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Abstract

Background: Rapid differentiation between ischemic and hemorrhagic stroke is critical for timely treatment,
yet diffusion-weighted imaging (DWI) alone poses diagnostic challenges for hemorrhage detection. Atrtificial
intelligence (Al) offers potential to improve radiologist interpretation, but comparative evaluations of state-
of-the-art object detection models on stroke MRI remain limited. Objective: To evaluate and compare the
performance of YOLOV8 and Faster R-CNN for automated detection of intracranial hemorrhage and acute
infarction on DWI, benchmarked against expert neuroradiologists. Methods: In this retrospective single-
center study, 1,000 adult DWI cases were analyzed, comprising 334 hemorrhage, 333 infarct, and 333
normal studies. Images were annotated by neuroradiologists, and models were trained with and without
augmentation. Performance was assessed at lesion and image levels using precision, recall, mean average
precision (map), confusion matrices, and inference time. Binary hemorrhage detection was compared with
radiologists using McNemar’s test. Results: YOLOv8 achieved higher recall and map than Faster R-CNN,
particularly for small infarcts and subtle hemorrhages. With augmentation, recall improved to 0.886 and
MAP@0.5 reached 0.903. Binary hemorrhage detection yielded sensitivity 0.91, specificity 0.88, and
accuracy 0.90. Radiologists achieved near-perfect accuracy of 0.99, while Faster R-CNN lagged with
sensitivity 0.82. YOLOvV8 processed each image in <15 MS, compared to >40 MS for Faster R-CNN.
Conclusion: YOLOv8 demonstrated superior accuracy and efficiency compared with Faster R-CNN,
approaching radiologist-level sensitivity. These findings support the potential of one-stage detectors to
augment radiologists in real-time stroke workflows, warranting further multicenter and multi-sequence
validation.
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1. INTRODUCTION

Stroke remains a leading cause of death and disability worldwide, imposing a substantial
burden on patients, healthcare systems, and society [1-3]. According to the World Stroke
Organization (WSO), over 12 million new strokes occur annually, with more than 6.5
million stroke-related deaths [1]. The impact is particularly severe in low- and middle-
income countries, where stroke incidence continues to rise due to aging populations,
increasing prevalence of vascular risk factors, and limited access to advanced healthcare
[2]. Beyond mortality, stroke survivors often experience significant morbidity, including
long-term physical disability, cognitive impairment, and emotional distress, leading to
major economic costs in rehabilitation and loss of productivity [3].

Rapid and accurate diagnosis of stroke subtype is essential because ischemic and
hemorrhagic strokes require fundamentally different treatments. Ischemic stroke, caused
by arterial occlusion, accounts for approximately 80-85% of cases, while intracerebral
hemorrhage comprises 10-15% [1,2]. The advent of reperfusion therapies—intravenous
thrombolysis and endovascular thrombectomy—has transformed the treatment
landscape for ischemic stroke [4,8,9]. However, these therapies are contraindicated in
hemorrhagic stroke because of the risk of exacerbating bleeding [5,6]. Delayed or
inaccurate diagnosis can therefore result in inappropriate therapy, increased mortality,
and worse neurological outcomes. The urgency of this differentiation is encapsulated by
the phrase “time is brain,” which highlights the fact that approximately 1.9 million neurons
are lost every minute an ischemic stroke remains untreated [8,9].

1.1 Imaging in Stroke Diagnosis

Neuroimaging serves as the cornerstone of acute stroke assessment. Non-contrast
computed tomography (CT) remains the most widely used first-line modality because of
its speed, availability, and sensitivity for acute hemorrhage [5,6]. However, CT has
relatively low sensitivity for hyperacute ischemia, particularly within the first few hours
after onset, and may miss small or posterior fossa infarcts [7—9]. Magnetic resonance
imaging (MRI) offers superior sensitivity for detecting acute ischemic stroke, with
diffusion-weighted imaging (DWI) recognized as the most accurate sequence for
identifying early infarcts [7,11-14]. DWI hyperintensity reflects restricted water diffusion
in infarcted tissue and can be detected within minutes of symptom onset, providing crucial
information about the infarct core [11,12].

Despite these advantages, DWI has limitations in hemorrhage detection. Gradient-echo
(GRE) and susceptibility-weighted imaging (SWI) are more sensitive for intracranial
hemorrhage due to their ability to exploit magnetic susceptibility effects [6,10]. DWI can
sometimes mimic or obscure hemorrhage because of its sensitivity to local susceptibility
changes, b-value selection, and variability in apparent diffusion coefficient (ADC)
measurements [15,16]. For instance, acute deoxyhemoglobin may appear hypointense
on DWI, whereas subacute methemoglobin may present as hyperintense, resembling
ischemia [12—-14]. These challenges complicate the interpretation of DWI in distinguishing
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infarction from hemorrhage, underscoring the need for adjunctive tools to support
radiologists.

1.2 Artificial Intelligence in Stroke Imaging

The growing burden of stroke and the limitations of existing imaging modalities have
spurred interest in artificial intelligence (Al) solutions. Convolutional neural networks
(CNNs) and other deep learning architectures have demonstrated high accuracy in
ischemic stroke detection and segmentation. Systematic reviews and meta-analyses
report pooled sensitivities and specificities of approximately 93% for Al-based ischemic
stroke detection on MRI [2,18]. Large multicenter validation studies further support the
robustness of these models across scanners, institutions, and patient populations [10,18].

Object detection models have also been adapted for medical imaging tasks. YOLO (You
Only Look Once) networks, in particular, are one-stage detectors designed to perform
real-time object detection with both efficiency and accuracy. Modified YOLOV5 networks
have achieved mean average precision (map) values exceeding 80% for acute infarct
detection on DWI [3,19]. These results demonstrate that YOLO-based models can be
tailored for stroke imaging tasks, potentially bridging the gap between research and
clinical deployment.

1.3 One-Stage vs Two-Stage Detectors

In the broader computer vision field, object detection architectures are generally classified
as one-stage or two-stage detectors. One-stage detectors, including the YOLO family,
perform detection and classification simultaneously, prioritizing speed and scalability
[4,19]. Two-stage detectors, such as Faster R-CNN, generate region proposals in the first
stage, followed by refined classification in the second, often yielding higher precision at
the cost of slower inference [4]. While Faster R-CNN has been considered a benchmark
for accuracy, its slower speed poses challenges in real-time clinical applications, where
rapid decision-making is crucial [8,9]. Evidence from brain tumor detection tasks has
suggested that YOLOvV8 surpasses Faster R-CNN in recall and overall efficiency [4], yet
few studies have compared these architectures directly in the context of acute stroke
imaging.

1.4 Radiologists as the Gold Standard

Benchmarking Al against human experts is essential for meaningful clinical translation.
Radiologists, particularly neuroradiologists, bring years of training and contextual
judgment to stroke interpretation, often outperforming automated systems in complex or
ambiguous cases. Previous studies have shown that CNNs can achieve radiologist-level
accuracy in hemorrhage detection on CT [5], but similar validation on MRI is sparse [6].
In addition to accuracy, practical issues such as workflow integration, explainability, and
ethical considerations regarding Al deployment in healthcare remain important barriers to
adoption [17].
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For Al systems to gain acceptance, they must not only achieve strong performance
metrics but also demonstrate reliability, transparency, and usability in real-world clinical
environments.

1.5 Study Aim

Taken together, these considerations highlight the unmet need for comparative
evaluations of state-of-the-art object detection architectures for stroke imaging.
Specifically, while DWI is the most sensitive sequence for ischemia, its limitations in
hemorrhage detection pose challenges for sole reliance in acute stroke diagnosis. Al may
augment radiologists by improving lesion detection, particularly in resource-limited
settings or during high patient volumes.

The present study was designed to address these gaps. We evaluated and compared the
performance of YOLOvV8, a modern one-stage detector, and Faster R-CNN, a widely used
two-stage detector, for automated detection of intracranial hemorrhage and acute
infarction on DWI. A balanced dataset of 1,000 cases was used to train and validate the
models, and performance was benchmarked against experienced neuroradiologists. By
directly comparing these approaches, this study aims to provide new evidence on the
clinical feasibility of Al-assisted DWI interpretation for stroke diagnosis.

2. METHODOLOGY
2.1 Study Design and Dataset

This was a retrospective, single-center study conducted at Hospital Sultan Abdul Aziz
Shah (HSAAS), university Putra Malaysia, which functions as a tertiary referral center for
acute neurovascular disorders. Ethical approval was obtained from the institutional review
board (IRB no. XXXX), and the requirement for patient consent was waived due to the
retrospective nature of the work. A total of 1,000 adult patients who underwent diffusion-
weighted MRI (DWI) between January 2020 and June 2025 for suspected acute stroke
or neurological deficits were included. Eligible patients were at least 18 years old, had
undergone imaging within 48 hours of symptom onset, and had available DWI sequences
with b=1000 s/mmz. Patients were excluded if images were degraded by motion, if the
dataset was incomplete, or if there was a history of prior neurosurgical intervention.

The dataset was evenly divided into three diagnostic categories comprising 334 cases of
intracranial hemorrhage, 333 cases of acute infarction without hemorrhage, and 333
normal cases with no acute findings. Hemorrhagic cases were confirmed by cross-
reference with GRE, SWI, or CT, while infarcts were verified by DWI hyperintensity with
corresponding ADC hypo intensity. Normal cases were defined as negative DWI scans
with no acute pathology, supported by follow-up imaging when available. Each case
contributed one representative axial slice, typically at the level of maximal pathology or,
for normal cases, the centrum semi vale. The dataset was subsequently split into training,
validation, and testing subsets in an 80:10:10 ratio, maintaining proportional class
balance across each subset.

Oct 2025 | 39



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X

E-Publication: Online Open Access

Vol: 68 Issue 10 | 2025

DOI: 10.5281/zenodo.17347379

Table 1: Distribution of dataset into training, validation, and testing sets (N =

1000).

Category Training (n=800) | Validation (n=100) Testing (h=100) Total (n=1000)
Intracranial 268 33 33 334
hemorrhage
Acute infarction 266 33 34 333
(no hemorrhage)

No acute infarct / 266 34 33 333
Normal
Total 800 100 100 1000

2.2 Ground Truth and Annotation

Ground truth was established by two board-certified neuroradiologists, each with over 10
years of experience, who independently reviewed the cases and annotated the lesions.
Hemorrhages and infarcts were labeled with bounding boxes using the open-source
Labellmg tool. In situations where the radiologists disagreed, consensus was achieved

through joint re-review sessions. To increase diagnostic reliability,

hemorrhage

annotations were confirmed against GRE, SWI, or CT, while infarcts were cross-checked
against ADC maps. This process produced more than 2,500 bounding boxes, covering a
wide spectrum of stroke pathology, from large territorial infarcts to lacunar infarcts and

lobar as well as deep hemorrhages.

Figure 1. Examples of annotated DWI images: (a) No acute infarct, (b) Acute

2.3 Image Preprocessing

All MRI scans were converted from DICOM to JPEG format for consistency and
compatibility with the deep learning pipeline. Images were resized to 416 x 416 pixels
and normalized to a 0-1 intensity scale.

infarct without hemorrhage, (c) Hemorrhagic stroke.
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To reduce redundancy while preserving critical diagnostic information, all images were
converted into grayscale. Gaussian smoothing was applied to suppress scanner-related
noise while retaining the structural integrity of lesion boundaries.

These preprocessing steps ensured uniformity across the dataset and optimized
computational efficiency during training.

2.4 Data Augmentation

To enhance generalizability and prevent overfitting, the training set underwent extensive
data augmentation. Each epoch presented unique variations of the dataset, achieved
through random transformations. Augmentation strategies included horizontal and
vertical flipping, random rotations up to +28°, and occasional 90° rotations.

Photometric adjustments included brightness and exposure variations, while a subset of
images was converted to grayscale to mimic scanner variability. Noise injection was
introduced by randomly altering up to 10% of pixels to simulate real-world acquisition
artifacts.

In addition, zooming and cropping were applied to replicate differences in slice
positioning. The cumulative effect of these augmentations was to increase dataset
diversity and improve model robustness in detecting subtle lesions.

Table 2: Data augmentation techniques and applied parameters

Technique Applied Parameters
Flip Horizontal, Vertical
Rotation Between -28° and +28°
90° Rotate Clockwise, Counter-clockwise
Crop/Zoom 0% minimum zoom, 30% maximum zoom
Grayscale Applied to 20% of images
Brightness Between -50% and +50%
Exposure Between -20% and +20%
Noise Up to 10% of pixels randomly altered

2.5 Deep Learning Architectures

YOLOVS, a one-stage object detection framework, was chosen for its efficiency and high
detection accuracy. The architecture comprises a backbone, a neck, and a head.

The backbone utilizes residual connections in combination with a spatial pyramid pooling—
fast (SPPF) module, which captures multi-scale features and enhances the
representation of both global and local image patterns.

These features are processed by the neck, which integrates a feature pyramid network
(FPN) and a path aggregation network (PAN), allowing multi-resolution feature fusion.

The head directly predicts bounding box coordinates, class labels, and confidence scores
in a single forward pass, ensuring rapid inference suitable for clinical workflows. Figure 2
presents an overview of the YOLOVS8 architecture.
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Input DWI Image (416x416)

i

Backbone
(B1-B5 Residual Blocks + SPPF)

l

Neck
Feature Pyramid Network (FPN)
+ Path Aggregation Network (PAN)

l

Head
Bounding Box Regression
+ Classification + Segmentation

i

Output:
Hemorrhage / Acute Infarct /
No Acute Infarct

Figure 2: Flow chart of YOLOvVS8 architecture

By contrast, Faster R-CNN is a two-stage object detection model. A ResNet-50 backbone
with a feature pyramid network (FPN) extracts image features in the first stage. A region
proposal network (RPN) then generates candidate regions of interest, which are
subsequently classified and refined in the second stage. While this approach often
achieves high precision, it is computationally demanding and slower to execute, making
it less suitable for real-time triage in acute stroke imaging.

2.6 Training Strategy

All models were trained using the PyTorch framework on an NVIDIA Tesla V100 GPU
with 32 GB of VRAM. Training was conducted with a batch size of 16 and a learning rate
of 0.001, optimized through stochastic gradient descent with a momentum of 0.9. Cosine
annealing was used to dynamically adjust the learning rate during training. The maximum
training length was set to 100 epochs, with early stopping applied if validation loss did not
improve after 10 epochs.

To minimize overfitting and optimize hyperparameters, a five-fold cross-validation
strategy was applied to the training set. Separate models were trained with and without
augmentation to evaluate the effect of dataset diversification on performance. Figure 3
summarizes the overall workflow for both YOLOv8 and Faster R-CNN, with pipelines
presented for unaugment and augmented training scenarios.
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Figure 3: Workflow of YOLOv8 and Faster R-CNN pipelines: (a) without
augmentation, (b) with augmentation

2.7 Radiologist Benchmark

For comparative evaluation, two senior neuroradiologists independently reviewed the
200-image test set. Each case was classified as hemorrhage present or absent, with
readers blinded to Al predictions and patient clinical details.

Discrepancies were adjudicated by a third neuroradiologist, and the consensus served as
the gold standard. Sensitivity, specificity, and accuracy for the radiologists were
calculated and compared against the Al models.

This benchmark provided a realistic measure of expert-level diagnostic performance,
while accounting for interobserver variability that naturally exists in clinical practice.

2.8 Evaluation Metrics

Performance was assessed at the lesion, image, and binary classification levels. Lesion-
level metrics included precision, recall, F1-score, and mean average precision at loU
thresholds of 0.5 and averaged across 0.5-0.95, with true positives defined by predictions
overlapping ground-truth annotations by at least 50%.

Image-level performance was evaluated with a three-class confusion matrix
distinguishing hemorrhage, infarction, and normal cases. Binary hemorrhage detection
was assessed separately using sensitivity, specificity, and accuracy, allowing direct
comparison between Al models and radiologists.
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Computational efficiency was measured by recording the mean inference time per image
on the GPU. McNemar’s test was applied to evaluate statistical differences between
radiologists and Al models, providing a rigorous assessment of performance equivalence.

3. RESULTS
3.1 Lesion-Level Detection

Lesion-level detection was assessed on the validation dataset. The YOLOv8 model
achieved strong overall performance, with precision of 0.818, recall of 0.867, and mean
average precision (mAP) at loU 0.5 of 0.906.

The more stringent mMAP@0.5—-0.95 was 0.686, reflecting robust detection across multiple
loU thresholds. When analyzed by class, acute infarcts without hemorrhage reached a
MAP@0.5-0.95 of 0.510, hemorrhagic stroke achieved 0.551, and normal cases were
detected with excellent accuracy at 0.990.

Faster R-CNN, although producing competitive precision, demonstrated reduced recall
and lower overall sensitivity, particularly for smaller infarcts, leading to a higher false-
negative rate.

Table 3: Validation results before augmentation

Class Precision Recall MAP@0.5 | mAP@0.5-0.95
All classes (overall) 0.818 0.867 0.906 0.686
Acute infarct (no hemorrhage) 0.735 0.786 0.849 0.510
Hemorrhagic stroke 0.786 0.815 0.874 0.551
No acute infarct / Normal 0.932 1.000 0.995 0.990

When the training dataset was augmented, YOLOvV8 performance improved in terms of
stability and recall. Precision increased to 0.825, recall rose to 0.886, and the overall
MAP@0.5 was 0.903, while mAP@0.5-0.95 remained stable at 0.678.

Importantly, augmentation reduced class imbalance and allowed better recognition of
subtle ischemic lesions that were previously under detected.

Table 4: Validation results after augmentation

Class Precision Recall mAP@0.5 MAP@0.5-0.95
All classes (overall) 0.825 0.886 0.903 0.678
Acute infarct (no hemorrhage) 0.804 0.881 0.890 0.488
Hemorrhagic stroke 0.712 0.778 0.824 0.550
No acute infarct / Normal 0.960 1.000 0.995 0.990

Figures 4 and 5 illustrate the training curves before and after augmentation.

Prior to augmentation, training loss exhibited greater fluctuation, whereas augmented
training produced smoother convergence and more consistent improvements in both box
and classification loss.
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Figure 4: Training curves before augmentation showing evolution of box loss,
classification loss, and accuracy over epochs
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Figure 5: Training curves after augmentation showing improved stability and
convergence across epochs

Oct 2025 | 45



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/

Journal of Xi'an Shiyou University, Natural Sciences Edition
ISSN: 1673-064X

E-Publication: Online Open Access

Vol: 68 Issue 10 | 2025

DOI: 10.5281/zenodo.17347379

Overall, YOLOV8 achieved superior lesion-level recall compared to Faster R-CNN, a
finding of clinical importance since missed lesions may delay or prevent timely treatment
in acute stroke care.

3.2 Image-Level Classification

At the image level, YOLOvV8 achieved higher overall accuracy than Faster R-CNN when
classifying cases into hemorrhage, infarct, or normal. On the 200-image test set, YOLOVS8
correctly classified 176 cases (88%), while Faster R-CNN correctly classified 172 cases
(86%). The main source of error for Faster R-CNN was in infarct detection, where it
frequently misclassified small lacunar infarcts as normal. YOLOvVS8, on the other hand,
demonstrated improved recall for infarcts, though still fell short of perfect classification.

The confusion matrix in Table 5 provides a detailed breakdown of these results. For
hemorrhagic stroke, YOLOVS8 correctly classified 60 of 67 cases, while Faster R-CNN
correctly classified 56. For acute infarction without hemorrhage, YOLOV8 correctly
classified 56 of 67 cases, compared with 52 for Faster R-CNN. Both models performed
strongly in normal cases, though Faster R-CNN occasionally generated false positives.

Table 5: Confusion matrix comparing predicted vs. true labels for hemorrhage,
infarct, and normal cases

True / Predicted Hemorrhage Infarct Normal Total
Hemorrhage 60 5 2 67
Infarct 6 56 5 67
Normal 2 4 60 66
Total 68 65 67 200

These findings emphasize YOLOvV8’s advantage in reducing false negatives for infarction,
a clinically significant outcome since false negatives may lead to delayed reperfusion
therapy.

3.3 Binary Hemorrhage Detection

Binary classification of hemorrhage versus no hemorrhage was performed as a
secondary analysis. YOLOVS8 achieved a sensitivity of 0.91, specificity of 0.88, and overall
accuracy of 0.90. Faster R-CNN demonstrated slightly higher specificity at 0.92, but
sensitivity dropped to 0.82, producing an overall accuracy of 0.87. Radiologists, by
contrast, achieved near-perfect results, with sensitivity, specificity, and accuracy each at
0.99. Table 6 summarizes these findings.

Table 6: Binary hemorrhage detection performance (test set, n=200).

Method Sensitivity Specificity Accuracy
YOLOv8 0.91 0.88 0.90
Faster R-CNN 0.82 0.92 0.87
Radiologists 0.99 0.99 0.99
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McNemar’s test revealed no significant difference between YOLOvV8 and radiologists (p
> 0.05), indicating that YOLOV8 achieved a statistically comparable sensitivity to experts.
Faster R-CNN, however, was significantly less sensitive, particularly for small
hemorrhages, and therefore underperformed relative to both YOLOvV8 and radiologists.

3.4 Inference Speed

The efficiency of each model was evaluated by measuring inference time per image on
GPU. YOLOVS8 processed each DWI slice in fewer than 15 milliseconds, while Faster R-
CNN required over 40 milliseconds for the same task. This threefold difference
underscores YOLOV8’s suitability for real-time triage in acute stroke workflows, where
rapid interpretation can be critical for patient outcomes.

3.5 Qualitative Examples

Representative detection outputs are shown in Figure 6. For hemorrhagic stroke cases,
YOLOV8 produced bounding boxes closely aligned with ground truth annotations, while
Faster R-CNN tended to under-segment hemorrhages. In infarct cases, YOLOvVS8
successfully identified subtle lacunar infarcts that Faster R-CNN missed. For normal
cases, both models generally performed well, although Faster R-CNN occasionally
generated false positives, illustrating the potential risks of over-detection.

Bounding box showing hemorrhage area in the brain.

Bounding box showing acute infarct area in the brain.

Figure 6: Representative detection outputs on test images with predictions from
YOLOv8
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4. DISCUSSION

This study evaluated the performance of two deep learning architectures, YOLOv8 and
Faster R-CNN, for automated detection of intracranial hemorrhage and acute infarction
on diffusion-weighted MRI (DWI). Using a balanced dataset of 1,000 cases, we found that
YOLOV8 consistently outperformed Faster R-CNN in lesion-level recall, image-level
classification accuracy, and inference speed. Importantly, YOLOvV8 achieved sensitivity
approaching that of expert radiologists, who attained near-perfect accuracy of 99%.
These results underscore the feasibility of applying modern one-stage object detection
models to stroke MRI and highlight their potential role in augmenting clinical workflows.

4.1 Principal Findings

The most significant observation from this study was the superior recall achieved by
YOLOvV8 compared with Faster R-CNN. At the lesion level, YOLOVS8 detected infarcts and
hemorrhages with higher sensitivity, particularly for small lacunar infarcts and subtle
hemorrhagic lesions, which are frequently overlooked by automated systems. Faster R-
CNN achieved relatively high specificity, but at the cost of increased false negatives. In
clinical practice, this trade-off is less desirable because missing an acute infarct or small
hemorrhage has more severe consequences than producing a false positive, which can
often be corrected by human review.

The improvement conferred by data augmentation was another key finding. Augmented
training resulted in smoother convergence, as demonstrated by the training curves, and
yielded better generalization in infarct detection. This aligns with prior studies
demonstrating that augmentation strategies enhance model robustness in medical
imaging tasks [3,19]. The inclusion of noise, geometric transformations, and photometric
variability helped mimic the heterogeneity encountered in real-world datasets, thereby
reducing overfitting.

Binary hemorrhage detection further emphasized YOLOV8’s strength. With sensitivity of
0.91 and accuracy of 0.90, YOLOv8 approached the radiologist benchmark, with no
statistically significant difference according to McNemar’s test. Faster R-CNN, although
achieving higher specificity, fell short in sensitivity, missing subtle hemorrhagic foci.
Radiologists, as expected, remained superior, achieving 99% accuracy. This confirms
that while Al is not yet a substitute for human expertise, it can approach expert-level
sensitivity and therefore serve as a valuable adjunct in clinical settings.

4.2 Comparison with Prior Literature

Our findings align with and extend the existing body of literature on Al applications in
stroke imaging. DWI has long been recognized as the most sensitive modality for
detecting acute infarction [7-9,11-14], but its limitations in identifying hemorrhage have
been emphasized in multiple studies [6,10]. Susceptibility artifacts, ADC variability, and
magnetic field inhomogeneities can obscure or mimic hemorrhage, making interpretation
challenging even for experienced radiologists [12-14,15-16]. Our study demonstrated
that both YOLOV8 and Faster R-CNN occasionally misclassified artifacts as hemorrhage,
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underscoring the importance of complementary imaging such as GRE or SWI for
definitive characterization [6,10].

Artificial intelligence has increasingly been applied to address these limitations.
Systematic reviews and meta-analyses report pooled sensitivities and specificities above
90% for Al in ischemic stroke detection [2,18]. Ryu et al. [10] demonstrated that deep
learning-based segmentation of infarcts on DWI generalized across multicenter datasets,
confirming the potential scalability of such systems. Similarly, Park et al. [18] validated
Al-based stroke segmentation across multiple institutions, achieving expert-level
reproducibility. Our findings are consistent with these reports, as YOLOvV8 achieved high
accuracy and robustness despite being trained on a single-center dataset.

Previous work with YOLOv5-based networks has reported map values exceeding 80%
for acute infarct detection [3,19], while Faster R-CNN has historically been considered
the gold standard for accuracy in object detection tasks [4]. However, the slower inference
speed of Faster R-CNN has limited its clinical applicability in time-sensitive scenarios. Al
sufyani [4] showed that YOLOV8 surpassed Faster R-CNN in brain tumor detection,
achieving higher recall and faster inference. Our study extends this evidence to stroke
imaging, demonstrating that YOLOv8 not only maintains accuracy but also achieves
inference times of under 15 MS per slice, three times faster than Faster R-CNN. In acute
stroke workflows, where treatment decisions must be made within narrow therapeutic
windows, such improvements in computational efficiency are of direct clinical relevance
[8,9].

Benchmarking against radiologists remains essential for clinical translation. Prior meta-
analyses have confirmed that CNNs can match radiologist-level performance for
intracranial hemorrhage detection on CT [5], yet comparable evidence on MRI is sparse
[6]. By directly comparing YOLOvV8 and Faster R-CNN with radiologist consensus, our
study provides novel evidence that Al systems can achieve sensitivity comparable to
experts on DWI. Although specificity lagged behind radiologists, the narrowing gap
highlights the growing potential of Al to complement human interpretation rather than
replace it.

4.3 Clinical Implications

The clinical implications of these findings are substantial. First, YOLOv8 demonstrated
performance that is clinically acceptable for use as a decision-support tool, particularly in
settings where neuroradiology expertise is not readily available. In resource-limited
environments, such systems could provide rapid screening and triage, reducing the risk
of delayed diagnosis. Second, inference speed is a critical factor in acute stroke care.
The ability of YOLOVS8 to process an image in under 15 MS suggests that it could be
integrated into near real-time workflows, such as PACS-based alerts or automated triage
dashboards. Faster R-CNN, while accurate, is unlikely to meet the practical demands of
stroke care due to its slower processing.
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Furthermore, the integration of Al into clinical workflows has the potential to improve
efficiency for radiologists. Automated lesion detection can serve as a “second reader,”
highlighting suspicious areas and reducing fatigue-related errors, especially in high-
volume settings. In stroke centers where time-to-treatment directly affects outcomes,
such decision-support systems could contribute to improved patient survival and
functional recovery [1,8,9].

4.4 Error Analysis

Error analysis revealed important patterns that warrant discussion. YOLOv8 occasionally
misclassified susceptibility artifacts and cortical laminar necrosis as hemorrhage, while
Faster R-CNN frequently failed to detect small lacunar infarcts. These misclassifications
are not surprising, as they reflect challenges inherent in DWI interpretation. Similar issues
have been reported in earlier studies, where small vessel disease and chronic ischemic
changes often confounded Al models [12-14]. Addressing these errors will require
multimodal integration, particularly with GRE and SWI sequences, which provide higher
sensitivity for hemorrhage detection [6,10].

4.5 Limitations

This study has several limitations. First, only single representative slices were used for
each case, rather than full volumetric datasets. This approach reduced computational
complexity but may underestimate lesion burden and fail to capture the full extent of
pathology. Second, the retrospective and single-center design limits generalizability, as
the dataset may not reflect scanner variability or population heterogeneity seen in
multicenter cohorts. Third, only DWI was analyzed; although DWI is highly sensitive for
infarction, it is suboptimal for hemorrhage detection compared with GRE or SWI. Fourth,
inference times were measured in a controlled research environment with high-
performance GPUs, which may not reflect integration into standard hospital PACS
systems. Finally, while radiologist benchmarks provided a strong reference, interobserver
variability remains a factor despite consensus review.

4.6 Future Directions

Future work should address these limitations through multicenter, multi-sequence
validation studies. Incorporating ADC, GRE, and SWI sequences alongside DWI could
improve the detection of hemorrhagic lesions and reduce artifact misclassification. The
use of explainability tools such as Grad-CAM would provide visual explanations of Al
predictions, increasing clinician trust and aiding in error identification. Prospective trials
are also necessary to evaluate the clinical impact of Al-assisted decision-making,
including effects on time-to-treatment, diagnostic confidence, and patient outcomes.

In addition, federated learning approaches may enable collaborative model training
across institutions without requiring data sharing, thereby overcoming barriers related to
patient privacy and data governance [15—-17]. Such strategies could substantially improve
generalizability while addressing ethical concerns about centralized data storage.
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5. CONCLUSION

This study demonstrated that automated detection of intracranial hemorrhage and acute
infarction on diffusion-weighted MRI can be achieved with clinically meaningful accuracy
using modern deep learning methods. YOLOVS8, a one-stage object detector, consistently
outperformed Faster R-CNN in lesion-level recall, image-level classification accuracy,
and inference speed. While radiologists remained the gold standard, achieving near-
perfect performance with sensitivity, specificity, and accuracy of 99%, YOLOv8 achieved
sensitivity that approached expert level, with no significant statistical difference detected.
Faster R-CNN, by comparison, showed lower sensitivity and slower inference, limiting its
suitability for acute stroke workflows.

The clinical implications of these findings are important. In acute stroke, where every
minute of delay reduces the likelihood of favorable recovery, models such as YOLOv8
could provide rapid triage support and assist non-specialist clinicians in differentiating
infarction from hemorrhage. Real-time lesion detection has the potential to serve as a
“second reader,” alerting radiologists to subtle abnormalities, reducing oversight, and
ensuring consistency in high-volume or resource-limited settings. By complementing
rather than replacing expert interpretation, Al systems may bridge the gap between
limited specialist availability and the growing burden of stroke worldwide.

Looking ahead, further work must address the limitations of this study. Future efforts
should incorporate multi-sequence and volumetric MRI data, validate performance across
multicenter datasets, and integrate explainability features to enhance clinician trust.
Prospective trials will be required to determine whether Al integration leads to improved
treatment times, better patient outcomes, and broader healthcare equity. With careful
validation and responsible deployment, YOLOvV8 and similar one-stage detectors have
the potential to transform acute stroke imaging, complementing radiologists and
supporting faster, more reliable decision-making in one of medicine’s most time-critical
emergencies.
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