Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Back

O-band mode-locked femtosecond praseodymium-doped fluoride fiber laser using a nickel metal-organic framework

2025 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics

Conference, CLEO/Europe-EQEC 2025 • Conference Paper • 2025 •

DOI: 10.1109/CLEO/EUROPE-EQEC65582.2025.11111580
Ahmad, Harith a, b, c; Nizamani, Bilal ; Samion, Muhamad Zharif ; Mutlu, Saliha d, e;

Yılmaz, Sevil Savaşkan d, e; +3 authors

Show all information

^a Photonics Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia

Abstract

Mode-locked fiber lasers are particularly noteworthy due to their compactness, affordability, and reduced losses, making them an attractive option for a variety of uses. Metal-organic frameworks (MOFs) have recently been identified as suitable saturable absorbers (SAs) in lasers operating at 1.5-and 2 µm wavelengths [1, 2]. MOFs represent a novel class of porous solid materials formed by the combination of inorganic metal ions and organic linkers. These frameworks exhibit exceptional material properties, such as a large surface area, structural diversity, tunable bandgap, and luminescence, making them highly advantageous for various applications in laser technology. This work presents an ultrafast mode-locked fiber laser operating in the relatively less explored O-band region, utilizing a nickel MOF (Ni-MOF) as a saturable absorber. © 2025 IEEE.

Indexed keywords

Engineering controlled terms

Crystalline materials; Fluorine compounds; Locks (fasteners); Metal ions; Metal-Organic Frameworks; Mode-locked fiber lasers; Nanotechnology; Nickel; Nickel compounds; Organic lasers; Porous materials; Praseodymium compounds

Engineering uncontrolled terms

Band modes; Femtoseconds; Fluoride fibre; Inorganic metals; Loss making; Metalorganic frameworks (MOFs); Mode-locked; Porous solids; Reduced loss; Solid material

Engineering main heading

Saturable absorbers

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Indexed keywords

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions → Privacy policy → Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. \nearrow , its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

RELX™