



Back

High Gain Microstrip Patch Antenna using Frequency Selective Surface for 5G Energy **Harvesting Applications**

Journal of Scientific and Industrial Research • Article • Open Access • 2025 • DOI: 10.56042/jsir.v84i10.12955 Taha, Bilal Salman ^a ⋈; Rhazali, Zeti Akma ^a; Sampe, Jahariah Binti ^b; Malek, Norun Farihah Abdul c ^a Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional (UNITEN), Selangor, Kajang, 43000, Malaysia Show all information

Abstract

This study introduces a novel microwave power transmission method designed to wirelessly power electronic devices, addressing the issues associated with energy storage and wired power sources. The antenna, fabricated using Roger's RT/5880 substrate measuring $50 \times 50 \times 1.575$ mm, functions within the 3.4 - 3.6 GHz C-band frequency range. The design has been tuned for a broad response and improved axial ratio, resonating throughout a bandwidth of 3.2 - 6.2 GHz, appropriate for WLAN, WiMAX, and 5G applications, with an average gain of 5 dBi. A technique for enhancing the gain of the monopole antenna was employed, utilizing a single-layer 4 × 4 metallic Frequency Selective Surface (FSS) reflector, which produced a band-stop filter response throughout a frequency range of 0.5 – 7 GHz and attained an antenna gain of 10 dB. Additionally, a rectifier circuit was

incorporated to enhance power conversion efficiency and output voltage, employing SMD-Schottky diode type HSMS-2850-TR1 components that optimize the design and minimize its size. The rectifier circuit demonstrates an efficiency of 64.5% at an input power of 12 dBm with a 2 k Ω resistive load, producing a maximum voltage of 3.5 V with an input power of 13 dBm and a 10 k Ω load. This design enables the rectenna to operate efficiently in diverse contexts, providing a Power Dynamic Range (PDR) of (–30 to 30) dBm, ensuring a reliable power supply for devices even in low-power conditions. This technique is ideally suited for energizing a range of wireless sensors and other IoT applications. © 2025, National Institute of Science Communication and Policy Research. All rights reserved.

Author keywords

5G Communications; Energy harvesting; FSS reflector; MP antenna; Rectifier circuit

Indexed keywords

GEOBASE Subject Index

antenna; communication; energy efficiency; energy storage; frequency analysis; instrumentation; optimization; sensor

Corresponding authors

Corresponding author	B.S. Taha
Affiliation	Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional (UNITEN), Selangor, Kajang, 43000, Malaysia
Email address	PE21373@student.uniten.edu.my

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Corresponding authors

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions **↗** Privacy policy **↗** Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. ⊅, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

