

You are accessing a free view of the Web of Science

[Learn More](#)

[Results for INTERFACE ENG...](#) >

Interface Engineering with Co-Self-Assembled Monolayers for Improved Ch...

Interface Engineering with Co-Self-Assembled Monolayers for Improved Charge Extraction and Morphology in Organic Photovoltaics

By

Jiang, BH (Jiang, Bing-Huang) ; Huang, ZR (Huang, Zih-Ruei) ; Su, YW (Su, Yu-Wei) ; Shi, ZE (Shi, Zhong-En) ; Hasbullah, NF (Hasbullah, Nurul Fadzlin) ; Hsu, YC (Hsu, Yu-Chih) ; Yu, YY (Yu, Yang-Yen) ; Chen, CP (Chen, Chih-Ping)

[View Web of Science ResearcherID and ORCID](#) (provided by Clarivate)

Source

ACS APPLIED MATERIALS & INTERFACES

Volume: 17 Issue: 46 Page: 63996-64005

DOI: 10.1021/acsami.5c17695

Published

NOV 19 2025

Early Access

NOV 2025

Indexed

2025-11-14

Document Type

Article

Abstract

Carbazole-based self-assembled monolayers (SAMs), such as the widely used [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz), have significantly improved the performance of conventional organic photovoltaics (OPVs) by serving as efficient hole-

selective layers (HSLs). However, the intrinsic limitations of 2PACz have hindered further enhancements in device performance. Although the molecular modification of 2PACz is a common strategy to overcome these constraints, it often introduces challenges. In this study, we present a coself-assembled monolayer (co-SAM) approach that blends 2PACz with 4PDACB to address the drawbacks associated with single-component SAMs. This co-SAM strategy effectively balances electrode work function tuning, interfacial quality improvement, and active layer blend morphology optimization, thereby enabling enhanced overall performance in OPVs. By optimizing PM6:Y6-based OPVs using the co-SAM strategy, we achieved an outstanding power conversion efficiency (PCE) of 17.55%, significantly exceeding the PCEs of devices with single-layer 2PACz (17.08%) and 4PDACB (16.13%). The effectiveness of this approach was further demonstrated in ternary OPVs, where co-SAMs enabled a maximum PCE of 18.69%. These results underscore the critical role of surface engineering in controlling film morphology and provide valuable insights for advancing OPV performance.

Keywords

Author Keywords: organic photovoltaic; self-assembled monolayer; hole selective layer; conjugated polymer; holetransport layer

Keywords Plus: SOLAR-CELLS

Addresses

¹ Ming Chi Univ Technol, Dept Mat Engn, New Taipei City 24301, Taiwan

² Ming Chi Univ Technol, Ctr Plasma & Thin Film Technol, New Taipei City 24301, Taiwan

³ Natl Taipei Univ Technol, Inst Organ & Polymer Mat, Dept Mol Sci & Engn, Taipei 106344, Taiwan

⁴ Int Islamic Univ Malaysia, Dept Elect & Comp Engn, Kuala Lumpur 50728, Malaysia

⁵ Somapex Biotech Co Ltd, Kaohsiung 80681, Taiwan

[...more addresses](#)

**Categories/
Classification**

Research Areas: Science & Technology - Other Topics; Materials Science

**Web of Science
Categories**

Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

MENU

Language	English
Accession Number	WOS:001611264600001
PubMed ID	41213036
ISSN	1944-8244
eISSN	1944-8252
IDS Number	9ZE8V

— See fewer data fields

Citation Network

In Web of Science Core Collection

0 Citations

31

Cited References

Use in Web of Science

7

Last 180 Days

7

Since 2013

This record is from:

Web of Science Core Collection

- Science Citation Index
Expanded (SCI-EXPANDED)

Suggest a correction

If you would like to improve the quality of the data in this record, please [Suggest a correction](#)

© 2025 Clarivate. All rights reserved.

Legal Center
Training Portal
Cookie Policy
Accessibility Help
Privacy Statement
Product Support
Manage cookie
Terms of Use
Statement
Copyright
Newsletter
preferences
Notice
Data
Correction

Follow Us

