

Back

Optimizing piezoelectric patch placement for active repair of center-cracked plates

[Journal of the Mechanical Behavior of Materials](#) • Article • Open Access • 2025 • DOI: 10.1515/jmbm-2025-0089

Abid, Abdul^a ; Abdulla, Mohammed^b ; Hrairi, Meftah^b ; Baig, Muneer^a

^a Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh, 11586, Saudi Arabia

[Show all information](#)

[View PDF](#)

[Full text](#)

[Export](#)

[Save to list](#)

[Document](#)

[Impact](#)

[Cited by \(0\)](#)

[References \(24\)](#)

[Similar documents](#)

Abstract

Active repair using piezoelectric materials offers a promising direction for extending the service life of cracked structural components. Conventional methods typically employ multiple patches placed around the crack, but such layouts may not deliver maximum efficiency. In this work, a different strategy is examined by bonding a single piezoelectric material patch directly across the crack line of a plate. A coupled finite element analysis in ANSYS is used to study how this placement influences stress intensity factor (SIF) and overall repair performance. The results highlight the critical role of patch location when bonded on the crack and energized by an electric field, the piezoelectric patch produces a markedly greater reduction in SIF compared to patches placed around the crack. This demonstrates the effectiveness of direct-on-crack placement in suppressing crack growth and emphasizes the need for careful consideration of patch positioning in active repair design. The study contributes new guidance for applying piezoelectric materials in structural repair and damage control. © 2025 the author(s), published by De Gruyter, Berlin/Boston.

Author keywords

aluminum alloy; cracked plate; finite element method; piezoelectric; stress intensity factor

Detailed information

Bibliographic information

Document type	Article
Open access	Gold
DOI	10.1515/jmbm-2025-0089
EID	2-s2.0-105024324437
Original language	English
Publication date	1 January 2025
PubMed ID	
Source type	Journal
ISSN	21910243
Publisher	Walter de Gruyter GmbH
Publication year	2025
Source title	Journal of the Mechanical Behavior of Materials
Volume	34
Issue	1
Article number	20250089

Abstract

Author keywords

Corresponding author

Authors (4)

Abid, Abdul^a

Abdulla, Mohammed^b

...