Malaysia steps up: Malaysia is championing the ASEAN Power Grid, cross-border renewable trade, and multilateral electricity exchange that align closely with its own NETR ambitions.p08-09

· Landmark outcomes emerge:

Despite no final consensus, COP30 marked a turning point in global climate politics. More than 80 nations supported explicit language for a fossil-fuel phaseout, prompting Brazil to launch two major global roadmaps independently p10-11

• Data, Depth and Decarbonisation: PETROS is deploying advanced tools - from SQUID-TEM sensing to Al-enhanced subsurface modelling - to cut exploration uncertainty, reduce drilling activity and shrink its carbon footprint. p12

Malaysia's

Malaysia accelerates its net-zero ambitions with bold climate investments and regional leadership. From KWAP's RM2 billion Dana Iklim+fund to ASEAN's push for circular economy cooperation at ACEF 2025, IGEM highlights how finance, innovation and policy alignment are reshaping the nation's green transition and strengthening Southeast Asia's sustainability agenda.*P14-15

INTERNATIONAL GREENTECH ECO PRODUCTS EXHIBITION CONFERENCE MALAYS O2 CONTENTS @green | November-December. 2025

@green says ...

A summit that fell short

COP30 arrived with the weight of enormous expectations. Set against a backdrop of escalating climate emergencies, widening inequality, and fracturing geopolitical trust, many hoped Belem would mark a decisive turning point for global climate action.

Instead, despite some symbolic advances, the summit fell short of delivering the concrete, transformational outcomes the world urgently needs, which is essential to foster a sense of accountability among policymakers and advocates.

At its core, COP30 suffered from a familiar paralysis: countries' inability to bridge entrenched divides over the phase-out of fossil fuels, climate finance, and adaptation support. Brazil's bold move to initiate a global debate on transitioning to a fossil-free economy briefly injected a sense of ambition.

But the lack of consensus – with more than 80 countries supporting explicit phase-out language and just as many resisting it – highlighted the deep and worrying fragmentation that must be addressed to build trust and unity in climate action.

Finance, often described as the "make-orbreak" issue of climate diplomacy, also failed to meet expectations. Developing nations had hoped COP30 would deliver clarity on scaled-up financing for adaptation, loss and damage, and just transitions.

Instead, the summit produced incremental adjustments rather than the robust, predictable financing architecture required to rebuild trust. For countries already grappling with intensifying floods, droughts and heatwaves, the outcome felt disconnected from lived realities.

Another disappointment was the gap between rhetoric and implementation. While COP30 endorsed decisions to strengthen multilateralism and accelerate implementation of the Paris Agreement, there was little indication that countries were prepared to align their national policies with the level of ambition science demands.

Without enforceable mechanisms or timelines, the pledges risk becoming yet another catalogue of hopes rather than a roadmap for action.

The most significant shortcoming, however, was moral: COP30 did not respond with the urgency demanded by a planet already at the brink, risking a sense of moral disappointment and the need for renewed moral resolve among stakeholders.

In the end, COP30 will be remembered not for what it achieved, but for what it failed to deliver - a decisive, unified leap toward a safer climate future. The burden now falls on COP31 and national governments to close the widening gap between ambition and action.

P04 | LOCAL NEWS Nuclear enters Malaysia's energy conversation

P05 | LOCAL NEWS Carbon tax push

P06 | FOREIGN NEWS Safeguarding Gabon's growth

P07 | FOREIGN NEWS GBE sets 2030 target

PO8 | ASEAN SUMMIT Malaysia steps up

Malaysia is championing the ASEAN Power Grid, cross-border renewable trade, and multilateral electricity exchange that align closely with its own NETR ambitions

P09 | ASEAN SUMMIT A unified green transition

ASEAN committed to accelerating regional energy integration, particularly through fast-tracking the ASEAN Power Grid, scaling renewables, and reducing fossilfuel dependence.

P10 | COP30

Landmark outcomes emerge

Despite no final consensus, COP30 marked a turning point in global climate politics. More than 80 nations supported explicit language for a fossil-fuel phaseout, prompting Brazil to launch two major global roadmaps independently.

P11 | COP30

Claiming regional leadership

At COP30, Malaysia pushed hard for predictable, equitable and accessible climate finance — especially adaptation funding — aligning with the summit's biggest financial outcome: the global pledge to triple adaptation finance.

P12 | SARAWAK Data, depth and decarbonisation

PETROS is deploying advanced tools - from SQUID-TEM sensing to Al-enhanced subsurface modelling - to cut exploration uncertainty, reduce drilling activity and shrink its carbon footprint

November-December. 2025 | @green CONTENTS 03

P14 | COVER STORY Building green economies

IGEM 2025 opened with a strong call to action as Malaysia highlighted the urgency of climate action, regional leadership, and long-term policy commitments.

P15 | COVER STORY Financing net zero

KWAP launched Dana Iklim+, a RM2 billion climate investment fund at KLSS 2025, held in conjunction with ICEM 2025, reinforcing Malaysia's commitment to sustainable finance.

P16-17 | ECO EXPO ASIA Two decades of progress

Eco Expo Asia 2025 marked its 20th anniversary with strong international participation, attracting over 11,000 buyers and 340 exhibitors from 13 countries and regions, demonstrating growing global interest in sustainability-driven business opportunities.

P18 | SABAH

MIDA accelerates green push

Sabah holds natural advantages that position it as a major cleanenergy hub in Malaysia's lowcarbon transition.

P20-21 | COLUMN A cleaner path in chemistry

Water, ethanol, supercritical CO₂, ionic liquids and deep eutectic solvents are reducing toxic waste, improving efficiency, and lowering environmental impact.

P22 | OPINION The legitimacy of carbon offsets

Carbon offsets are essential - not optional - for Malaysia to achieve its net-zero and NDC targets, given current limitations in green technologies and the urgency of the climate timeline.

P23 | ESG LOCAL NEWS The first ESG hotel

16-17

05

TheTeam

Kay Mathy | Publisher kaymathy@revonmedia.com

Law Beng Chee | Chief Executive Officer bclaw@revonmedia.com

EDITORIAL ADVISORY BOARD

- Dato' Dr Mohmed Razip Hassan
- ▶ Dato' Fauzi Omar
- Prof Dr Yumi Zuhanis Has-Yun Hashim
- ▶ Adi Satria

EDITORIAL DEPARTMENT

Dato' (Dr) Johnson Fernandez | Managing Editor johnson@revonmedia.com

Khirtini K Kumaran | Editor

Sheila Rozario | Contributing Editor sheila@revonmedia.com

Fatihah Manaf | Writer fatihah@revonmedia.com

Adeline Anthony Alphonso | Writer adeline@revonmedia.com

Nurlisa Nor Azhar | Writer

a.azam | Creative Director

Isvarya Panielselvam | Graphic Designer isvarya@revonmedia.com

SALES & MARKETING DEPARTMENT

Sahana | Media Director sahana@revonmedia.com

Hash Plus Media | Media Associate marketing@hashplusmedia.com

Published by: **Revon Media Sdn Bhd**A-5-1, Parklane Commercial Hub Jalan SS 7/26, SS 7, 47301 Petaling Jaya, Selangor D.E., Malaysia. Tel: +603 7886 6091

Printed by: **Percetakan Osacar Sdn. Bhd.** No. 16, Jalan IDA 1A, Industri Desa Aman, Kepong, 52200 Kuala Lumpur, Malaysia Tel. +603 6279 9474

+6 03 6263 1856 Fax: +603 6280 6802

Disclaimer: The content of this publication aims to inform and educate the public on health issues, developments and news, both locally and globally. In addition to our editorial team, we also invite distinguished medical practitioners and other experts to contribute articles on their respective fields of expertise. The information contained in this publication is for general information only, and readers should always seek independent, professional advice and consultation where appropriate. Whilst every care has been taken to ensure that the content is correct, the publisher and editors of @green will not be held liable for any loss or damage resulting from reliance upon any information in this publication, including products and services advertised. Unauthorised reproduction of this publication is strictly prohibited, in whole or in part, without the written consent by the publisher. Statements and opinions expressed by writers, contributors and advertisers are not necessarily those of the editors or publisher.

20 COLUMN @green | November-December. 2025

A cleaner path in chemistry

● Water, ethanol, supercritical CO₂, ionic liquids and deep eutectic solvents are reducing toxic waste, improving efficiency, and lowering environmental impact. • These solvents extract bioactive compounds more safely, improve drug formulation, protect heat-sensitive nutrients, and leave no harmful residues behind. Issues like viscosity, cost, and scale-up persist - but global demand for safer, healthier, and ethically aligned products is driving rapid adoption.

N our everyday lives, solvents play a silent but crucial role. They are behind the extraction of the antioxidants in your turmeric drink, the purity of your medicines, and the flavour of your favourite herbal tea.

For decades, industrial solvents have been effective yet harmful to the environment and, at times, to human health. But now, a cleaner and safer solution is taking centre stage. These are green solvents.

Green solvents are emerging as a gamechanger in both the pharmaceutical and food industries. They offer a way to produce, extract, and process substances with less harm to our health and to the environment.

These solvents are biodegradable, often non-toxic, and derived from renewable resources. More importantly, they are already making a real difference in laboratories and factories around the world.

WHAT MAKES A SOLVENT 'GREEN'?

Not all solvents are created equal. Traditional solvents like chloroform, acetone, or hexane are effective but volatile and often hazardous. Green solvents, by contrast, are designed to minimise toxicity and waste. Many are made from renewable raw materials. Water, ethanol, ionic liquids (ILs), supercritical carbon dioxide (CO2), and deep eutectic solvents (DESs) are among the most studied and promising options. Each of these has unique properties.

Supercritical fluids, for example, exist in a state where they behave like both gas and liquid. This allows them to extract compounds efficiently without using high temperatures that could damage sensitive nutrients or medicinal properties. Supercritical CO₂ has proven particularly effective in extracting antioxidants from turmeric (Le Tan et al., 2025). This allows cleaner herbal supplements and food ingredients to be produced without chemical residues.

Deep eutectic solvents (DESs) are another family of green solvents. DESs are created by mixing components that form a stable, low-melting liquid. They are affordable and biodegradable, and they perform very well in extracting valuable compounds from natural products. For instance, DESs have been successfully used to extract curcumin from turmeric and polyphenols (Sahu et al., 2025). This preserves the health

BY AMAL A.M. ELGHARBAWY

International Institute for Halal Research and Training (INHART), International Islamic University Malaysia

BY Nor Azrini Nadiha Azmi

Halal Products Research Institute, Universiti Putra Malaysia benefits of these compounds without the use of hazardous chemicals.

Healing without harm

The pharmaceutical industry has long depended on organic solvents, many of which are toxic and non-renewable. Green solvents are now providing safer and more sustainable alternatives.

In drug development, green solvents are being used in the synthesis of active pharmaceutical ingredients, formulation processes, and drug delivery systems. For example, water and ethanol are increasingly used as reaction media. ILs and DESs help stabilise and solubilise poorly water-soluble drug molecules (Mohd Noor et al., 2024). This improves how well medicines are absorbed and how effective they are.

One success story comes from the production of Melitracen hydrochloride, an antidepressant. When researchers switched to greener solvents like 2-MeTHF and IPA, they achieved an impressive 99.75 per cent yield and 99.85 per cent purity: while producing far less waste (Narukulla & Kaki, 2025).

This shows how green chemistry can boost efficiency, cut costs, and protect the environment at the same time. Green solvents are also advancing cancer research. In some studies, anticancer compounds have been synthesised using DESs, helping to develop potentially less toxic treatments.

GREENER CHEMISTRY

Green solvents are playing a similar role in the food industry, especially in processing and quality assurance. Food extraction processes often rely on solvents, and when unsafe or non-biodegradable ones are used, they can leave behind residues in the final product. Green solvents help eliminate this risk.

For instance, DESs have been used to extract antioxidants from ingredients like ginger and turmeric. These solvents allow processors to preserve the sensitive bioactive compounds while using less energy. For example, supercritical CO_2 can extract curcuminoids from turmeric at lower temperatures (Kongpol et al., 2022). This preserves the antioxidant properties better than traditional heat-based methods.

Natural solvents such as limonene,

which is extracted from citrus peels, and ethyl lactate, derived from fermented corn, are also gaining popularity. These substances are non-toxic and leave no harmful residues. This makes them ideal for use in food production.

In addition to processing, green solvents are used in food safety testing. Modern analytical methods are now applied to detect chemical contaminants, pesticide residues, and heavy metals in food products. This ensures that the food is not only nutritious but also safe for consumers.

THE ENVIRONMENTAL EDGE

Green solvents offer a safer, less toxic alternative that produces minimal hazardous waste and lowers the risk of environmental contamination. They also help reduce carbon emissions. For instance, ethanol used in catalytic hydrogenation can cut emissions by 40%. Supercritical $\rm CO_2$ replaces volatile organic solvents while remaining scalable for industrial use.

Many green solvents are biodegradable. Natural options like limonene and ethyl lactate break down easily, while newer solvents such as DESs and ILs are being developed for environmental safety. These solvents also improve energy efficiency. Supercritical fluids often require less heat and pressure, reducing energy use and operational costs. Additionally, they enhance drug purity by minimising toxic residues.

BARRIERS TO BROADER USE

Although green solvents offer many benefits, their widespread adoption still faces some challenges. For instance, DESs can be highly viscous, slowing mass transfer in some processes. This can limit their use in fast-paced industrial operations. Scalability is another issue.

What works well in a research laboratory may not translate easily to a commercial production environment. Equipment and process changes may be needed, which can be costly and time-consuming.

The cost of green solvents is also a factor. While long-term savings are likely, the initial cost of switching from traditional methods may discourage some companies. Regulatory approval can also be slow, especially in highly regulated industries like pharmaceuticals and food.

November-December. 2025 | @green COLUMN 21

GREENER CHOICES IN SCIENCE: HOW SOLVENTS ARE GETTING SMARTER

GREEN SOLVENTS AT A GLANCE!

- Biodegradable & renewable
- Safer for food & pharma
- Lower carbon footprint
- Enable cleaner extraction & synthesis

1 Green solvents in pharmaceuticals

- Used in drug synthesis, formulation, and delivery.
- 2-MeTHF + IPA gives high-purity melitracen hydrochloride with less waste and lower cost.
- DESs enable cleaner synthesis of anticancer compounds with reduced toxicity potential.

Greener chemistry in food production

- Unsafe solvents → residues in food
- Green solvents → residue-free, safer extraction
- Green solvents support modern analyses of:
 - o Pesticide residues
 - Heavy metals
 - Chemical contaminants

3 Why green solvents matter

- Lower toxicity and reduced hazardous
 waste
- Biodegradable options and ecodesigned ILs/DESs support safer chemistry.
- Supercritical fluids improve energy efficiency and help produce purer products.

"This shows how green chemistry can boost efficiency, cut costs, and protect the environment at the same time."

Despite these issues, the overall direction is clear. With growing consumer demand for safer, cleaner products and increasing regulatory support for sustainable practices, the shift to green solvents is becoming increasingly attractive.

A SUSTAINABLE FUTURE IN A BOTTLE

Green solvents may not be the flashiest part of pharmaceutical or food production, but they are one of the most transformative. As research expands and regulations adapt, the path forward for green solvents is looking increasingly clear. In Islamic values, there is a strong emphasis on both safety and ethical consumption. Prophet Muhammad said:

"There should be neither harming nor reciprocating harm" (Sunan Ibn Majah 2340)

This principle aligns beautifully with the philosophy behind green chemistry. By reducing toxic exposure and environmental damage, green solvents embody the spirit of this teaching, protecting people, communities, and ecosystems from harm. Green solvents offer more than just technical benefits; they support the creation of products that are in harmony with both modern science and timeless values.

Green chemistry is proving that innovation and ethics can coexist. It is paving the way for a future where sustainability, safety, and spiritual integrity come together in every bottle, pill, and package.

References

Kongpol, K., Namfa, S. N., Makkliang, F., Khongphan, S., Chuaboon, L., Sakdamas, A., Sakamoto, S., Putalun, W., & Yusakul, G. (2022). Extraction of curcuminoids and ar-turmerone from turmeric (Curcuma longa L.) using hydrophobic deep eutectic solvents (HDESs) and application as HDES-based microemulsions. Food Chemistry, 396, 133728

Le Tan, H., Ferrentino, G., Morozova, K., Tenuta, M. C., & Scampicchio, M. (2025). Supercritical CO2 Extraction and Fractionation of Turmeric Polyphenols: Antioxidant Capacity and Inhibition of Lipid Oxidation in Sunflower Oil. Food Bioscience, 106906.

Mohd Noor, N., Elgharbawy, A. A. M., Moniruzzaman, M., & Goto, M. (2024). Unlocking the Anticancer Potential of Ionic Liquids. In ChemBioEng Reviews (Vol. 11, Issue 2, pp. 231–252). John Wiley and Sons Inc. https://doi.org/10.1002/cben.202300051

Narukulla, D. K., & Kaki, V. R. (2025). Sustainable synthesis of melitracen HCl and its key intermediate, 10,10-Dimethylanthrone: A green solvent-driven and economically efficient approach with comprehensive sustainability analysis using iGAL 2.0. Journal of the Indian Chemical Society, 102(11). https://doi.org/10.1016/j.jics.2025.102067

Sahu, S., Kumari, D., Kusam, K., Kuila, A., Gurjar, R. S., Sharma, K., & Verma, R. (2025). Deep eutectic solvent extraction of polyphenol from plant materials: Current status and future prospects in food applications. Food Chemistry, 144125. -@green