

[Back](#)

Interface Engineering with Co-Self-Assembled Monolayers for Improved Charge Extraction and Morphology in Organic Photovoltaics

[ACS Applied Materials and Interfaces](#) • Article • 2025 • DOI: 10.1021/acsami.5c17695

[Jiang, Bing-Huang](#)^a; [Huang, Zih-Ruei](#)^a; [Su, Yu-Wei](#)^b; [Shi, Zhong-En](#)^a;
[Hasbullah, Nurul Fadzlin](#)^c; [+3 authors](#)

^a Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan

[Show all information](#)

0

Citations

[Full text](#) [Export](#) [Save to list](#)

Document

Impact

Cited by (0)

References (31)

Similar documents

Abstract

Carbazole-based self-assembled monolayers (SAMs), such as the widely used [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz), have significantly improved the performance of conventional organic photovoltaics (OPVs) by serving as efficient hole-selective layers (HSLs). However, the intrinsic limitations of 2PACz have hindered further enhancements in device performance. Although the molecular modification of 2PACz is a common strategy to overcome these constraints, it often introduces challenges. In this study, we present a coself-assembled monolayer (co-SAM) approach that blends 2PACz with 4PDACB to address the drawbacks associated with single-component SAMs. This co-SAM strategy effectively balances electrode work function tuning, interfacial quality improvement, and active layer blend morphology optimization, thereby enabling enhanced overall performance in OPVs. By optimizing PM6:Y6-based OPVs using the co-SAM strategy, we achieved an

outstanding power conversion efficiency (PCE) of 17.55%, significantly exceeding the PCEs of devices with single-layer 2PACz (17.08%) and 4PDACB (16.13%). The effectiveness of this approach was further demonstrated in ternary OPVs, where co-SAMs enabled a maximum PCE of 18.69%. These results underscore the critical role of surface engineering in controlling film morphology and provide valuable insights for advancing OPV performance. © 2025 American Chemical Society

Author keywords

conjugated polymer; hole selective layer; hole transport layer; organic photovoltaic; self-assembled monolayer

Indexed keywords

Engineering controlled terms

Blending; Boron compounds; Conversion efficiency; Morphology; Photovoltaics

EMTREE drug terms

polymer; self assembled monolayer

Engineering uncontrolled terms

Carbazol; Charge extraction; Device performance; Hole selective layers; Hole transport layers; Interface engineering; Organic photovoltaics; Performance; Phosphonic acids; Power conversion efficiencies

EMTREE medical terms

article; controlled study; electrode; morphology; organic photovoltaics; pharmaceutics

Engineering main heading

Self assembled monolayers

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
National Science and Technology Council	NSTC 114-2221-E-131-036-MY3, NSTC 114-2221-E-131 -021 -MY3	NSTC

[See opportunities by NSTC](#)

Funding sponsor	Funding number	Acronym
National Science and Technology Council See opportunities by NSTC ↗		NSTC

Funding text

The authors acknowledge the financial support from the National Science and Technology Council in Taiwan (NSTC 114-2221-E-131-036-MY3 and NSTC 114-2221-E-131 \u2212021 -MY3).

Corresponding authors

Corresponding author	Y.-Y. Yu
----------------------	----------

Affiliation	Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
-------------	---

Email address	yyyu@mail.mcut.edu.tw
---------------	-----------------------

Corresponding author	C.-P. Chen
----------------------	------------

Affiliation	Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
-------------	---

Email address	cpchen@mail.mcut.edu.tw
---------------	-------------------------

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

[Funding details](#)

[Corresponding authors](#)

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2025 Elsevier B.V. ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

 RELX™