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Abstract— The functions and operations of a modern automobile are becoming increasingly computerised,
with this transformation made possible by Electronic Control Units (ECUs) that communicate and coordinate
with each other on the in-vehicle network. Controller Area Network (CAN) is one of the most popular
protocols for thein-vehicle network, supporting low latency and reliable communications. However, the CAN
protocol does not have provisions for security, such as encryption, authentication, and authorisation, which
makes it vulnerable to cyberattacks, particularly in today’s automotive landscape characterised by extensive
connectivity with external devices, vehicles, and infrastructure. While intrusion detection systems (IDS) for
CAN have emerged as a key security measure, assessing their performance against realistic attacks remains
a challenge since testing with real vehicles poses significant costs and safety risks and testbeds suffer from
a lack of fidelity in terms of the CAN frame transmission timings and generated payloads. This work proposes
a digital twin (DT)-based framework for CAN IDS evaluation that replicates the functionality of real-world
ECUs and CAN bus of a vehicle with real-time flow of data from the physical bus to its virtual representation.
The main contribution of this work is a CAN DT that can not only enable the generation of realistic attack
traffic for simple and sophisticated attack scenarios but also the generation of diverse combinations of
attack and real driving scenarios. This DT can facilitate the evaluation of both the detection capability and
performance of CAN IDS. This work presents the methodology for generating the proposed DT and discusses

current findings as well as future work.
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. INTRODUCTION

The modern vehicle is capable of more than just moving
passengers and cargo from one point to another — it has a
myriad of features and functionalities that facilitate driving,
enable safety and comfort, and support navigation,
communication, and entertainment. These systems, which
are increasingly computerised in modern vehicles, are
enabled by as many as 150 microcontrollers called Electronic
Control Units (ECUs) [1]. ECUs coordinate with each other by
communicating the current state of the vehicle on internal
vehicular networks or in-vehicle networks. Numerous
protocols are implemented for in-vehicle networks with the
most common being Controller Area Network (CAN).

The CAN protocol enables low-latency, reliable
communications but does not provide mechanisms for
encryption, authentication, or authorisation. This makes
vehicular CAN bus vulnerable to a variety of cyberattacks
that can allow car theft or cause dangerous accidents. This
is especially true in today’s automotive landscape where
vehicles are equipped with a wide range of communication

interfaces to enable vehicle-to-everything (V2X) connectivity.

These interfaces, which include Wi-Fi, Bluetooth, and radio,
enable external entities access to the in-vehicle network and
become potential attack vectors. While Koscher et al. [2]
established the vulnerability of vehicular CAN bus to injected
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CAN frames, Checkoway et al. [3] demonstrated the
possibility of remotely attacking a vehicle’s CAN bus. More
recent work on CAN bus hacking underscores the continued
need to secure the vehicular CAN bus [4], [5]-

The development of intrusion detection systems (IDS)
has emerged as a key effort towards securing the vehicular
CAN bus. CAN IDS vary in the technique used as well as the
feature of CAN bus traffic used for detection. Unlike
conventional computer networks, a vehicular network
represents a safety-critical system where a CAN IDS would
need to detect attacks accurately and as quickly as possible
to minimise harm to occupants and surroundings. As such,
all CAN IDS need to be evaluated against realistic CAN bus
traffic and attack scenarios to ensure their performanceina
real in-vehicle network.

However, generating realistic attack scenarios remains a
challenge since using real vehicles for security testing is a
costly option and poses a safety risk to personnel and the
environment. While testbeds and simulations do not have
these issues and are an attractive alternative for security
testing [6], [7], current proposals have limitations in fidelity,
specifically in the behaviour and interactions of ECUs. This
impacts the realism of the generated CAN frame payloads,
particularly in attack scenarios and undermines the
evaluation of payload-based CAN IDS carried out on such
solutions.
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The main contribution of this work is to propose a digital
twin (DT)-based framework for generating a virtual
representation of a real-world CAN bus, capable of
accurately emulating the behaviour and interactions of real
ECUs. This DT can, thus, be used to simulate both simple and
sophisticated attacks and generate CAN attack traffic that is

realistic in terms of frame transmission timings and payloads.

Establishing the flow of data from the physical CAN bus to
the virtual CAN bus can further enable the generation of
countless combinations of attack and driving scenarios,
resulting in robust security and performance assessment of
CAN IDS.

The rest of the work is organised in the following manner:
Section Il provides an overview of the CAN protocol as well
as the concept of Digital Twins. Section Il discusses current
proposals for CAN testbeds, simulations, and DT. Section IV
outlines the proposed framework while Section V presents
current results. Finally, Section VI concludes this work and
discusses future work.

Il. BACKGROUND

A. Controller Area Network (CAN)

The Controller Area Network (CAN) protocol was
introduced in the 1980s with the aim of enabling efficient,
reliable communication for in-vehicle networks. It uses a bus
architecture to connect Electronic Control Units (ECUs)
within a vehicle that control and coordinate the various
operations of the vehicle. This bus architecture significantly
reduces the weight and complexity of the in-vehicle network
compared to older point-to-point connections [8], [9]. CAN
finds usage in critical vehicular subsystems such as
powertrain and chassis that enable functions like power
steering, braking and transmission [10].

CAN is a multi-master, message-based communication
protocol, which means that any node on a CAN bus can
transmit frames, and all frames are received by all nodes on
the bus. A CAN data frame consists mainly of an arbitration
identifier (AID), a data length code (DLC), and a data field
[11]. The AID identifies a data frame and the information
contained in the data field. While an ECU may broadcast
multiple AIDs, a particular AID is typically broadcast by only
one ECU [12]. Every ECU also subscribes to a list of AIDs and
only reads the data frames of received frames that match
these AIDs. The DLC specifies the number of bytes in the
subsequent data field of the frame. The data field, which can
be up to 64 bits, encodes the information being conveyed by
the frame and represents the frame’s payload.

An ECU encodes values of a particular set of signals in the
data field of each AID and transmits the latest signal values
to update all other nodes of the bus and coordinate the
operations of the vehicle. While most AIDs are broadcast at
fixed frequencies, some AIDs may be event-triggered and
broadcast occasionally. The signals associated with each AID
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and the way they are encoded in the data field are specified
in the form of rules in a CAN database (DBC). Unlike the
format of a CAN frame which is specified by the CAN
protocol, the CAN DBC may vary among different vehicle
makes and models and is often kept proprietary and
confidential.

Since any node on the CAN bus can transmit frames, CAN
implements an arbitration mechanism when two nodes
attempt to broadcast frames at the same time. In the event
of bus contention, a frame with a lower-valued AID has
higher priority and is broadcast first, while the higher-valued
AID has lower priority and is retransmitted later. CAN has an
error-handling mechanism implemented through cyclic
redundancy checks and acknowledgement bits in the frame.
It also has a method for error confinement to prevent errors
from propagating in the bus whereby each node implements
an error counter and is removed from the bus when the
value of the error counter becomes too high (bus-off) [13],

[14].
B. CAN Attack Model

CAN was designed for in-vehicle networks at a time when
they were isolated systems. The security of the in-vehicle
network was less of a concern while low latency and
reliability were prioritised for the protocol. As a result, CAN
lacks key security features like encryption, authentication,
authorisation and integrity [8]. The modern vehicle also has
many communication interfaces that allow external access
to the in-vehicle network and thus act as attack vectors.
These two factors combine to make the vehicular CAN bus
vulnerable to a range of cyberattacks.

Cho & Shin [15] as well as Verma et al. [13] propose an
attack model for the CAN bus which begins with the
distinction between a weakly compromised node and a
strongly compromised node. A weakly compromised node is
one that an adversary has stopped from transmitting frames,
while a strongly compromised node is one that the
adversary has complete control over and can use to transmit
malicious frames on the bus. This attack model categorises
CAN bus attacks in the following manner:

1) Fabrication attacks: Fabrication attacks represent the
most common type of CAN bus attacks, whereby an attacker
uses a strongly compromised node to inject malicious
frames. These include the following attacks:

« Denial of Service (DoS): A DoS attack is carried out by
injecting frames with AID 0x000 and an arbitrary data
field at a high frequency. This attack takes advantage
of the CAN arbitration mechanism and prevents the
broadcast of other legitimate frames. To evade
security mechanisms in newer vehicles that prevent
the transmission of frames with invalid AlDs, a DoS can
be carried out by injecting the lowest-valued valid AID
that appears in normal CAN traffic [8].
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« Fuzzing: A fuzzing attack involves the injection of
frames with random AIDs and payloads at a high
frequency. While the injection of random AIDs
generally disrupts the transmission of legitimate
frames, the random AIDs can include valid AIDs which
can confuse ECUs about the real values of signals.
Targeted ID or Spoofing: In a targeted ID attack, the
adversary injects frames with a specific valid AID and
manipulated payloads to cause ECUs that subscribe to
the AID to malfunction. The fabricated frames may be
injected at a high frequency in what is called a flooding
delivery, or immediately following the appearance of
legitimate frames of the same AID in a flam delivery.
Both flooding and flam delivery achieve the same
effect, but the latter does so with fewer fabricated
frames.
Replay: A replay attack is carried out by capturing a
sequence of frames from the CAN bus and injecting
them again at a later point in time when the vehicle is
in a different state.

2) Suspension: A suspension attack involves weakly
compromising a node on the CAN bus so that the node stops
broadcasting CAN frames. This results in frames of the
associated AIDs being missing from the bus traffic. A node
can be prevented from broadcasting frames using any
technique, such as by forcing it into the bus-off state [16].

3) Masquerade: A masquerade attack can be thought of
as combining a suspension and a spoofing attack: legitimate
transmissions of an AID are first suspended and then a
malicious node injects spoofed frames of the same AID with
manipulated payloads. This scenario is different from a
spoofing attack where the fabricated frames appear
alongside legitimate frames of the same AID, making it a
more subtle, difficult-to-detect attack.

C. Digital Twin

The concept of digital twin (DT) was introduced by
Grieves in 2003 who described it as “rich representations of
products that are virtually indistinguishable from their
physical counterparts” [17]. The DT concept model was
described as including three components: physical objects,
their virtual representations, and the data and information
that connect these counterparts. From this early definition,
the idea of what constitutes a digital twin has evolved [18],
[19] but Guo et al. [20] find no consistent definition of DT in
their survey. In the current literature, there are three levels
of understanding of what a digital twin is that vary on the
kind of interaction between the physical and virtual
counterparts [18], [19]. The first may be described as a digital
model where the virtual representation is built of a specific
physical object, but there is no persistent flow of data
between the two counterparts. The second may be
described as a digital shadow, where there is a unidirectional
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flow of data from the physical twin to the virtual twin, with
changes in the physical twin resulting in changes to the
virtual twin. Finally, there is the fully integrated digital twin,
represented in Fig. 1, where there is a bidirectional flow of
data between the physical and virtual twin such that the
virtual twin adapts to changes in the physical twin and
provides feedback to the physical twin.

Vahicle
(Real world system)

Data

Feoadback

Digital twin

Fig. 1 Interactions in a fully-integrated DT

While some works [18], [19] emphasise the real-time,
bidirectional flow of data between the virtual and physical
counterparts as a key component of digital twins, such
stipulations are considered restrictive in [21]. VanDerHorn
and Mahadevan [21] consider two factors that distinguish a
DT from a digital model or a simulation: a DT represents a
particular instance of a physical object (e.g. a specific vehicle)
instead of the entire class of the physical object, and the
flow of data from the physical object to the virtual object
over time. Other requirements on the digital twin may be
considered with respect to the use case for which a
particular implementation is aimed.

Digital twin technology is envisioned as an enabler of
smart manufacturing and Industry 4.0. In the review of
digital twin applications in the industry, [18] finds extensive
applications of digital twins for product design, production,
and product health management. Apart from these, DT can
also be used for security applications such as in [22]. In this
‘virtual testing’ application of DT, DT is akin to a “more
realistic and accurate” simulation and is used to simulate
and explore different attack scenarios that would cause
damage to real systems [19].

Ill. LITERATURE REVIEW

Intrusion detection systems (IDS) have emerged as a key
mechanism for securing the vehicular CAN bus alongside
encryption and authentication schemes. Current CAN IDS
show a wide variety in the technique used for attack
detection, ranging from relatively simpler statistical
methods to advanced methods based on traditional
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machine learning (ML) as well as deep learning (DL) [23],
[24]- CAN IDS also vary in terms of the features utilised for
intrusion detection — an IDS may use the timing of CAN
frames, sequences of AlDs, the payload of CAN frames, or
any combination of these features for analysis and attack
detection [10]. The in-vehicle network where a CAN IDS
operates is distinct from conventional computer networks
due to the limited computing capability of ECUs. The safety-
critical nature of the in-vehicle network also necessitates
low false-positive and false-negative rates, as well as fast
attack detection. Therefore, in addition to meeting
detection capability requirements measured using security
metrics such as accuracy and Fi-score, a CAN IDS should also
meet non-functional requirements characterised by
performance metrics such as detection latency [23].

Many CAN IDS proposals are evaluated in offline
experiments using publicly available CAN intrusion datasets
whereby the proposed methods are used to analyse the
dataset. Using such datasets allows reproducibility of results
and comparison of different methods under similar
experimental settings [23]. However, evaluation using
datasets are restricted to the attack scenarios contained in
these datasets, which do not contain realistic samples of
advanced attacks such as suspension and masquerade [13],
[23]. Furthermore, evaluations with these datasets do not
allow robust assessment of non-functional properties like
detection latency and resource consumption in a realistic
environment. As such, it is necessary to move towards
online methods of evaluations which can allow the
assessment of both detection capability and performance in
varied attack scenarios and in experimental settings closely
resembling real in-vehicle networks.

The best option for online testing is real vehicular CAN
buses which are dosest to real operating environments.
Stachowski et al. [25] present an assessment methodology
where CAN IDS products under test are integrated into areal
vehicle for real-time performance evaluation. Three
undisclosed anomaly-based CAN IDS products were
evaluated in a vehicle on which various targeted ID attacks
were performed while the vehicle was both stationary and
in motion in a private test track. Their methodology
encompasses both qualitative and quantitative metrics:
while the quantitative metrics measure detection capability,
the qualitative metrics include the effort required to
integrate the IDS solution in a vehicle, flexibility of the
solution, forensic capabilities, etc. However, only
quantitative security metrics were reported, and
performance metrics were not measured. There are further
challenges associated with wusing real test vehicles.
Conducting attacks on real vehicles runs the risk of
permanently damaging the internal electronics. Thereis also
a safety risk towards drivers, passengers, bystanders and
surroundings [13], [26]. Furthermore, safely conducting

70

Vol 11, Issue 1 (2025)

security tests with a real vehide also incurs significant costs,
an example of which is a dynamometer used by Verma et al.
[13] during CAN traffic collection. On the other hand,
testbeds and simulations can mitigate these challenges by
minimising the safety risks associated with running attack
scenarios as well as minimising financial costs [26].

A. CAN Security Testbeds and Simulations

Numerous CAN testbeds and simulations have been
developed for cybersecurity applications, such as for testing
encryption schemes, reverse engineering, and penetration
testing. Cros et al. [27] present a simulation platform called
Cacao, aimed towards the evaluation of encryption and
signature solution for CAN communications. Raspberry Pi
devices are used to simulate nodes on a CAN network that
has been used for monitoring bandwidth usage as a means
of detecting brute-force attacks. Mundhenk et al. [28] also
propose a discrete event simulator for assessing encryption
schemes for CAN. Unlike Cacao, this platform was used to
analyse real-time performance aspects like computation
time and memory usage for authentication protocols.

Zheng et al. [29] propose a testbed architecture for
security analysis of a vehicular CAN network, which can be
used to capture CAN bus traffic for analysis and to simulate
attacks. It consists of a real-time CAN bus simulation along
with an emulated infotainment system that was used to
simulate a DoS attack. Fowler et al. [30] also propose a CAN
testbed based on a commercial Hardware-in-the-loop (HIL)
solution, which they use to perform a penetration testin a
case study, where vehicle network vulnerabilities are
exploited using a dongle connected to the On-Board
Diagnostic (OBD-lI) port. Instead of simulating complete
vehicle functionality, Granata et al. [31] aim to simplify
security testing by emulating the minimum set of
components to effectively reproduce security vulnerabilities.
Their hybrid CAN bus simulation system, called HybridgeCAN,
is proposed as a low-cost testbed alternative to expensive
hardware-in-the-loop (HIL) testing systems and real vehicles.

Everett & McCoy [32] provide a software package and
hardware framework as part of the Open Car Testbed and
Network Experiments (OCTANE) testbed geared towards
reverse engineering and testing of automotive networks.
The software has a layered architecture, making it flexible
and adaptable, while the hardware framework does not
require  specific hardware components. Portable
Automotive Security Testbed with Adaptability (PASTA) [33]
is another CAN testbed that focuses on white box ECUs
which can be reprogrammed to set up the development
environment as well as implement and test security
solutions. It either disposes of or uses scaled-down versions
of actuators and does not use expensive sensors to reduce
cost and enhance safety and portability. A limitation of this
testbed is that the software vehicle simulator does not
reflect actual vehicle behaviour accurately.
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While these testbeds are suitable for reverse-engineering,
penetrating testing, and evaluating encryption methods,
they do not focus on emulating realistic interaction among
ECU nodes, hindering direct application for IDS evaluations.

B. Testbeds and Simulations for CAN IDS Evaluation

Compared to other cybersecurity applications, fewer
testbeds and simulations are geared towards testing and
evaluation of CAN IDS. A platform for evaluating CAN IDS
employing various detection techniques and CAN bus traffic
features would entail accurate simulation of CAN bus
communications, not only in terms of the timing of
messages but also the generation of realistic message
payload data.

A real-time vehicular CAN bus testbed is provided by
Jadidbonab et al. (2021) which can be used for training and
testing CAN IDS. A virtual car in the CARLA autonomous
vehicle simulator serves as the source of physical data input
to simulated ECUs in a virtual CAN bus implemented in
Vector CANoe that generates CAN bus traffic. While the
virtual car enables the generation of realistic driving
scenarios, the virtual CAN bus can be connected to a physical
CAN bus consisting of an attack and IDS nodes. A clustering-
based intrusion detection algorithm was tested against a
targeted ID attack in two ways: offline, against a previously
collected CAN bus log; and online, as a plug-and-play
addition to the testbed. The classifier yielded lower accuracy
and precision in the latter evaluation, which the authors
discuss could be due to an overfitted model, inadequately
representative training data, or issues with data parsing.
However, the differences in the results underline the
importance of performing online tests with CAN IDS. A
limitation of this testbed is that it does not include
bidirectional communication with the virtual car, i.e. the
driving behaviour is not influenced by attacks on the virtual
CAN bus.

Jichici et al. [7] also use Vector CANoe in their framework
that integrates adversary model and intrusion detection
nodes in a simulated CAN bus. CAN bus logs collected from
a real vehidle are replayed in the virtual CAN bus, while an
application interface is developed that allows configuration
and launching of fuzzing and targeted ID attacks. MATLAB is
used in this framework to enable implementation of CAN
IDS, with a k-Nearest Neighbor (kNN) classifier used to
demonstrate CAN IDS evaluation. Both message interval and
data fields of the CAN bus traffic were used as features for
the dassifier, which generally yielded very good detection
results in terms of sensitivity, specificity, false negative rate
(FNR) and false positive rate (FPR). While the usage of real-
world data in an industry-standard simulator makes for a
realistic testbed, this testbed does not emulate ECUs.
Furthermore, performance metrics like detection latency
are not measured.
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Another CAN bus security testbed is provided by Shi et al.
[34] which focuses on maintaining similarity in timing
between real-world CAN messages and those generated in
the testbed. A real CAN bus log is fed into an ECU Operation
Centre whichin turn feeds corresponding time series data to
each emulated ECU on the testbed CAN bus. A collector
module is also implemented which reads messages
broadcast by the emulated ECUs to a testbed database. The
simulation is evaluated for stability and effectiveness, with
the testbed messages demonstrating a relative delay of 0.8%
and a negligible packet loss. Using a dynamic time warping
(DTW) algorithm, it is also found that the similarity between
the real CAN log and the CAN log collected from the testbed
is very high. While all the fabrication attacks as well as
suspension and masquerade attacks are described and
implemented in this testbed, they have not been analysed or
used for any form of security testing in this work.

Animportant limitation of these works is that they do not
emulate the behaviour of ECUs. In other words, the
simulations do not involve emulated ECUs that read data
from the CAN bus. Therefore, attacks like fuzzing, targeted
ID, and masquerade attacks that manipulate payloads of
certain AIDs would not affect the payloads of other related
AlIDs. Analysis conducted in [35] using data from a CAN
digital twin indicates that even during attacks, there is a
correlation between messages containing related signals. In
their example, an attack on messages containing vehicle
speed is correlated with the change in engine speed. This
implies that attacks targeting a particular AID affects
messages of related AIDs as well, which would have a
bearing on the performance of CAN IDS that analyse
payloads. As such, a platform for simulating attacks on a
CAN bus should be able to emulate the interactions between
related ECUs for effective assessment of CAN IDS.

C. Digital Twin for Automotive CAN

Digital twin already finds diverse applications within the
automotive field. Bhatti et al. [36] identify seven areas of
application of digital twin technology in the automotive
industry in their survey: (@) intelligent driver assistance, (b)
autonomous navigation, (c) converters and inverters, (d)
consumer centered development, (e) digital design and
manufacturing, (f) health monitoring, and (g) battery
management systems. In these application areas, DT is
utilised to model all or some aspects of a vehicle’s functions
and operations in a virtual representation, which can be
used to predict and analyse the behaviour and state of the
replicated functions in various scenarios.

In the domain of automotive cybersecurity, digital twin-
based approaches have been presented for privacy
assessment and enhancement [37] as well as automated
software security testing [38]. However, while the concept
of a digital twin has already been applied for intrusion and
anomaly detection in industrial cyber-physical systems [39],
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[40], it has not been sufficiently explored in the literature
with regard to utility for intrusion detection for automotive
systems.

A DT-based approach to enable the design,
implementation, and maintenance of vehicular wiring
harnesses has been proposed in [41]. However, the use of
DT for the simulation of in-vehicle networks remains a
relatively nascent area of study. To enable use cases such as
analysing effects of cyberattacks on in-vehicle networks and
the development of security countermeasures, a digital twin
of areal-world vehicular CAN bus called CarTwin is proposed
by Popa et al. [35]. While previous work in this area focuses
on replicating vehicle dynamics, this work replicates a real
CAN bus in details like wire lengths, stub lengths, number of
nodes, as well as data transmitted on the network. Seven
different ECUs of the real CAN bus, related to power
steering, instrument panel cluster, powertrain, etc., are
emulated using MATLAB Simulink models implemented on
development boards. These emulated ECUs not only
broadcast CAN messages but also read CAN messages from
the bus, thus simulating interactions of related subsystems
on the CAN network. A software application with a user
interface is used to provide input signals required by the ECU
models. Experiments using signals from real CAN logs as
input reveal a high correlation between output computed by
the digital twin ECUs and the data in the real CAN log. The
utility of this digital twin for security analysis is further
demonstrated by an analysis of a targeted ID attack on the
vehicle speed, where the authors find that messages
communicating engine speed are also influenced. This is in
contrast to a generic attack-free CAN log manipulated to
simulate an attack, where there is no correlation between
the targeted vehicle speed and the engine speed. However,
this work does not focus on attack implementation or using
the proposed DT for IDS evaluation. While CarTwin
replicates a real-world CAN bus, it does not use the
corresponding DBC for the CAN bus communications.
Furthermore, an automatic flow of data from the physical
CAN bus to the virtual representation is absent in this
proposal, which makes it the ‘digital model’ level of DT.

D. Research Gap

An important limitation of prior CAN testbeds for IDS
evaluation is that they lack ECU behaviour emulation. Since
ECUs read and use data transmitted by other ECUs on the
CAN bus, changes in a signal (e.g. braking signal) may result
in changes in related signals (e.g. vehicle speed). As such, a
spoofing or masquerading attack that targets a particular
AID does notimpact only signals of the targeted AID but also
related signals in other AIDs. Therefore, if this interaction
among ECUs is not replicated in the CAN testbed, the
generated CAN data payloads would not reflect real-world
data and would not be appropriate for evaluating CAN IDS.
The fidelity of generated payloads is especially significant for
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the evaluation of CAN IDS that utilise frame payloads and
leverage correlation among signals for anomaly detection.

While some works like [29], [35] implement ECU models
to simulate ECU interactions, they are not geared towards
IDS evaluations and do not implement diverse attack
scenarios such as fuzzing or spoofing attacks. Simulations of
driving scenarios in prior testbeds are also limited to
replaying previously captured CAN traffic or generating CAN
traffic with unrealistic signal values.

The present work aims to address these gaps by not only
emulating the functionality and interactions of a real-world
vehicular CAN bus but also implementing unidirectional,
real-time data flow from the physical CAN bus to its virtual
representation. By emulating ECU behaviours, we can
generate realistic CAN bus data in both normal and attack
scenarios. Furthermore, the data flow from the physical to
the virtual twin would allow us to examine the impact of
different attacks in any driving scenario the physical vehicle
is in. The present work is thus a step closer to a true digital
twin which can be used for robust evaluation of CAN IDS
that is reflective of their performance in a real car.

IV. PROPOSED EVALUATION FRAMEWORK

The DT-based evaluation framework proposed in this
work seeks to address the need for high fidelity, low risk,
and low-cost alternatives for evaluating CAN IDS against
diverse attack scenarios. The scope of the proposed CAN DT
is to simulate the behaviour of ECUs on the real-world CAN
bus to enable the generation of CAN bus traffic that is
realistic in terms of timing and frame payloads, in both
normal and attacks scenarios. Towards achieving this, data
and specifications from a real-world vehicular CAN bus are
collected and used to understand architecture of the target
CAN bus as well as the bus traffic that is to be simulated. This
information is used to implement a virtual CAN bus with
virtual ECUs that simulate the behaviour and interactions of
their physical counterparts. This would enable the
generation of realistic CAN bus traffic, particularly under
attack scenarios that are too risky to be conducted on areal
vehicle. The generated CAN traffic can thus be used to
perform detection capability and performance assessments
of CAN IDS. The proposed DT framework allows not just
repeatable experiments for IDS evaluation, but also has the
potential to generate attack traffic for different driving
scenarios using unidirectional flow of data from the physical
CAN bus to its virtual twin. The proposed CAN DT-based
framework is described in further detail in the following
subsections.

A. Data Collection

To implement a realistic DT simulation of a selected
vehicular CAN bus, we identify the following information
and data that should be collected:
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1) Sample CAN bus traffic: A sample of bus traffic collected
from the target vehicular CAN bus is required to obtain the
set of valid AlIDs that are observed during normal operation
as well as their normal observed transmission frequencies.
In combination with the vehicle’s DBC, this sample also
serves as the source of bus traffic for running repeatable
simulations of normal and attack scenarios. For vehicles that
allow it, this sample may be collected from a vehicle’s CAN
bus via the OBD-II port. For other CAN buses not accessible
via the OBD-II port, it is possible to tap the CAN bus and
collect this data. We collected data from a Hyundai Sonata
2018, which provides direct access to a CAN bus via its OBD-
Il port. A sample of CAN bus traffic was collected with the
aid of a Korlan USB2CAN adapter [42] which was used to
connect a Linux laptop to the vehicle’s CAN bus via the OBD-
Il port. The SocketCAN package in Linux provides the can-
utils library which incdudes the functionality to log traffic
from a CAN bus with not just the AID, DLC, and data field but
also the timestamp.

2) DBC: The DBC for a vehicle specifies the rules for how
signal data are encoded in frames of each AID. As such, it
provides information such as the signals that are encoded by
each AID, along with the ECUs that transmit each AID and
the expected receivers. Although the best case would be to
obtain the DBC for the vehicle from the Original Equipment
Manufacturer (OEM), DBCs are often proprietary and
commonly confidential to hinder CAN bus hacking. Insuch a
situation, open source DBCs contributed to repositories like
opendbc [43] may be leveraged. For the Hyundai Sonata 2018,
we find a corresponding DBC in  opendbc,
hyundai_2015_ccan.dbc, that is applicable to the vehicle’s
CAN data.

3) Wiring diagram: The wiring diagram for the vehicle
model, often part of auto mechanic manuals and available
online, supplements the information that can be obtained
from the DBC with respect to the wiring harness — the CAN
bus segments that are present along with the number and
functionality of ECUs on each segment. These details inform
the architecture of the virtual CAN bus as well as the
computational model that needs to be implemented for
each virtual ECU.

B. Data Analysis

In this stage, the CAN bus trafficis analysed to examine (1)
transmission frequencies of each AID, and (2) the
relationships among signals transmitted by each AID.

Frames of each AID are typically broadcast by only one
ECU and at regular intervals [13]. The time interval for each
AID, which is not specified in the DBC, should be obtained
from the collected CAN bus sample by analysing each stream
of AIDs so that the virtual representations of the respective
ECUs can be modelled to perform transmissions at similar
intervals.
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The DBC for the vehicle may be used to decode the signals
transmitted in the captured CAN traffic. A pairwise
correlation test performed among all the decoded signals
from the dataset should reveal groups of signals showing
high correlation among each other. Attacks targeting a
particular AID, such as in a spoofing or masquerade attack,
should result in changes not just to the signals of that AID,
but also other AIDs with highly-correlated signals. These
groups of correlated signals and AIDs can allow us to select
a subset of ECUs if we are interested in a smaller scale
simulation that can produce realistic changes under attack
scenarios.

The data analysis may be performed with any statistical
packages, such as the pandas and numpy Python packages
in our case. For the deserialising signals from CAN frames
using the DBC, we use the cantools Python library that
provides utilities for parsing DBC files, encoding and
decoding signals, monitoring and plotting CAN signals [44].

C. ECU Modelling

After identifying the signals and AIDs of interest and the
corresponding ECUs, the behaviour of these ECUs needs to
be emulated with respect to their functionalities and data
transmission. For each ECU, given the set of input and
output signals, we need to implement the computation
model that can generate output signals from input. The
virtual counterpart of each ECU, thus, uses the DBC to
decode input signals from received CAN frames, compute
output signals, and then encode the output signals in frames
for transmission. The virtual ECUs transmit their respective
AIDs at the time intervals determined in the data analysis
stage. The virtual ECUs are connected on a virtual CAN bus
which serves as the digital twin of the real-world CAN bus.
The virtual CAN bus is interfaced with the physical
counterpart so that signals generated on the real CAN bus
can be sent to the virtual CAN bus as input.

We implement the virtual ECUs and CAN bus using the
Vehicle Network Toolbox from MathWorks [45], which
provides functions and blocks for CAN communication
simulations. This virtual CAN bus is bridged to the real-world
CAN bus, which could be via the vehicle’s OBD-II port or, in
the case of attack simulations repeated with a single driving
scenario, a CAN bus prototype with an appropriate
connector. If we consider a smaller scale DT whereby only a
subset of ECUs are emulated, then frames transmitted by
the other ECUs are replayed from the real CAN bus in the
manner of a restbus simulation [35], [46].
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Fig. 2 Number of CAN frames by AID

D. Attack Implementation

Once the virtual CAN bus twin is operational, the attack
scenarios required for IDS evaluation may be implemented.
In the attack model that we consider, most attacks require a
strongly compromised node that is capable of injecting
frames on the CAN bus. As such, an attack node is added to
the virtual CAN bus which can be programmed to inject
frames at appropriate frequencies and suspend
transmissions for fabrication, suspension, and masquerade
attacks. Given that the virtual CAN bus represents a white
box system where the AIDs and signals associated with all
functionalities are known, the attack node can be set to
execute spoofing, suspension, and masquerade attacks that
target specific functionalities and inject malicious frames
with the targeted AID. Executing DoS and fuzzing attacks
are relatively simpler, and so is a replay attack, which entails
capturing and replaying bus traffic from the real or virtual
CAN bus.

IDS Evaluation

At this stage, the CAN DT may be used for IDS evaluation
against different attack scenarios and in different driving
scenarios. A node running the IDS as well as measuring
evaluation metrics is added to the virtual DT for testing
against the generated CAN traffic. The DT simulation can be
run using either recorded sample of CAN bus traffic or real-
time CAN traffic from the physical CAN bus. The former case
allows data collected during a particular driving scenario to
be used to drive a simulaticn multiple times with different

E.
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attack scenarios. With this, one or more IDS can be
evaluated against multiple attacks to obtain statistically
significant results. In the case of using real-time CAN traffic
from the physical CAN bus, attacks can be run against the
vehicular CAN bus while the vehidle is in different driving
situations, e.g. stationary, driving at high speeds. This can
allow the evaluation of any CAN IDS against a wide variety
of attack and driving scenario combinations.

While the DT can be used for real-time assessment of CAN
IDS to measure both security and performance metrics, it
can also be used to generate realistic attack datasets.
Generated datasets used to evaluate a particular CAN IDS
can also be made available along with the IDS so that future
IDS proposals can be directly compared or benchmarked
using the same datasets.

V. FINDINGS AND DISCUSSION

As mentioned previously, we begin with collecting a sample
of data from a Hyundai Sonata 2018. Approximately 14
minutes of driving data was collected while it was driven on
urban roads. The collected data consisted of a total of
1,754,253 CAN frames, averaging 2054.82 frames
transmitted per second. A total of 61 unique AIDs were
found in this log. In Fig. 2 which shows the number of frames
of each AID, we can see that, with some exceptions, frames
with lower-valued AIDs appear the most on the CAN bus.
This can be a result of the arbitration mechanism whereby
lower-valued AIDs have higher priority for transmission and
higher-valued AIDs have to wait for retransmission in the
event of bus contention. Lower-valued AIDs are therefore
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always able to broadcast, while high-valued AIDs are
transmitted fewer times due to lost arbitration in some
situations.

A. Timing Analysis

We divided the collected CAN bus log into streams of
frames of each AID and calculated the time interval for each
frame. The time interval for a frame can be described as the
period of time between the transmission of the frame and
the transmission of the previous frame of the same AID.
From these, we calculated the average time interval as well
as the maximum percentage of deviation from the mean for
each AID.

Apart from a few AIDs that appear at intervals of 1-2
seconds, a majority of the AIDs (50) in the CAN bus log were
broadcast at time intervals under 0.2 seconds. In Fig. 3 which
provides a distribution of these AIDs by average time
interval, we can see that the time intervals even among
these AIDs vary in magnitude and scale, ranging from 0.01to
0.2 second.

The maximum percentage error from the mean time
interval was calculated for each AID stream to understand
the regularity of the CAN bus transmissions. As can be
observed in Fig. 4, the largest number of AIDs show under
40% deviation from the average time interval, indicating that
these are transmitted at reliably regular intervals. A smaller
number of AIDs show greater variation, which is indicative
of irregular or event-triggered transmissions. Variations in
time intervals also arise from ECUs losing arbitration to
higher-priority frame and having to wait to attempt
retransmission of lower-priority frames.

It is important for any CAN bus modelling effort to take
into consideration these timing features in CAN traffic, While
lower-valued AIDs may always be transmitted at regular
intervals without losing arbitration and without having
frames delayed, higher-valued AlIDs may lose arbitration and
show delayed transmissions more often. These differences
in timing characteristics are relevant considerations for
timing- and frequency-based CAN 1IDS, which detect
deviations from normal patterns in time intervals or
frequencies. In the event of DoS or fuzzing attacks, it is
expected for time intervals of legitimate frames to increase
as the injected frames hinder normal transmissions, while a
spoofing attack would cause time intervals of the targeted
AID to decrease. Overall, a faithful CAN bus model should
not only incorporate the dynamics of frame timing under
normal operation, but also during different attack scenarios,
for more accurate CAN IDS evaluations.
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TABLE1
SENDER ECUS FOUND IN COLLECTED CAN LOG

Acronym | Full name

in DBC

DATC Dual Automatic Temperature Control
BCM Body Control Module

TCU Transmission Control Unit

ESC Electronic Stability Control

EMS Engine Management System

MDPS Motor Driven Power Steering

ABS Anti-lock Brake System

CLU Cluster Module

ACU Airbag Control Unit

FPCM Fuel injection Pump Control Module
LCA Lane Centering/Change Assist

OoDS Occupant Detection System
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B. Signal Analysis

The data collected from the Hyundai Sonata 2018
consisted of CAN data frames with payloads in raw bytes. To
deserialise the signals encoded in these data frames, we use
the hyundai_2015_ccan.db file from opendbc, using which we
are able to deserialise signals for 48 AIDs. These 48 AIDs are
transmitted by 12 ECUs responsible for different subsystems,
which are listed in Table 1.

The cantools library was used to deserialise signals from
the CAN log using the aforementioned DBC file to yield a
total of 627 signals. Of these signals, 493 signals remain
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Fig. 6 Individual wheel speed signals from AID 0x386

constant throughout the CAN bus log, leaving 134 signals for
analysis. We visualise the steering angle signal from AID
0x2Bo, transmitted by the MDPS ECU in Error! Reference
source not found. as well as the individual wheel speeds
from AID 0x386, transmitted by the ABS ECU in Fig. 6.
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To understand how different signals are related to each
other and identify groups of correlated signals, we perform
a pairwise Pearson correlation test on the non-constant 134
signals and generate a correlation heatmap, which is
available at [47]. Signals showing a magnitude of correlation
coefficient higher than 0.5 are listed in Table 2. The signals
in the heatmap are reorganised by applying hierarchical
agglomerative clustering with complete linkage, to facilitate
the identification of signal clusters showing high
correlations. While it may be expected to find correlations
among signals originating from the same ECUs, we see in
this heatmap significant correlations among signals
originating from different AIDs and ECUs. An example is
wheel speed signals from ABS AIDs showing a high positive
correlation with signals from TCU and EMS ECUs. These
correlations indicate that it is possible for changes in a signal
toresultin changes in other related signals. This is due to the
fact that each ECU uses data transmitted by other ECUs as
input for its respective functions and in turn, transmits
signals that are used by other ECUs.

The correlation among related signals should also be
maintained in attack scenarios like spoofing and
masquerade where fabricated frames with manipulated
payloads are injected to provide false information to ECUs.
In this situation, when ECUs read and use the spoofed values
of signals in the malicious frames, the anomaly cascades into
the data transmitted by these ECUs. Such effects of attacks
on CAN bus traffic are not captured in other methods of
generating CAN bus data such as augmentation of benign
CAN bus logs or testbeds that do not emulate ECU behaviour
[35]- In such methods, the injected frames do not produce
any changes in related frames, which is different from what
would be observed in a real CAN bus and is thus not useful
for evaluating CAN IDS particularly based on analysing frame
payloads.

VI. CONCLUSIONS AND FUTURE WORK

Using real vehicles for attack simulation and security
testing can be restrictive in terms of the associated costs,
safety risks, and attack scenarios that can be conducted.
While testbeds and simulations do not have these
challenges, they do not provide sufficient fidelity for the
assessment of CAN IDS that use different features of CAN
bus traffic. An important limitation of current testbeds and
simulations is that they do not emulate the interaction of
ECUs or generate realistic CAN traffic. This work aims to
address these gaps by proposing a DT-based evaluation
framework for CAN IDS which can be used to generate
diverse attack scenarios and perform detection capability
and performance evaluations of CAN IDS. This CAN DT
models a real-world CAN bus at the ECU level and interfaces
with the real-world bus for data to drive the DT simulation.
Not only can it allow repeatable simulations of attack
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TABLE 2

SIGNALS WITH ABSOLUTE CORRELATION COEFFICIENT GREATER THAN 0.5

No. | Signal AID Sender Highly correlated signals

1 CR Datc OutTempF | 044 DATC 59, 83

2 CF Tcu Alive1 m TCU 10,15

3 N TC 111 TCU 8,7,12, 21, 23, 45, 42, 51, 50, 65, 64, 63, 62, 69, 71, 80, 84, 85, 86, 89

4 SWI CC 111 TCU 9,7, 12, 36, 47, 42, 65, 64, 63, 62, 69, 71, 85

5 SWI GS 111 TCU 16

6 TEMP AT 111 TCU 53, 68, 74, 75, 77, 90

7 VS TCU 12 TCU 3, 4,9, 8,12, 21,23, 36, 45, 42, 65, 64, 63, 62, 69, 71, 80, 84, 85

8 N TC RAW 112 TCU 3, 7, 12, 21, 23, 45, 42, 51, 50, 65, 64, 63, 62, 69, 71, 80, 84, 85, 86, 89

g CUR GR 112 TCU 4, 7,12, 36, 42, 65, 64, 63, 62, 69, 71, 85

10 CF Tcu Alive 12 TCU 2,15

11 N INC TCU 112 TCU 13

12 CF Tcu TarGr 13 TCU 3, 4,9,8,7, 21,36, 42, 65, 64, 63, 62,69, 71, 85

13 | N TGT LUP 113 TCU 1

14 CF Tcu ShfPatt 13 TCU 38, 54

15 CF Tcu Alivey 13 TCU 2,10

16 CF Tcu ITPhase 13 TCU 5

17 AliveCounter TCS1 153 ESC 18

18 CheckSum TCS1 153 ESC 17

19 CF Esc AliveCnt 164 ESC 20,29

20 | CF Esc Chksum 164 ESC 19, 29

21 R NEngldITgC 18F EMS 3, 8, 7,12, 23, 45, 42, 51, 50, 65, 64, 63, 62, 69, 71, 80, 84, 85, 86, 89

22 | R PAcnC 18F EMS 60, 61, 73, 76

23 CF Ems PumpTPres | 200 EMS 3, 8, 7, 21, 40, 45, 42, 51, 50, 65, 64, 63, 62, 69, 71, 80, 84, 85, 86, 89

24 FCo 200 EMS 35, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89

25 LONG ACCEL 220 ESC 40, 35, 37, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89

26 | YAW RATE 220 ESC 27, 30, 31, 32, 41, 56

27 LAT ACCEL 220 ESC 26, 30, 31, 32, 41, 56

28 | CYL PRES 220 ESC 52, 72, 87

29 | ESP12 Checksum 220 ESC 19, 20

30 | CR Mdps OutTq 251 MDPS 27,26, 31,32, 11, 56

31 CR Mdps StrColTq | 251 MDPS 27,26, 30, 32, 41, 56

32 CR Mdps StrTq 251 MDPS 27, 26, 30, 31, 41, 56

33 [ TQl TARGET 260 EMS 24, 25, 40, 35, 37, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89

34 | TQI MAX 260 EMS 46, 48, 87

35 | Tal 260 EMS 24, 25, 40, 37, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89

36 | SPK TIME CUR 260 EMS 4, 9,7, 12, 47, 42, 65, 64, 63, 62, 69, 71, 81, 85

37 | TQI MIN 260 EMS 25, 35, 33, 44, 43, 51, 50, 82, 86, 88, 89

38 | CRUISE LAMP S 260 EMS 14, 54

39 | CRUISE LAMP M 260 EMS 75, 77,90

40 | CF Ems AclAct 260 EMS 23, 25, 35, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89

M SAS Angle 2Bo MDPS 27, 26, 30, 31, 32, 56

42 | VS 316 EMS 3,4,9,8,7,12, 21,23, 36, 45, 65, 64, 63, 62, 69, 71, 80, 84, 85

43 | TQl ACOR 316 EMS 24, 25, 40, 35, 37, 33, 45, 44, 51, 50, 82, 84, 86, 88, 89

44 | TQl 316 EMS 24, 25, 40, 35, 37, 33, 45, 43, 51, 50, 82, 84, 86, 88, 89

45 N 316 EMS 3, 8,7, 21,23, 24, 25, 40, 35, 33, 44, 43, 42, 51, 50, 65, 64, 63, 62, 69, 80, 82,
84, 85, 86, 89

scenarios for statistically significant IDS evaluations, but,
with the flow of data from the real to the virtual CAN bus, it
can be used to generate any combination of attack and
driving scenarios for a thorough assessment of CAN IDS that
is reflective of performance in the real-world. Towards
building the DT of a real CAN bus, we collected data from a
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Hyundai Sonata 2018 and analysed timing and signal data to
understand patterns that are relevant to intrusion detection
and ECU modelling.

There are several challenges with the proposed CAN DT
for CAN IDS evaluation. Firstly, it relies on the vehicle DBC,
which is not always available for all vehicle models. While we
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TABLE 2 (CONTD.)

SIGNALS WITH ABSOLUTE CORRELATION COEFFICIENT GREATER THAN 0.5

No. | Signal AID Sender Highly correlated signals

46 RATIO TQl BAS MAX STND 316 EMS 34

47 | PUC STAT 316 EMS 4, 36, 81

48 | TQFR 316 EMS 34

49 | TEMP ENG 329 EMS 59, 83

50 [ TPS 329 EMS 3, 8, 21, 23, 24, 25, 40, 35, 37, 33, 45, 44, 43, 51, 82, 84, 86, 88, 89

51 PV_AV_CAN 329 EMS 3, 8, 21, 23, 24, 25, 40, 35, 37, 33, 45, 44, 43, 50, 82, 84, 86, 88, 89

52 | BRAKE ACT 329 EMS 28,72, 87

53 | MAF FAC ALTI MMV 329 EMS 6, 68, 74, 75, 77, 90

54 | ACC ACT 329 EMS 14, 38

55 | MUL CODE 329 EMS 66

56 | CR Mdps DrvTqg 381 MDPS 27, 26, 30, 31, 32, 41

57 CF Fatc ChkSum 383 DATC 58

58 | CF Fatc MsgCnt 383 DATC 57

59 | CR Fatc OutTemp 383 DATC 1, 49, 83

60 CR Fatc OutTempSns 383 DATC 22, 61,73, 76

61 CR Fatc TgAcnOut 383 DATC 22, 60,73

62 | WHL SPD RR 386 ABS 3,4,9,8,7,12, 21,23, 36, 45, 42, 65, 64, 63, 69, 71, 80, 84, 85

63 | WHL SPD RL 386 ABS 3,4,9,8,7,12, 21,23, 36, 45, 42, 65, 64, 62, 69, 71, 80, 84, 85

64 | WHL SPD FR 386 ABS 3,4,9,8,7,12, 21,23, 36, 45, 42, 65, 63, 62, 69, 71, 80, 84, 85

65 | WHL SPD FL 386 ABS 3,4,9,8,7,12, 21,23, 36, 45, 42, 64, 63, 62, 69, 71, 80, 84, 85

66 WHL SPD AliveCounter MSB | 386 ABS 55

67 | CF Ems ModeledAmbTemp 492 EMS 70,76

68 CR Ems EngOilTemp 492 EMS 6, 53, 74, 77, 90

69 | CF Clu Vanz 4F1 CLU 3,4,9,8,7,12, 21,23, 36, 45, 42, 65, 64, 63, 62, 71, 80, 84, 85

70 CF Clu DTE 50C CcLu 67,73, 76

71 CF Clu VehicleSpeed 52A CcLu 3,4,9,8,7,12, 21,23, 36, 42, 65, 64, 63, 62, 69, 80, 84, 85

72 | BAT Alt FR Duty 545 EMS 28, 52, 87

73 | TEMP FUEL 545 EMS 22, 60, 61, 70, 76

74 | AMP_CAN 545 EMS 6, 53, 68, 75, 77, 90

75 | CTR_ CDN_OBD 547 EMS 6,39, 53, 74, 77, 90

76 IntAirTemp 547 EMS 22, 60,67,70,73

77 | STATE_DC 0BD 547 EMS 6,39, 53, 68, 74, 75, 90

78 | BAT SOH 549 EMS 79

79 | BAT sOC 549 EMS 78

80 | CR Fpcm LPActPre 555 FPCM 3, 8, 7, 21, 23, 45, 42, 65, 64, 63, 62, 69, 71, 84, 85

81 PID 03h 556 EMS 36, 47

82 PID_ogh 556 EMS 24, 25, 40, 35, 37, 33, 45, 44, 43, 51, 50, 84, 86, 88, 89

83 PID_o5h 556 EMS 1, 49, 59

84 | PID_oCh 556 EMS 3, 8,7, 21,23, 24, 25, 40, 35, 33, 45, 44, 43, 42, 51, 50, 65, 64, 63, 62,
69, 71, 80, 82, 85, 86, 89

85 | PID oDh 556 EMS 3,4,9,8,7,12, 21,23, 36, 45, 42, 65, 64, 63, 62, 69, 71, 80, 84

86 | PID_11h 556 EMS 3, 8, 21, 23, 24, 25, 40, 35, 37, 33, 45, 44, 43, 51, 50, 82, 84, 88, 89

87 | PID oyh 557 EMS 28, 34,52, 72

88 | PID_oBh 557 EMS 24, 25, 40, 35, 37, 33, 44, 43, 51, 50, 82, 86, 89

89 | PID 23h 557 EMS 3, 8,21, 23, 24, 25, 40, 35, 37, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88

90 | CF Clu Odometer 5B0 LU 6, 39, 53, 68, 74, 75, 77

use an open-source DBC for our vehicle, such DBC is not
available for all car models, which restricts the number of
vehicles to which this methodology can be applied.
Moreover, the implementation of data flow between the
physical CAN bus and the device hosting its virtual twin may
introduce a new attack vector and raise security and privacy
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concerns. This attack vector could potentially be exploited
to sniff the physical CAN bus and steal data revealing
information such as driving behaviour or conduct attacks on
the physical CAN bus that interfere with normal operation.
It is necessary to implement security measures while
establishing communication between the physical and
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digital twin to ensure that these threats do not become a
reality. Finally, it is also pertinent to explore resource
utilisation of the virtual twin, especially if we are interested
in scaling up the virtual representation by increasing the
number of ECUs that are emulated in the virtual CAN bus.
Implementation of the CAN DT using insights gathered
from data analysis and validating the accuracy of generated
CAN bus traffic remain as future work.
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