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Abstract 

Background: Rapid differentiation between ischemic and hemorrhagic stroke is critical for timely treatment, 
yet diffusion-weighted imaging (DWI) alone poses diagnostic challenges for hemorrhage detection. Artificial 
intelligence (AI) offers potential to improve radiologist interpretation, but comparative evaluations of state-
of-the-art object detection models on stroke MRI remain limited. Objective: To evaluate and compare the 
performance of YOLOv8 and Faster R-CNN for automated detection of intracranial hemorrhage and acute 
infarction on DWI, benchmarked against expert neuroradiologists. Methods: In this retrospective single-
center study, 1,000 adult DWI cases were analyzed, comprising 334 hemorrhage, 333 infarct, and 333 
normal studies. Images were annotated by neuroradiologists, and models were trained with and without 
augmentation. Performance was assessed at lesion and image levels using precision, recall, mean average 
precision (map), confusion matrices, and inference time. Binary hemorrhage detection was compared with 
radiologists using McNemar’s test. Results: YOLOv8 achieved higher recall and map than Faster R-CNN, 
particularly for small infarcts and subtle hemorrhages. With augmentation, recall improved to 0.886 and 
mAP@0.5 reached 0.903. Binary hemorrhage detection yielded sensitivity 0.91, specificity 0.88, and 
accuracy 0.90. Radiologists achieved near-perfect accuracy of 0.99, while Faster R-CNN lagged with 
sensitivity 0.82. YOLOv8 processed each image in <15 MS, compared to >40 MS for Faster R-CNN. 
Conclusion: YOLOv8 demonstrated superior accuracy and efficiency compared with Faster R-CNN, 
approaching radiologist-level sensitivity. These findings support the potential of one-stage detectors to 
augment radiologists in real-time stroke workflows, warranting further multicenter and multi-sequence 
validation. 

mailto:anastharek@upm.edu.my


Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/ 
Journal of Xi'an Shiyou University, Natural Sciences Edition 

ISSN: 1673-064X 
E-Publication: Online Open Access 

Vol: 68 Issue 10 | 2025 
DOI: 10.5281/zenodo.17347379 

Oct 2025 | 37 

1. INTRODUCTION 

Stroke remains a leading cause of death and disability worldwide, imposing a substantial 
burden on patients, healthcare systems, and society [1–3]. According to the World Stroke 
Organization (WSO), over 12 million new strokes occur annually, with more than 6.5 
million stroke-related deaths [1]. The impact is particularly severe in low- and middle-
income countries, where stroke incidence continues to rise due to aging populations, 
increasing prevalence of vascular risk factors, and limited access to advanced healthcare 
[2]. Beyond mortality, stroke survivors often experience significant morbidity, including 
long-term physical disability, cognitive impairment, and emotional distress, leading to 
major economic costs in rehabilitation and loss of productivity [3]. 

Rapid and accurate diagnosis of stroke subtype is essential because ischemic and 
hemorrhagic strokes require fundamentally different treatments. Ischemic stroke, caused 
by arterial occlusion, accounts for approximately 80–85% of cases, while intracerebral 
hemorrhage comprises 10–15% [1,2]. The advent of reperfusion therapies—intravenous 
thrombolysis and endovascular thrombectomy—has transformed the treatment 
landscape for ischemic stroke [4,8,9]. However, these therapies are contraindicated in 
hemorrhagic stroke because of the risk of exacerbating bleeding [5,6]. Delayed or 
inaccurate diagnosis can therefore result in inappropriate therapy, increased mortality, 
and worse neurological outcomes. The urgency of this differentiation is encapsulated by 
the phrase “time is brain,” which highlights the fact that approximately 1.9 million neurons 
are lost every minute an ischemic stroke remains untreated [8,9]. 

1.1 Imaging in Stroke Diagnosis 

Neuroimaging serves as the cornerstone of acute stroke assessment. Non-contrast 
computed tomography (CT) remains the most widely used first-line modality because of 
its speed, availability, and sensitivity for acute hemorrhage [5,6]. However, CT has 
relatively low sensitivity for hyperacute ischemia, particularly within the first few hours 
after onset, and may miss small or posterior fossa infarcts [7–9]. Magnetic resonance 
imaging (MRI) offers superior sensitivity for detecting acute ischemic stroke, with 
diffusion-weighted imaging (DWI) recognized as the most accurate sequence for 
identifying early infarcts [7,11–14]. DWI hyperintensity reflects restricted water diffusion 
in infarcted tissue and can be detected within minutes of symptom onset, providing crucial 
information about the infarct core [11,12]. 

Despite these advantages, DWI has limitations in hemorrhage detection. Gradient-echo 
(GRE) and susceptibility-weighted imaging (SWI) are more sensitive for intracranial 
hemorrhage due to their ability to exploit magnetic susceptibility effects [6,10]. DWI can 
sometimes mimic or obscure hemorrhage because of its sensitivity to local susceptibility 
changes, b-value selection, and variability in apparent diffusion coefficient (ADC) 
measurements [15,16]. For instance, acute deoxyhemoglobin may appear hypointense 
on DWI, whereas subacute methemoglobin may present as hyperintense, resembling 
ischemia [12–14]. These challenges complicate the interpretation of DWI in distinguishing 
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infarction from hemorrhage, underscoring the need for adjunctive tools to support 
radiologists. 

1.2 Artificial Intelligence in Stroke Imaging 

The growing burden of stroke and the limitations of existing imaging modalities have 
spurred interest in artificial intelligence (AI) solutions. Convolutional neural networks 
(CNNs) and other deep learning architectures have demonstrated high accuracy in 
ischemic stroke detection and segmentation. Systematic reviews and meta-analyses 
report pooled sensitivities and specificities of approximately 93% for AI-based ischemic 
stroke detection on MRI [2,18]. Large multicenter validation studies further support the 
robustness of these models across scanners, institutions, and patient populations [10,18]. 

Object detection models have also been adapted for medical imaging tasks. YOLO (You 
Only Look Once) networks, in particular, are one-stage detectors designed to perform 
real-time object detection with both efficiency and accuracy. Modified YOLOv5 networks 
have achieved mean average precision (map) values exceeding 80% for acute infarct 
detection on DWI [3,19]. These results demonstrate that YOLO-based models can be 
tailored for stroke imaging tasks, potentially bridging the gap between research and 
clinical deployment. 

1.3 One-Stage vs Two-Stage Detectors 

In the broader computer vision field, object detection architectures are generally classified 
as one-stage or two-stage detectors. One-stage detectors, including the YOLO family, 
perform detection and classification simultaneously, prioritizing speed and scalability 
[4,19]. Two-stage detectors, such as Faster R-CNN, generate region proposals in the first 
stage, followed by refined classification in the second, often yielding higher precision at 
the cost of slower inference [4]. While Faster R-CNN has been considered a benchmark 
for accuracy, its slower speed poses challenges in real-time clinical applications, where 
rapid decision-making is crucial [8,9]. Evidence from brain tumor detection tasks has 
suggested that YOLOv8 surpasses Faster R-CNN in recall and overall efficiency [4], yet 
few studies have compared these architectures directly in the context of acute stroke 
imaging. 

1.4 Radiologists as the Gold Standard 

Benchmarking AI against human experts is essential for meaningful clinical translation. 
Radiologists, particularly neuroradiologists, bring years of training and contextual 
judgment to stroke interpretation, often outperforming automated systems in complex or 
ambiguous cases. Previous studies have shown that CNNs can achieve radiologist-level 
accuracy in hemorrhage detection on CT [5], but similar validation on MRI is sparse [6]. 
In addition to accuracy, practical issues such as workflow integration, explainability, and 
ethical considerations regarding AI deployment in healthcare remain important barriers to 
adoption [17].  
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For AI systems to gain acceptance, they must not only achieve strong performance 
metrics but also demonstrate reliability, transparency, and usability in real-world clinical 
environments. 

1.5 Study Aim 

Taken together, these considerations highlight the unmet need for comparative 
evaluations of state-of-the-art object detection architectures for stroke imaging. 
Specifically, while DWI is the most sensitive sequence for ischemia, its limitations in 
hemorrhage detection pose challenges for sole reliance in acute stroke diagnosis. AI may 
augment radiologists by improving lesion detection, particularly in resource-limited 
settings or during high patient volumes. 

The present study was designed to address these gaps. We evaluated and compared the 
performance of YOLOv8, a modern one-stage detector, and Faster R-CNN, a widely used 
two-stage detector, for automated detection of intracranial hemorrhage and acute 
infarction on DWI. A balanced dataset of 1,000 cases was used to train and validate the 
models, and performance was benchmarked against experienced neuroradiologists. By 
directly comparing these approaches, this study aims to provide new evidence on the 
clinical feasibility of AI-assisted DWI interpretation for stroke diagnosis. 
 
2. METHODOLOGY 

2.1 Study Design and Dataset 

This was a retrospective, single-center study conducted at Hospital Sultan Abdul Aziz 
Shah (HSAAS), university Putra Malaysia, which functions as a tertiary referral center for 
acute neurovascular disorders. Ethical approval was obtained from the institutional review 
board (IRB no. XXXX), and the requirement for patient consent was waived due to the 
retrospective nature of the work. A total of 1,000 adult patients who underwent diffusion-
weighted MRI (DWI) between January 2020 and June 2025 for suspected acute stroke 
or neurological deficits were included. Eligible patients were at least 18 years old, had 
undergone imaging within 48 hours of symptom onset, and had available DWI sequences 
with b=1000 s/mm². Patients were excluded if images were degraded by motion, if the 
dataset was incomplete, or if there was a history of prior neurosurgical intervention. 

The dataset was evenly divided into three diagnostic categories comprising 334 cases of 
intracranial hemorrhage, 333 cases of acute infarction without hemorrhage, and 333 
normal cases with no acute findings. Hemorrhagic cases were confirmed by cross-
reference with GRE, SWI, or CT, while infarcts were verified by DWI hyperintensity with 
corresponding ADC hypo intensity. Normal cases were defined as negative DWI scans 
with no acute pathology, supported by follow-up imaging when available. Each case 
contributed one representative axial slice, typically at the level of maximal pathology or, 
for normal cases, the centrum semi vale. The dataset was subsequently split into training, 
validation, and testing subsets in an 80:10:10 ratio, maintaining proportional class 
balance across each subset. 
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Table 1: Distribution of dataset into training, validation, and testing sets (N = 
1000). 

Category Training (n=800) Validation (n=100) Testing (n=100) Total (n=1000) 
Intracranial 
hemorrhage 

268 33 33 334 

Acute infarction 
(no hemorrhage) 

266 33 34 333 

No acute infarct / 
Normal 

266 34 33 333 

Total 800 100 100 1000 

2.2 Ground Truth and Annotation 

Ground truth was established by two board-certified neuroradiologists, each with over 10 
years of experience, who independently reviewed the cases and annotated the lesions. 
Hemorrhages and infarcts were labeled with bounding boxes using the open-source 
LabelImg tool. In situations where the radiologists disagreed, consensus was achieved 
through joint re-review sessions. To increase diagnostic reliability, hemorrhage 
annotations were confirmed against GRE, SWI, or CT, while infarcts were cross-checked 
against ADC maps. This process produced more than 2,500 bounding boxes, covering a 
wide spectrum of stroke pathology, from large territorial infarcts to lacunar infarcts and 
lobar as well as deep hemorrhages. 

 
 Figure 1: Examples of annotated DWI images: (a) No acute infarct, (b) Acute 

infarct without hemorrhage, (c) Hemorrhagic stroke. 

2.3 Image Preprocessing 

All MRI scans were converted from DICOM to JPEG format for consistency and 
compatibility with the deep learning pipeline. Images were resized to 416 × 416 pixels 
and normalized to a 0–1 intensity scale.  
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To reduce redundancy while preserving critical diagnostic information, all images were 
converted into grayscale. Gaussian smoothing was applied to suppress scanner-related 
noise while retaining the structural integrity of lesion boundaries.  

These preprocessing steps ensured uniformity across the dataset and optimized 
computational efficiency during training. 

2.4 Data Augmentation 

To enhance generalizability and prevent overfitting, the training set underwent extensive 
data augmentation. Each epoch presented unique variations of the dataset, achieved 
through random transformations. Augmentation strategies included horizontal and 
vertical flipping, random rotations up to ±28°, and occasional 90° rotations.  

Photometric adjustments included brightness and exposure variations, while a subset of 
images was converted to grayscale to mimic scanner variability. Noise injection was 
introduced by randomly altering up to 10% of pixels to simulate real-world acquisition 
artifacts.  

In addition, zooming and cropping were applied to replicate differences in slice 
positioning. The cumulative effect of these augmentations was to increase dataset 
diversity and improve model robustness in detecting subtle lesions. 

Table 2: Data augmentation techniques and applied parameters 

Technique Applied Parameters 

Flip Horizontal, Vertical 

Rotation Between −28° and +28° 

90° Rotate Clockwise, Counter-clockwise 

Crop/Zoom 0% minimum zoom, 30% maximum zoom 

Grayscale Applied to 20% of images 

Brightness Between −50% and +50% 

Exposure Between −20% and +20% 

Noise Up to 10% of pixels randomly altered 

2.5 Deep Learning Architectures 

YOLOv8, a one-stage object detection framework, was chosen for its efficiency and high 
detection accuracy. The architecture comprises a backbone, a neck, and a head.  

The backbone utilizes residual connections in combination with a spatial pyramid pooling–
fast (SPPF) module, which captures multi-scale features and enhances the 
representation of both global and local image patterns.  

These features are processed by the neck, which integrates a feature pyramid network 
(FPN) and a path aggregation network (PAN), allowing multi-resolution feature fusion.  

The head directly predicts bounding box coordinates, class labels, and confidence scores 
in a single forward pass, ensuring rapid inference suitable for clinical workflows. Figure 2 
presents an overview of the YOLOv8 architecture. 
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Figure 2: Flow chart of YOLOv8 architecture 

By contrast, Faster R-CNN is a two-stage object detection model. A ResNet-50 backbone 
with a feature pyramid network (FPN) extracts image features in the first stage. A region 
proposal network (RPN) then generates candidate regions of interest, which are 
subsequently classified and refined in the second stage. While this approach often 
achieves high precision, it is computationally demanding and slower to execute, making 
it less suitable for real-time triage in acute stroke imaging. 

2.6 Training Strategy 

All models were trained using the PyTorch framework on an NVIDIA Tesla V100 GPU 
with 32 GB of VRAM. Training was conducted with a batch size of 16 and a learning rate 
of 0.001, optimized through stochastic gradient descent with a momentum of 0.9. Cosine 
annealing was used to dynamically adjust the learning rate during training. The maximum 
training length was set to 100 epochs, with early stopping applied if validation loss did not 
improve after 10 epochs.  

To minimize overfitting and optimize hyperparameters, a five-fold cross-validation 
strategy was applied to the training set. Separate models were trained with and without 
augmentation to evaluate the effect of dataset diversification on performance. Figure 3 
summarizes the overall workflow for both YOLOv8 and Faster R-CNN, with pipelines 
presented for unaugment and augmented training scenarios. 
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Figure 3: Workflow of YOLOv8 and Faster R-CNN pipelines: (a) without 
augmentation, (b) with augmentation 

2.7 Radiologist Benchmark 

For comparative evaluation, two senior neuroradiologists independently reviewed the 
200-image test set. Each case was classified as hemorrhage present or absent, with 
readers blinded to AI predictions and patient clinical details.  

Discrepancies were adjudicated by a third neuroradiologist, and the consensus served as 
the gold standard. Sensitivity, specificity, and accuracy for the radiologists were 
calculated and compared against the AI models.  

This benchmark provided a realistic measure of expert-level diagnostic performance, 
while accounting for interobserver variability that naturally exists in clinical practice. 

2.8 Evaluation Metrics 

Performance was assessed at the lesion, image, and binary classification levels. Lesion-
level metrics included precision, recall, F1-score, and mean average precision at IoU 
thresholds of 0.5 and averaged across 0.5–0.95, with true positives defined by predictions 
overlapping ground-truth annotations by at least 50%.  

Image-level performance was evaluated with a three-class confusion matrix 
distinguishing hemorrhage, infarction, and normal cases. Binary hemorrhage detection 
was assessed separately using sensitivity, specificity, and accuracy, allowing direct 
comparison between AI models and radiologists.  
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Computational efficiency was measured by recording the mean inference time per image 
on the GPU. McNemar’s test was applied to evaluate statistical differences between 
radiologists and AI models, providing a rigorous assessment of performance equivalence. 
 
3. RESULTS 

3.1 Lesion-Level Detection 

Lesion-level detection was assessed on the validation dataset. The YOLOv8 model 
achieved strong overall performance, with precision of 0.818, recall of 0.867, and mean 
average precision (mAP) at IoU 0.5 of 0.906.  

The more stringent mAP@0.5–0.95 was 0.686, reflecting robust detection across multiple 
IoU thresholds. When analyzed by class, acute infarcts without hemorrhage reached a 
mAP@0.5–0.95 of 0.510, hemorrhagic stroke achieved 0.551, and normal cases were 
detected with excellent accuracy at 0.990.  

Faster R-CNN, although producing competitive precision, demonstrated reduced recall 
and lower overall sensitivity, particularly for smaller infarcts, leading to a higher false-
negative rate. 

Table 3: Validation results before augmentation 

Class Precision Recall mAP@0.5 mAP@0.5–0.95 

All classes (overall) 0.818 0.867 0.906 0.686 

Acute infarct (no hemorrhage) 0.735 0.786 0.849 0.510 

Hemorrhagic stroke 0.786 0.815 0.874 0.551 

No acute infarct / Normal 0.932 1.000 0.995 0.990 

When the training dataset was augmented, YOLOv8 performance improved in terms of 
stability and recall. Precision increased to 0.825, recall rose to 0.886, and the overall 
mAP@0.5 was 0.903, while mAP@0.5–0.95 remained stable at 0.678.  

Importantly, augmentation reduced class imbalance and allowed better recognition of 
subtle ischemic lesions that were previously under detected. 

Table 4: Validation results after augmentation 

Class Precision Recall mAP@0.5 mAP@0.5–0.95 

All classes (overall) 0.825 0.886 0.903 0.678 

Acute infarct (no hemorrhage) 0.804 0.881 0.890 0.488 

Hemorrhagic stroke 0.712 0.778 0.824 0.550 

No acute infarct / Normal 0.960 1.000 0.995 0.990 

Figures 4 and 5 illustrate the training curves before and after augmentation.  

Prior to augmentation, training loss exhibited greater fluctuation, whereas augmented 
training produced smoother convergence and more consistent improvements in both box 
and classification loss. 
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Figure 4: Training curves before augmentation showing evolution of box loss, 

classification loss, and accuracy over epochs 

 

Figure 5: Training curves after augmentation showing improved stability and 
convergence across epochs 
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Overall, YOLOv8 achieved superior lesion-level recall compared to Faster R-CNN, a 
finding of clinical importance since missed lesions may delay or prevent timely treatment 
in acute stroke care. 

3.2 Image-Level Classification 

At the image level, YOLOv8 achieved higher overall accuracy than Faster R-CNN when 
classifying cases into hemorrhage, infarct, or normal. On the 200-image test set, YOLOv8 
correctly classified 176 cases (88%), while Faster R-CNN correctly classified 172 cases 
(86%). The main source of error for Faster R-CNN was in infarct detection, where it 
frequently misclassified small lacunar infarcts as normal. YOLOv8, on the other hand, 
demonstrated improved recall for infarcts, though still fell short of perfect classification. 

The confusion matrix in Table 5 provides a detailed breakdown of these results. For 
hemorrhagic stroke, YOLOv8 correctly classified 60 of 67 cases, while Faster R-CNN 
correctly classified 56. For acute infarction without hemorrhage, YOLOv8 correctly 
classified 56 of 67 cases, compared with 52 for Faster R-CNN. Both models performed 
strongly in normal cases, though Faster R-CNN occasionally generated false positives. 

Table 5: Confusion matrix comparing predicted vs. true labels for hemorrhage, 
infarct, and normal cases 

True / Predicted Hemorrhage Infarct Normal Total 

Hemorrhage 60 5 2 67 

Infarct 6 56 5 67 

Normal 2 4 60 66 

Total 68 65 67 200 

These findings emphasize YOLOv8’s advantage in reducing false negatives for infarction, 
a clinically significant outcome since false negatives may lead to delayed reperfusion 
therapy. 

3.3 Binary Hemorrhage Detection 

Binary classification of hemorrhage versus no hemorrhage was performed as a 
secondary analysis. YOLOv8 achieved a sensitivity of 0.91, specificity of 0.88, and overall 
accuracy of 0.90. Faster R-CNN demonstrated slightly higher specificity at 0.92, but 
sensitivity dropped to 0.82, producing an overall accuracy of 0.87. Radiologists, by 
contrast, achieved near-perfect results, with sensitivity, specificity, and accuracy each at 
0.99. Table 6 summarizes these findings. 

Table 6: Binary hemorrhage detection performance (test set, n=200). 

Method Sensitivity Specificity Accuracy 

YOLOv8 0.91 0.88 0.90 

Faster R-CNN 0.82 0.92 0.87 

Radiologists 0.99 0.99 0.99 

 



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/ 
Journal of Xi'an Shiyou University, Natural Sciences Edition 

ISSN: 1673-064X 
E-Publication: Online Open Access 

Vol: 68 Issue 10 | 2025 
DOI: 10.5281/zenodo.17347379 

Oct 2025 | 47 

McNemar’s test revealed no significant difference between YOLOv8 and radiologists (p 
> 0.05), indicating that YOLOv8 achieved a statistically comparable sensitivity to experts. 
Faster R-CNN, however, was significantly less sensitive, particularly for small 
hemorrhages, and therefore underperformed relative to both YOLOv8 and radiologists. 

3.4 Inference Speed 

The efficiency of each model was evaluated by measuring inference time per image on 
GPU. YOLOv8 processed each DWI slice in fewer than 15 milliseconds, while Faster R-
CNN required over 40 milliseconds for the same task. This threefold difference 
underscores YOLOv8’s suitability for real-time triage in acute stroke workflows, where 
rapid interpretation can be critical for patient outcomes. 

3.5 Qualitative Examples 

Representative detection outputs are shown in Figure 6. For hemorrhagic stroke cases, 
YOLOv8 produced bounding boxes closely aligned with ground truth annotations, while 
Faster R-CNN tended to under-segment hemorrhages. In infarct cases, YOLOv8 
successfully identified subtle lacunar infarcts that Faster R-CNN missed. For normal 
cases, both models generally performed well, although Faster R-CNN occasionally 
generated false positives, illustrating the potential risks of over-detection. 

 

Bounding box showing hemorrhage area in the brain. 

 

Bounding box showing acute infarct area in the brain. 

Figure 6: Representative detection outputs on test images with predictions from 
YOLOv8 
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4. DISCUSSION 

This study evaluated the performance of two deep learning architectures, YOLOv8 and 
Faster R-CNN, for automated detection of intracranial hemorrhage and acute infarction 
on diffusion-weighted MRI (DWI). Using a balanced dataset of 1,000 cases, we found that 
YOLOv8 consistently outperformed Faster R-CNN in lesion-level recall, image-level 
classification accuracy, and inference speed. Importantly, YOLOv8 achieved sensitivity 
approaching that of expert radiologists, who attained near-perfect accuracy of 99%. 
These results underscore the feasibility of applying modern one-stage object detection 
models to stroke MRI and highlight their potential role in augmenting clinical workflows. 

4.1 Principal Findings 

The most significant observation from this study was the superior recall achieved by 
YOLOv8 compared with Faster R-CNN. At the lesion level, YOLOv8 detected infarcts and 
hemorrhages with higher sensitivity, particularly for small lacunar infarcts and subtle 
hemorrhagic lesions, which are frequently overlooked by automated systems. Faster R-
CNN achieved relatively high specificity, but at the cost of increased false negatives. In 
clinical practice, this trade-off is less desirable because missing an acute infarct or small 
hemorrhage has more severe consequences than producing a false positive, which can 
often be corrected by human review. 

The improvement conferred by data augmentation was another key finding. Augmented 
training resulted in smoother convergence, as demonstrated by the training curves, and 
yielded better generalization in infarct detection. This aligns with prior studies 
demonstrating that augmentation strategies enhance model robustness in medical 
imaging tasks [3,19]. The inclusion of noise, geometric transformations, and photometric 
variability helped mimic the heterogeneity encountered in real-world datasets, thereby 
reducing overfitting. 

Binary hemorrhage detection further emphasized YOLOv8’s strength. With sensitivity of 
0.91 and accuracy of 0.90, YOLOv8 approached the radiologist benchmark, with no 
statistically significant difference according to McNemar’s test. Faster R-CNN, although 
achieving higher specificity, fell short in sensitivity, missing subtle hemorrhagic foci. 
Radiologists, as expected, remained superior, achieving 99% accuracy. This confirms 
that while AI is not yet a substitute for human expertise, it can approach expert-level 
sensitivity and therefore serve as a valuable adjunct in clinical settings. 

4.2 Comparison with Prior Literature 

Our findings align with and extend the existing body of literature on AI applications in 
stroke imaging. DWI has long been recognized as the most sensitive modality for 
detecting acute infarction [7–9,11–14], but its limitations in identifying hemorrhage have 
been emphasized in multiple studies [6,10]. Susceptibility artifacts, ADC variability, and 
magnetic field inhomogeneities can obscure or mimic hemorrhage, making interpretation 
challenging even for experienced radiologists [12–14,15–16]. Our study demonstrated 
that both YOLOv8 and Faster R-CNN occasionally misclassified artifacts as hemorrhage, 
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underscoring the importance of complementary imaging such as GRE or SWI for 
definitive characterization [6,10]. 

Artificial intelligence has increasingly been applied to address these limitations. 
Systematic reviews and meta-analyses report pooled sensitivities and specificities above 
90% for AI in ischemic stroke detection [2,18]. Ryu et al. [10] demonstrated that deep 
learning-based segmentation of infarcts on DWI generalized across multicenter datasets, 
confirming the potential scalability of such systems. Similarly, Park et al. [18] validated 
AI-based stroke segmentation across multiple institutions, achieving expert-level 
reproducibility. Our findings are consistent with these reports, as YOLOv8 achieved high 
accuracy and robustness despite being trained on a single-center dataset. 

Previous work with YOLOv5-based networks has reported map values exceeding 80% 
for acute infarct detection [3,19], while Faster R-CNN has historically been considered 
the gold standard for accuracy in object detection tasks [4]. However, the slower inference 
speed of Faster R-CNN has limited its clinical applicability in time-sensitive scenarios. Al 
sufyani [4] showed that YOLOv8 surpassed Faster R-CNN in brain tumor detection, 
achieving higher recall and faster inference. Our study extends this evidence to stroke 
imaging, demonstrating that YOLOv8 not only maintains accuracy but also achieves 
inference times of under 15 MS per slice, three times faster than Faster R-CNN. In acute 
stroke workflows, where treatment decisions must be made within narrow therapeutic 
windows, such improvements in computational efficiency are of direct clinical relevance 
[8,9]. 

Benchmarking against radiologists remains essential for clinical translation. Prior meta-
analyses have confirmed that CNNs can match radiologist-level performance for 
intracranial hemorrhage detection on CT [5], yet comparable evidence on MRI is sparse 
[6]. By directly comparing YOLOv8 and Faster R-CNN with radiologist consensus, our 
study provides novel evidence that AI systems can achieve sensitivity comparable to 
experts on DWI. Although specificity lagged behind radiologists, the narrowing gap 
highlights the growing potential of AI to complement human interpretation rather than 
replace it. 

4.3 Clinical Implications 

The clinical implications of these findings are substantial. First, YOLOv8 demonstrated 
performance that is clinically acceptable for use as a decision-support tool, particularly in 
settings where neuroradiology expertise is not readily available. In resource-limited 
environments, such systems could provide rapid screening and triage, reducing the risk 
of delayed diagnosis. Second, inference speed is a critical factor in acute stroke care. 
The ability of YOLOv8 to process an image in under 15 MS suggests that it could be 
integrated into near real-time workflows, such as PACS-based alerts or automated triage 
dashboards. Faster R-CNN, while accurate, is unlikely to meet the practical demands of 
stroke care due to its slower processing. 
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Furthermore, the integration of AI into clinical workflows has the potential to improve 
efficiency for radiologists. Automated lesion detection can serve as a “second reader,” 
highlighting suspicious areas and reducing fatigue-related errors, especially in high-
volume settings. In stroke centers where time-to-treatment directly affects outcomes, 
such decision-support systems could contribute to improved patient survival and 
functional recovery [1,8,9]. 

4.4 Error Analysis 

Error analysis revealed important patterns that warrant discussion. YOLOv8 occasionally 
misclassified susceptibility artifacts and cortical laminar necrosis as hemorrhage, while 
Faster R-CNN frequently failed to detect small lacunar infarcts. These misclassifications 
are not surprising, as they reflect challenges inherent in DWI interpretation. Similar issues 
have been reported in earlier studies, where small vessel disease and chronic ischemic 
changes often confounded AI models [12–14]. Addressing these errors will require 
multimodal integration, particularly with GRE and SWI sequences, which provide higher 
sensitivity for hemorrhage detection [6,10]. 

4.5 Limitations 

This study has several limitations. First, only single representative slices were used for 
each case, rather than full volumetric datasets. This approach reduced computational 
complexity but may underestimate lesion burden and fail to capture the full extent of 
pathology. Second, the retrospective and single-center design limits generalizability, as 
the dataset may not reflect scanner variability or population heterogeneity seen in 
multicenter cohorts. Third, only DWI was analyzed; although DWI is highly sensitive for 
infarction, it is suboptimal for hemorrhage detection compared with GRE or SWI. Fourth, 
inference times were measured in a controlled research environment with high-
performance GPUs, which may not reflect integration into standard hospital PACS 
systems. Finally, while radiologist benchmarks provided a strong reference, interobserver 
variability remains a factor despite consensus review. 

4.6 Future Directions 

Future work should address these limitations through multicenter, multi-sequence 
validation studies. Incorporating ADC, GRE, and SWI sequences alongside DWI could 
improve the detection of hemorrhagic lesions and reduce artifact misclassification. The 
use of explainability tools such as Grad-CAM would provide visual explanations of AI 
predictions, increasing clinician trust and aiding in error identification. Prospective trials 
are also necessary to evaluate the clinical impact of AI-assisted decision-making, 
including effects on time-to-treatment, diagnostic confidence, and patient outcomes. 

In addition, federated learning approaches may enable collaborative model training 
across institutions without requiring data sharing, thereby overcoming barriers related to 
patient privacy and data governance [15–17]. Such strategies could substantially improve 
generalizability while addressing ethical concerns about centralized data storage. 
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5. CONCLUSION 

This study demonstrated that automated detection of intracranial hemorrhage and acute 
infarction on diffusion-weighted MRI can be achieved with clinically meaningful accuracy 
using modern deep learning methods. YOLOv8, a one-stage object detector, consistently 
outperformed Faster R-CNN in lesion-level recall, image-level classification accuracy, 
and inference speed. While radiologists remained the gold standard, achieving near-
perfect performance with sensitivity, specificity, and accuracy of 99%, YOLOv8 achieved 
sensitivity that approached expert level, with no significant statistical difference detected. 
Faster R-CNN, by comparison, showed lower sensitivity and slower inference, limiting its 
suitability for acute stroke workflows. 

The clinical implications of these findings are important. In acute stroke, where every 
minute of delay reduces the likelihood of favorable recovery, models such as YOLOv8 
could provide rapid triage support and assist non-specialist clinicians in differentiating 
infarction from hemorrhage. Real-time lesion detection has the potential to serve as a 
“second reader,” alerting radiologists to subtle abnormalities, reducing oversight, and 
ensuring consistency in high-volume or resource-limited settings. By complementing 
rather than replacing expert interpretation, AI systems may bridge the gap between 
limited specialist availability and the growing burden of stroke worldwide. 

Looking ahead, further work must address the limitations of this study. Future efforts 
should incorporate multi-sequence and volumetric MRI data, validate performance across 
multicenter datasets, and integrate explainability features to enhance clinician trust. 
Prospective trials will be required to determine whether AI integration leads to improved 
treatment times, better patient outcomes, and broader healthcare equity. With careful 
validation and responsible deployment, YOLOv8 and similar one-stage detectors have 
the potential to transform acute stroke imaging, complementing radiologists and 
supporting faster, more reliable decision-making in one of medicine’s most time-critical 
emergencies. 
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