

Back

Effect of Seawater on Mechanical and Microstructure Properties of Polypropylene Fibre Reinforced Concrete (PPFRC)

Lecture Notes in Civil Engineering • Conference Paper • 2025 •

DOI: 10.1007/978-981-96-7814-3_7

Mohd Asri, Ammar Izuddin a; Saad, Siti Asmahani Siti Noratikah a; Wan Hassan, Wan Nur Firdaus;

Md. Husain, Nadiah ; Che Deraman, Siti Noratikah ; +1 author

Department of Civil Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Show all information

Abstract

Enhanced concrete strength can lead to increased brittleness and susceptibility to cracking. Traditional reinforcement methods with deformed steel bars aim to mitigate this problem, but corrosion issues can compromise the durability of concrete. Harsh weather like seawater can cause micro-cracks, allowing aggressive ions and water to penetrate and gradually deteriorate the concrete. Meanwhile, chemical reactions triggering steel corrosion led to rust formation, internal stress, cracking and delamination that caused structural risks. Fibre-reinforced concrete (FRC) offers a great solution by replacing steel bars with corrosion-resistant fibres hence improving both strength and flexibility. The study comprehensively analyses mechanical properties, particularly flexural strength, to assess how polypropylene fibre (PPF) affects FRC's overall strength.

Microstructure evaluations examine changes in pore structure and durability. The research also tests FRC performance cured in freshwater (FW) and seawater (SW) conditions. Based on this study, the low workability of fresh concrete was observed. This is due to the surface area increment in the concrete mix. Optimal PPF incorporation was recorded as 0.25% for compressive and flexural strength tests in both curing methods applied. Higher incorporation of PPF causes noncontinuous fibres congestion in the concrete mix. In this regard, it leads to the reduction of concrete strength which induces the formation of cracks. As for microstructure analysis, the sample with 0.25% PPF shows well-dispersed fibres throughout the concrete matrix. Therefore, it is proven that the inclusion of PPF in the concrete matrix improves the overall concrete performance. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.

Author keywords

Harsh environment exposure; Mechanical properties; Microstructure properties; Polypropylene fibre reinforced concrete (PPFRC)

Indexed keywords

Engineering controlled terms

Bars (metal); Bending strength; Compressive strength; Concrete mixers; Concrete mixtures; Corrosion resistance; Cracks; Curing; Fiber reinforced concrete; Fracture mechanics; Pore structure; Reinforced plastics; Steel corrosion; Steel fibers; Tensile strength

Engineering uncontrolled terms

Concrete performance; Concrete strength; Fiber-reinforced concretes; Harsh environment; Harsh environment exposure; Mechanical; Microstructures properties; Polypropylene fiber reinforced concrete; Property

Engineering main heading

Durability

Corresponding authors

Corresponding S.A. Saad author

Affiliation

Department of Civil Engineering, Kulliyyah of Engineering, International
Islamic University Malaysia, Kuala Lumpur, Malaysia

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Corresponding authors

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

All content on this site: Copyright © 2025 Elsevier B.V. 7, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

