

Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Scopus

Back

Machine Learning Approach for Monkeypox Detection System from Medical Images

Proceeding of the IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA • Conference Paper • 2025 • DOI: 10.1109/ICSIMA66552.2025.11233484

Nazaimi, Nurin Khairina Binti^a ; Mansor, Hasmah^a ; Gunawan, Teddy Surya^a ; Yusoff, Neliyda Md.^b

^aInternational Islamic University Malaysia, Electrical and Computer Engineering Department, Jalan Gombak, Kuala Lumpur, 53100, Malaysia

[Show all information](#)

0

Citations

[View PDF](#)

[Full text](#)

[Export](#)

[Save to list](#)

Document

Impact

Cited by (0)

References (13)

Similar documents

Abstract

The rapid global spread of monkeypox, including outbreaks in non-endemic regions, has raised public health concerns and highlighted the need for rapid, accessible and reliable diagnostic tools. This need is especially critical in resource-limited settings, where conventional methods such as Polymerase Chain Reaction (PCR) face limitations due to high cost, equipment dependency and time consumption. This study proposes a deep learning-based multiclass classification system using GoogLeNet to detect monkeypox from medical skin images. The Monkeypox Skin Image Dataset (MSID), consisting of 770 images across four categories: monkeypox, chickenpox, measles, and normal, is used for model training and evaluation. Through transfer learning and image preprocessing technique, the proposed model achieved an overall accuracy of 91.56%, with precision, recall, and F1-score at 91.64%, 91.56% and 91.43% respectively. Comparative analysis with EfficientNet-Bo and ResNet-18 demonstrates that GoogLeNet outperforms both in terms of generalization and class-wise detection accuracy, which suggest its suitability as a lightweight and effective tool for early monkeypox diagnosis. Furthermore, GoogLeNet was also evaluated against models reported in a benchmark study, including VGG16, ResNet50, MobileNetV1, InceptionV3, Xception, and the custom MonkeyNet architecture. GoogLeNet achieved competitive results with minimal fine-tuning, highlighting its practicality and strong performance despite being a standard open-source model. © 2025 IEEE.

Author keywords

Convolutional Neural Networks (CNNs); Deep Learning; GoogLeNet; Medical Image Classification; Monkeypox

Indexed keywords

Engineering controlled terms

Benchmarking; Classification (of information); Computer aided diagnosis; Convolutional neural networks; Deep neural networks; Learning systems; Medical image processing; Open systems; Public health; Transfer learning

Engineering uncontrolled terms

Convolutional neural network; Deep learning; Detection system; Googlenet; Health concerns; Machine learning approaches; Medical image classification; Monkeypox; Skin images

Engineering main heading

Image classification

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
International Islamic University Malaysia See opportunities by IIUM ↗		IIUM
Universiti Teknologi Malaysia See opportunities by UTM ↗	Q.K130000.3856.22H95	UTM
Universiti Teknologi Malaysia See opportunities by UTM ↗		UTM

Funding text

This research was supported by the International Islamic University Malaysia (IIUM) for learning and research facilities and partially funded by Universiti Teknologi Malaysia under the UTM Fundamental Research Grant. (Q.K130000.3856.22H95).

Corresponding authors

Corresponding
author

N.K.B. Nazaimi

Affiliation International Islamic University Malaysia, Electrical and Computer Engineering Department, Jalan Gombak, Kuala Lumpur, 53100, Malaysia

Email address nknazaimi@gmail.com

© Copyright 2026 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Funding details

Corresponding authors

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)