estimated. These findings collectively indicate the presence of small but meaningful regional differences despite the modest magnitudes.

This result confirms that while the three identified regions demonstrated a suggestive but not statistically robust after correction, the observed effect sizes were insufficient to pass the critical threshold necessary to declare a robust,

statistically independent difference when controlling for larger, multi-centre studies or when combined with other the large number of simultaneous comparisons.

DISCUSSION

This study set out to explore whether a fully automated, shown promise in improving the detection and prediction VOI-based morphometric analysis of high-resolution T1- of epilepsy-related brain changes, particularly when weighted (MPRAGE) MRI could reliably detect subtle integrating multiple imaging features and clinical data (Tsai regional grey matter volume (GMV) differences between et al., 2025; Yang et al., 2024). For instance, automated adults with epilepsy and matched healthy controls. While ROI-based morphometric features combined with initial uncorrected analysis suggested reduced GMV in machine learning have achieved high accuracy in three cortical regions among epilepsy patients, these distinguishing temporal lobe epilepsy from controls, even findings did not survive correction for multiple in MRI-negative cases (Yang et al., 2024). However, these comparisons, highlighting both the promise and the approaches require large, well-annotated datasets and current limitations of this approach. Thus, we did not careful validation to avoid overfitting and ensure identify robust volumetric biomarkers of epilepsy using generalisability. this VOI-based approach in this modest sample.

The challenge of identifying robust, statistically significant 2025; Yang et al., 2024). For example, a large-scale study interpreted using the morphometric analysis program (MAP) in truly demonstrating the false positives and modest balanced accuracy (51- et al., 2024). 60%)(Feng et al., 2025). Similarly, a recent review emphasised that, although post-processing methods can The results underscore the need for larger, multi-centre (Bunyamin et al., 2025).

morphometric pipelines, especially in small cortical and subcortical networks (Huang et al., 2025; Jber et al., 2021). However, the effect sizes are frequently ACKNOWLEDGEMENT modest, and robust group differences may only emerge in

imaging modalities such as PET or advanced radiomics (Zhang et al., 2025; Tsai et al., 2025).

Recent advances in machine learning and radiomics have

CONCLUSION

regional brain abnormalities in epilepsy, especially in MRI- In summary, this study demonstrates the feasibility and negative or nonlesional cases, is well documented in the reproducibility of a fully automated, VOI-based literature. Recent studies have shown that advanced morphometric MRI analysis pipeline for investigating morphometric techniques, such as voxel-based and regional brain morphology in epilepsy. While initial surface-based morphometry, can reveal subtle structural findings suggested trends toward reduced grey matter changes in both focal and generalised epilepsy, but their volume in specific cortical regions among epilepsy sensitivity and specificity are highly variable and often patients, these differences did not reach statistical depend on sample size, imaging quality and analytic rigour significance after correction for multiple comparisons. (Bunyamin et al., 2025; Feng et al., 2025; Di Micco et al., Consistent with current literatures, these findings are best а methodological contribution, practical implementation MRI-negative focal epilepsy found that, while MAP could application of a fully automated, reproducible volumetric detect previously overlooked lesions in a minority of cases, pipeline within a retrospective epilepsy cohort. (Bunyamin the overall diagnostic yield was limited, with a high rate of et al., 2025; Fearns et al., 2023; Di Micco et al., 2025; Yang

convert some MRI-negative cases to MRI-positive, the studies, integration of multi-modal imaging (e.g., PET/MRI, concordance with true epileptogenic zones remains radiomics), and the development of advanced analytic inconsistent, and integration with electrophysiological techniques to enhance sensitivity and specificity. Future data is often necessary for clinical decision-making research should also consider combining structural imaging with electrophysiological and clinical data to improve the localisation and characterisation of The present findings are consistent with these reports, epileptogenic zones (Bunyamin et al., 2025; Feng et al., underscoring the complexity of epilepsy as a network 2025; Yang et al., 2024). Ultimately, while VOI-based disorder. Structural changes may be subtle, distributed, or morphometric analysis holds promise as an objective, below the threshold of detection for current reproducible tool for epilepsy research and potentially for or clinical practice, its current diagnostic utility remains heterogeneous groups. Notably, studies in temporal lobe limited in small, heterogeneous groups. Ongoing epilepsy and idiopathic generalised epilepsy have methodological refinement and collaborative research will demonstrated that GMV alterations often extend beyond be essential to realise its full potential in the early and the primary epileptogenic focus, involving widespread accurate detection of epilepsy-related brain abnormalities.

This research was funded by the SASMEC Research Grant (Project ID: SRG25-072-0072).

Declaration of Generative and **AI-Assisted Technologies in the Writing Process**

Artificial intelligence was used to improve content development and editing in the preparation of this manuscript. The authors subsequently reviewed, revised Di Micco, V., Mercier, M., Espagnet, C., Napolitano, A., and approved all content and accept all responsibility for the final manuscript, and the authors guarantee its integrity and accuracy.

REFERENCES

Bank, A. M., Kuzniecky, R., Knowlton, R. C., Cascino, G. D., Fearns, N., Birk, D., Bartkiewicz, J., Rémi, J., Noachtar, S., & Jackson, G., Pardoe, H. R., & Human Epilepsy Project Investigators (2022). Structural Neuroimaging in Adults and Adolescents With Newly Diagnosed Focal Epilepsy: Epilepsy Project. Neurology, 99(19), The Human e2181-e2187.

https://doi.org/10.1212/WNL.0000000000201125

- Beghi E. (2020).The **Epidemiology** of Epilepsy. *Neuroepidemiology*, *54*(2),185–191. https://doi.org/10.1159/000503831
- Bernasconi, A., Cendes, F., Theodore, W. H., Gill, R. S., Koepp, M. J., Hogan, R. E., Jackson, G. D., Federico, P., Fong, S. L., Lim, K. S., Tan, L., Zainuddin, N. H., Ho, J. H., Labate, A., Vaudano, A. E., Blümcke, I., Ryvlin, P., & Bernasconi, N. (2019). Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia, 60(6),1054-1068. https://doi.org/10.1111/epi.15612
- Bunyamin, J., Sinclair, B., Law, M., Kwan, P., O'Brien, T. J., & Neal, A. (2025). Voxel-based and surface-based cortical morphometric MRI applications for identifying the epileptogenic zone: A narrative review. Epilepsia open, 10(2),380-397. https://doi.org/10.1002/epi4.70012
- Caldairou, B., Foit, N. A., Mutti, C., Fadaie, F., Gill, R., Lee, H. M., Demerath, T., Urbach, H., Schulze-Bonhage, A., Bernasconi, A., & Bernasconi, N. (2021). MRI-Based Hippocampal Sclerosis in Patients With Temporal Lobe Epilepsy. Neurology, 97(16), e1583-e1593. https://doi.org/10.1212/WNL.000000000012699
- Chang, A. J., Roth, R., Bougioukli, E., Ruber, T., Keller, S. S., Drane, D. L., Gross, R. E., Welsh, J., Abrol, A., Calhoun, Jamaludin, I., Che Azemin, M. Z., Mohd Tamrin, M. I., &

- V., Karakis, I., Kaestner, E., Weber, B., McDonald, C., Gleichgerrcht, E., Bonilha, L., & Alzheimer's Disease Neuroimaging Initiative (2023). MRI-based deep learning can discriminate between temporal lobe epilepsy, Alzheimer's disease, and healthy controls. Communications medicine, 3(1), 33. https://doi.org/10.1038/s43856-023-00262-4
- Benedictis, A., Carfi-Pavia, G., Marras, C., Vigevano, F., De Palma, L., & Specchio, N. (2025). Diagnostic performance of morphometric analysis program in pediatric epilepsy surgery. Epilepsy & Behavior, 171. https://doi.org/10.1016/j.yebeh.2025.110566
- Vollmar, C. (2023). Quantitative analysis of the morphometric analysis program MAP in patients with truly MRI-negative focal epilepsy. Epilepsy Research, 192.

https://doi.org/10.1016/j.eplepsyres.2023.107133

- Feng, T., Yang, Y., Wang, Y., Fan, X., Wang, T., Chen, S., Wei, P., Shan, Y., & Zhao, G. (2025). Mapping grey matter and network abnormalities in seizure-onset patterns via stereotactic EEG. Neurobiology of Disease, 213. https://doi.org/10.1016/j.nbd.2025.107021
- Chia, Z. J., Choo, W. Y., Puvanarajah, S. D., Chinnasami, S., Tee, S. K., Raymond, A. A., Law, W. C., & Tan, C. T. (2021). Prevalence study of epilepsy in Malaysia. Epilepsy research, 170, 106551. https://doi.org/10.1016/j.eplepsyres.2021.106551
- Gleichgerrcht, E., Munsell, B. C., Alhusaini, S., Alvim, M. K. M., Bargalló, N., Bender, B., Bernasconi, A., Bernasconi, N., Bernhardt, B., Blackmon, K., Caligiuri, M. E., Cendes, F., Concha, L., Desmond, P. M., Devinsky, O., Doherty, C. P., Domin, M., Duncan, J. S., Focke, N. K., Gambardella, A. ENIGMA-Epilepsy Working Group (2021). Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study. NeuroImage. Clinical, 31, 102765. https://doi.org/10.1016/j.nicl.2021.102765
- Machine Learning Prediction Framework to Lateralize Huang, X., Mao, L., Huang, K., Li, Y., Liu, P., Cao, D., Li, W., Li, W., Zhao, L., Zhang, Y., & An, D. (2025). Voxel-based meta-analysis of gray matter abnormalities in idiopathic generalized epilepsy. Cerebral cortex, 35 8. https://doi.org/10.1093/cercor/bhaf201

- Sapuan, A. H. (2022). Volume of Interest-Based Fractal Analysis of Huffaz's Brain. *Fractal Fract*, 6(7), 396. https://doi.org/10.3390/fractalfract6070396
- Jber, M., Habibabadi, J., Sharifpour, R., Marzbani, H., Hassanpour, M., Seyfi, M., Mobarakeh, N., Keihani, A., Hashemi-Fesharaki, S., Ay, M., & Nazem-Zadeh, M. (2021). Temporal and extratemporal atrophic manifestation of temporal lobe epilepsy using voxel-based morphometry and corticometry: clinical application in lateralization of epileptogenic zone. *Neurological Sciences*, 42, 3305 3325. https://doi.org/10.1007/s10072-020-05003-2
- Khor, S. B., Lim, K. S., Fong, S. L., Ho, J. H., Koh, M. Y., & Tan, C. T. (2021). Mortality in adult epilepsy patients in Malaysia: a hospital-based study. *Seizure*, 88, 56–59. https://doi.org/10.1016/j.eplepsyres.2022.106887
- Khor, S. B., Lim, K. S., Fong, S. L., Ho, J. H., Koh, M. Y., & Tan, C. T. (2022). Cause of mortality among people with epilepsy in Malaysia: A hospital-based study. *Epilepsy research*, 181, 106887.
- Tsai, M., Hsieh, K., Liu, Y., Yang, Y., Chang, H., Wong, T., & Peng, S. (2025). Morphometric and radiomics analysis toward the prediction of epilepsy associated with supratentorial low-grade glioma in children. *Cancer Imaging*, 25. https://doi.org/10.1186/s40644-025-00881-1
- World Health Organisation (2023). Epilepsy. Retrieved November 8, 2023, from https://www.who.int/news-rro/fact-sheets/detail/epilepsy
- Yang, L., Peng, B., Gao, W., A, R., Liu, Y., Liang, J., Zhu, M., Hu, H., Lu, Z., Pang, C., Dai, Y., & Sun, Y. (2024). Automated detection of MRI-negative temporal lobe epilepsy with ROI-based morphometric features and machine learning. *Frontiers in Neurology*, 15. https://doi.org/10.3389/fneur.2024.1323623
- Zhang, C., Wang, Z., Wang, Y., Cao, H., Ren, L., Yu, T., Shan, Y., He, X., Duncan, J., Lu, J., Wei, P., & Zhao, G. (2025). Quantitative Cortex-Based Mapping With Hybrid 18F-FDG-PET/MR Images in MRI-Negative Epilepsy. *CNS Neuroscience* & *Therapeutics*, 31. https://doi.org/10.1111/cns.70336
- Ziukelis, E. T., Mak, E., Dounavi, M. E., Su, L., & T O'Brien, J. (2022). Fractal dimension of the brain in neurodegenerative disease and dementia: A systematic review. *Ageing research reviews*, 79, 101651.