Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Back

Synthesis, In Silico and Inhibition Evaluations of Carvone Derivatives as Potential Neuraminidase Inhibitors

Pharmaceutical Chemistry Journal • Article • 2025 • DOI: 10.1007/s11094-025-03452-7

Jusoh, Noorakmar a; Hamid, Shafida Abd a, b ; Hamid, Azzmer Azzar Abdul ;

Halim, Khairul Bariyyah Abd ; Bunnori, Noraslinda M. b

Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia,

Bandar Indera Mahkota, Pahang, Kuantan, 25200, Malaysia

Show all information

Abstract

The pathogenic influenza virus infects the human respiratory tract, causing seasonal outbreaks and pandemics across the globe. Vaccination and anti-influenza drugs are the current strategies used to combat this disease, although new drugs are urgently needed owing to the increasing emergence of antiviral resistance of the existing drugs. Herein, we report the synthesis of a series of carvone derivatives. The compounds were characterized by the FT-IR, ESI-MS, ¹H NMR, and ¹³C NMR spectroscopy, and their binding affinities were evaluated in silico. Molecular docking of the derivatives in the neuraminidase (NA) active site (PDB ID: 3TI6) showed compound 3e to display the best binding energy at –8.35 kcal/mol, comparable with oseltamivir (OTV) (–8.58 kcal/mol), followed by 3b (–8.03 kcal/mol) and 7 (–7.46 kcal/mol). The molecular dynamics simulations of the protein–ligand complexes showed that both 3e-NA and OTV–NA complexes were comparable in stability and

flexibility. Compound 3e also showed the highest inhibition percentage at 1000 mg/mL (60.95%) followed by 3b (59.21%), 7 (54.17%), and 4 (51.14%). Compound 3b gave the highest inhibitory activity of the series with IC₅₀ = 29.53 mM, followed by 4 (35.50 μ M), 3e (44.13 μ M), and 7 (52.83 μ M). The studies indicate the potential of these derivatives to be designed and developed as effective neuraminidase inhibitors. © Springer Science+Business Media, LLC, part of Springer Nature 2025.

Author keywords

carvone; influenza; molecular docking; molecular dynamics; neuraminidase

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Ministry of Higher Education, Malaysia	FRGS14-098-0339	МОНЕ
See opportunities by MOHE ↗		

Funding text 1

This work was supported by the Malaysia Ministry of Higher Education (MOHE) under Fundamental Research Grant Scheme (FRGS14-098-0339).

Funding text 2

We gratefully acknowledge the Malaysia Ministry of Higher Education (MOHE) for the FRGS grant (FRGS14-098-0339) and myBrain15 scholarship for NJ.

Corresponding authors

Corresponding author	S.A. Hamid
Affiliation	Department of Chemistry, Kulliyyah of Science, International Islamic
	University Malaysia, Bandar Indera Mahkota, Pahang, Kuantan, 25200,
	Malaysia

Email address

shafida@iium.edu.my

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Funding details

Corresponding authors

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions *¬* Privacy policy *¬* Cookies settings