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Abstract - Pavement distress analysis plays a big role in keeping roads in good shape, especially in busy spots like Selangor and
Kuala Lumpur, where heavy traffic and tropical weather make them wear out fast. This work introduces DeepSeg-CrackNet, a
fresh hybrid deep learning model that uses Deep Gradient ResNet to spot cracks and a Residual block with a Modified Attention
Mechanism to sort them into types, making it simpler to detect and label pavement damage. The model was trained on real data
collected from Malaysian roads, with the CRACKS00 dataset added in to cover more situations, and captured using a GoPro
Hero 8 mounted on a vehicle, with GPS mapping keeping everything clear and easy to trace. DeepSeg-CrackNet performs really
well—it hits a Mean IoU of 0.8388889 for segmentation and scores 85% accuracy in classifying cracks like alligator, longitudinal,
and transverse, with precision ranging from 0.84 to 0.89, and recall between 0.80 and 0.96. It also measures cracks in meters or
square meters, which helps in planning repairs smartly, like replacing big alligator cracks or sealing smaller longitudinal ones to
save resources. Compared to models like CrackNet, DeepSeg-CrackNet stands out, especially for alligator cracks, with a
precision of 0.84 and recall of 0.96, beating CrackNet’s 0.778 and 0.772. In the end, DeepSeg-CrackNet makes it easier to
manage Malaysia’s roads in a data-driven way, improving safety and ensuring longer-lasting infrastructure through smarter,
proactive repair approaches that enhance city travel.
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1. INTRODUCTION

Pavement integrity acts as a cornerstone for safe travel and economic growth in Malaysia, especially with rapid
urbanization and expanding road networks putting huge pressure on infrastructure systems. Roads serve as vital
links between bustling urban centers like Selangor and Kuala Lumpur and rural areas, keeping goods and people
moving smoothly while supporting the country’s economic progress. But these essential connections face constant
wear from harsh monsoon rains, tropical heat causing thermal expansion, oxidative aging, and traffic volumes that
go far beyond what the roads were originally built to handle. Even small surface cracks often hint at deeper
structural issues that can grow into serious problems like potholes or complete pavement breakdown if ignored [1].
Beyond the obvious safety risks, this kind of damage adds up to massive repair costs, with Malaysia’s Public Works
Department (JKR) spending over RM 2.8 billion each year just on fixing roads, which makes advanced crack
detection and analysis a top priority for keeping Malaysia’s infrastructure strong and competitive.

Traditional crack assessment methods lean heavily on manual inspections, where teams of engineers do visual
checks or use semi-automated tools like laser profilometry. These techniques have been around for years, but they
come with big drawbacks that make pavement management tough [2], [3]. Manual surveys often need 3-5 people to
cover just 10 km of road, taking weeks to finish entire networks and giving inconsistent results, since human
inspectors can vary by up to 30% in how they rate crack severity, especially when shadows or wet surfaces mess
with accuracy. Plus, these methods don’t capture key details like crack length, which is crucial for planning
maintenance, leading to either early repairs that waste money or late fixes that let small issues turn into major
projects.

Deep learning has completely changed infrastructure inspection lately, bringing powerful tools for automated crack
detection, classification, and size analysis [4]. Modern convolutional neural networks (CNNs) like U-Net and Mask
R-CNN hit over 90% accuracy in controlled settings for pixel-level segmentation, while transformer-based models
like Swin-UNet pick up on long-range pavement texture patterns. Instance segmentation in systems like YOLOvS8
can spot individual cracks and their shapes at the same time, and the best setups use attention mechanisms (CBAM,
SE blocks) to focus on important features and ignore distractions like surface markings or debris, cutting inspection
times by up to 95% compared to manual methods on datasets like CrackTree200 internationally. But making these
work in Malaysia means dealing with the challenge of not having enough local training data that reflects tropical
conditions and pavement types.

Malaysia’s unique pavement conditions call for custom Al solutions that generic models can’t handle. The country’s
asphalt mixes use 20-30% reclaimed tire polymer to deal with extreme heat, which changes how cracks form
compared to standard pavements, and heavy monsoon rains speed up stripping and pothole formation, creating
damage patterns that don’t look like those in temperate climates. So, datasets like CRACKS500 or RDD2020 [5]
don’t really fit, causing models like U-Net trained on other regions to struggle with Malaysian roads due to domain
shift, potentially leading to more misclassifications. Most models also miss crack measurements, which are key for
JKR’s Pavement Condition Index (PCI) calculations, leaving maintenance decisions based more on guesswork than
solid data since they lack precise crack width (to 0.1 mm) and length (to 10 cm) measurements [6].

This study steps in to tackle these gaps with two major innovations. First, it brings in the RCD-IIUM dataset [7],
Malaysia’s first detailed open-source pavement imagery collection with pixel-wise annotations and measurement
data. Second, it introduces DeepSeg-CrackNet, a new multi-task model that combines crack segmentation,
classification, and size analysis in one system, using a Deep Gradient ResNet (DG-ResNet) for feature extraction, a
Crack Attention Fusion Module (CAFM) to cut down on environmental noise, an Augmented SubPixel Shuffling
(ASPS) decoder for precise crack shapes, a Multi-Scale Context Aggregator (MSCA) to classify cracks by ASTM
D6433 standards, and a Metrological Branch for real-world measurements through projective geometry. The paper
is laid out to review crack detection history, explain the dataset and model design, share results benchmarked against
standards, and wrap up with implications and future steps, aiming to raise the bar for automated pavement distress
analysis in Malaysia and keep the nation’s roads safe and sustainable through cutting-edge AL

2. LITERATURE REVIEW

The area of pavement crack detection and classification has been picking up a lot of interest lately, especially since
keeping infrastructure in good shape is so important, and with tech advancing quickly, Figure 1 highlights a big
jump in publications on this topic from 2015 to 2025, particularly conference papers and journal articles hitting their
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highest numbers around 2023-2024, which really shows how much automated crack detection matters for road
safety and saving money, all thanks to new computing methods and the growing need for practical, data-driven ways
to manage pavements [8], [9].

Document Count

Date Published Sort

Document Type

W Book Book Chapter
Conference Proceedings Article [l Dataset
Journal Article Other
Report Unknown Document

Figure 1. Distribution of Scholarly Publications on Pavement Crack Detection by Document Type (2015-2025)

2.1 Historical Context: From Manual Inspections to Image Processing

Pavement crack detection has come a long way, mostly because there’s a real need to keep an eye on infrastructure
as transportation demands keep going up. Back in the day, it was all about manual inspections, where engineers
would walk along roads and check for cracks with their own eyes—a method that took forever, wasn’t always
reliable, and varied a lot depending on who was doing the checking. Then, in the 1990s, digital imaging came into
play with traditional image processing as a semi-automated option, using tricks like edge detection (Canny
algorithm), adaptive thresholding, and morphological operations to pick out cracks by sharpening contrast and
cutting down on noise, as seen in studies that relied on histogram-based methods and wavelet transforms to study
pavement images [10], [11]. But those approaches were pretty fragile, often thrown off by things like changing light
or different pavement textures, which led to a lot of mistakes, especially on rough surfaces, making it clear that
tougher, more adaptable solutions were needed.

2.2. Rise of Deep Learning: Comvolutional Neural Networks and Beyond

Things really shifted in the early 2010s when deep learning came along and changed pavement crack detection,
using CNNs to pull features right out of raw data, leaving older methods in the dust, like in studies showing CNNs
spotting cracks with solid accuracy by picking up on edges, contours, and patterns without needing any manual
tweaks [12]. That opened the door for semantic segmentation models like U-Net [13], which used an encoder-
decoder setup with skip connections to map cracks at the pixel level, doing a great job at outlining them but
struggling to tell different crack types apart, which was a big issue for planning maintenance. Meanwhile, object
detection models like YOLO (You Only Look Once) [14] stepped in with real-time detection through versions like
YOLOVS, pinpointing cracks with bounding boxes but often missing the finer details or getting confused by
overlapping cracks, and CrackNet [15] tried to fix some of that with multi-scale feature extraction for 3D asphalt
imagery, performing better but needing a ton of computing power, showing that CNNs still have trouble with things
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like generalization, shadows, or finding a balance between speed and depth, which pushed research to look for
smarter approaches.

2.3. Advances in Instance Segmentation and Attention Mechanisms

Instance segmentation turned things around by mixing detection and segmentation to map out individual cracks with
pixel-level accuracy, going beyond semantic segmentation’s broader focus, with Mask R-CNN [16] setting a high
bar by creating masks alongside bounding boxes, improving crack boundary accuracy compared to YOLO-based
methods, though its complexity makes it tough to use in settings with limited resources. Newer models like
YOLOvVS [17] have tried to blend speed and detail by adding segmentation to real-time setups, but they still struggle
with thin or low-contrast cracks that show up a lot in real-world conditions. Attention mechanisms have helped out
by zeroing in on the important stuff and ignoring distractions, with techniques like Squeeze-and-Excitation (SE)
blocks [18] and Convolutional Block Attention Module (CBAM) weighting spatial and channel features to better
spot cracks in messy environments like separating cracks from oil stains or shadows—but these models really need
diverse training data to shine.

2.4. Regional Insights: Pavement Distress in Southeast Asia and Malaysia

Pavement distress research in Southeast Asia, especially Malaysia, doesn’t get the attention it deserves, even though
the region faces some unique challenges, with tropical climates bringing heavy rain, high humidity, and temperature
swings that speed up crack formation through water damage and thermal stress, not to mention urban traffic adding
extra wear, yet early Malaysian studies using basic CNNs noticed monsoon effects but didn’t tackle segmentation
[19]. and using YOLOV3 on tropical road data had limited success because of gaps in the dataset [20], especially in
urban hubs like Selangor and Kuala Lumpur where pavement damage is more severe, while global datasets like
CRACKS500 or GAPs, made for temperate climates, don’t capture Southeast Asia’s specific conditions—think
monsoon impacts, mixed traffic, and aging roads—pointing to a real need for local solutions that address Malaysia’s
unique road profiles, mixing in environmental and human factors for better detection and classification to improve
maintenance planning.

2.5. The Need for Hvbrid Innovations in Crack Analysis

The shortcomings of current models—U-Net not being able to tell crack types apart, YOLO’s rough localization,
and CrackNet needing so much computing power—make it obvious that hybrid innovations are needed to combine
segmentation and classification, using residual learning to pull out features across different scales, cutting down on
computing needs, and adding attention mechanisms to focus on key patterns even with noise around, providing
accurate crack mapping and type identification for smarter maintenance planning, especially in places like Malaysia
where urban traffic and tropical weathering make pavement stress worse, paving the way for better accuracy in
tough conditions, scaling for real-world use, and offering clear insights for prioritizing repairs, setting up advanced,
tailored solutions that fit specific infrastructure needs.

3. RESEARCH METHODOLOGY
3.1. Data Acquisition and Dataset Development

Putting together a solid dataset that captures the real challenges of pavement conditions in Malaysia meant setting up
a careful data collection process, focusing on the busy road networks of Selangor and Kuala Lumpur, picked
because of their heavy traffic and mix of road types, from packed highways to quieter residential streets, giving a
good picture of pavement wear influenced by Malaysia’s tropical climate and city life. Generally, in any deep
learning model data collection plays the most important role [21][22]. The setup for gathering this data used a GoPro
Hero 8 camera attached to a Perodua Viva inspection vehicle, specially tweaked for this project, and Figure 2 shows
how the camera was mounted, giving a clear look at how it worked out on the roads. The camera sat 1.6 meters
above the pavement, pointed straight down, and was set to cover a 3.1-meter-wide strip—matching the typical width
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of a single traffic lane in Malaysia—so the images would feel like what you’d see while driving, making the dataset
perfect for training deep learning models.

Figure 2. Vehicle-mounted Camera Setup

The GoPro Hero 8 ran in a custom video mode, with its details laid out in Table 1, and two calibration setups were
tried out to get the data just right, as shown in Table 2. Setup 1 had the camera at 1.3 meters with a 90° + 35° angle,
1.1 meters from the marked road spot, while Setup 2 placed it right above the lane’s midpoint at 1.6 meters with a
straight 90° angle, which ended up being the better choice for its wider and steadier coverage. To make the dataset
even stronger and more varied, the images were paired with the CRACKS500 dataset, a public collection of 500
pavement images (2000x1500 pixels) with marked cracks, helping the model learn from a wider range of crack
types and conditions.

Table 1. Specifications of the GoPro Hero 8 Camera Configuration

Attribute Details
Camera Model GoPro Hero 8
Mounting Hardware GoPro Rod Mount
Operating Mode Custom Video Setting
Image Resolution 1080p (1920x1080)
Frame Rate Options 24 fps, 60 fps
Lens Type Linear Field of View
Video Bit Rate Standard Quality (45 Mbps)
Minimum ISO Setting 100
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Table 2. Outcomes of Camera Calibration Setups

Calibration | Road Coverage | Camera Orienfation | Proximity to  Marked | Installation
Setup Width to Ground Road Segment Height
Setup 1 3.1 meters 90° £ 35° 1.1 meters 1.3 meters
Setup 2 3.1 meters 90° Directly above midpoint 1.6 meters

Keeping things specific and repeatable was a big focus, so detailed GPS mapping was used to track the data
collection routes in Selangor and Kuala Lumpur, with Figure 3(a) and Figure 3(b) showing these GPS maps for
Selangor and Kuala Lumpur, making it easy to see exactly where the data came from and letting other researchers
follow the same paths or expand the work elsewhere. The final dataset includes high-quality video footage and still
images pulled from it, capturing all kinds of pavement damage under Malaysia’s unique conditions like wear from
monsoons, stress from city traffic, and different lighting situations setting a strong base for training and testing the
DeepSeg-CrackNet model.

Tour

Completed on November 23, 2022

Road Ride

6 e 9 2 ) s 0 e g 2
. ’ A i 1
Wit fekm o %2kah som SO h. | 1omin 4km | 3BGkmp SOm

(a) (b)
Figure 3. (a) GPS Road Data Around Selangor, (b) GPS Road Data Around Kuala Lumpur

3.2. Data Preprocessing

Getting the raw video data ready for deep learning meant cleaning it up properly to make sure the model training
would go smoothly and hold up well. The footage from the GoPro Hero 8 was first broken down info individual
frames, turning the video streams into still images that could be analysed, and Figure 4 gives a peek at some of these
frames, showing the quality and variety of the pavement images captured. Each frame was resized to a standard
640x640 pixels, picked to keep a good balance between not overloading the computer and still holding onto the
important crack details, making sure it fit what the DeepSeg-CrackNet model needed, which helps avoid issues from
mismatched image sizes that could mess with the results.
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Figure 4. Sample Frames Extracted from the Collected Video

To make the dataset better reflect Malaysia’s mix of road and lighting conditions, a few augmentation tricks were
used, like flipping the images horizontally and vertically with a set chance, basically stretching the dataset by
showing the same road segments from different angles. Brightness and exposure were also tweaked by +20%,
mimicking different times of day or weather, like cloudy skies or bright sun, and a bit of blurring was added, with a
kernel size between 2 and 4.5 pixels, to imitate real-life issues like camera shake or hazy air. These tweaks help the
model handle the kind of variety you’d see on Malaysian roads, from rain-soaked surfaces to sunny city lanes.

The dataset was also standardised and normalised to get it ready for training, with standardization making sure all
images followed the same format, and normalization adjusting pixel values to a set range, ensuring the deep learning
algorithms got consistent inputs. A careful balance was kept between cleaned-up images and ones with some noise,
keeping natural differences—Ilike uneven lighting or pavement textures—so the model could learn to deal with real-
world challenges, and this whole preprocessing setup makes the dataset more useful, helping DeepSeg-CrackNet
work well even in tricky, unpredictable situations.

3.3. Data Labelling

Good labelling is key for supervised learning, giving the ground truth the DeepSeg-CrackNet model needs to learn
how to spot and sort pavement cracks. The Roboflow annotation tool was used to label each image frame, dividing
cracks into three types: alligator, longitudinal, and transverse, with showing examples of these labelled frames,
marking alligator cracks in purple, longitudinal cracks in blue, and transverse cracks in pink, giving a clear view of
the detailed labelling process. This setup lets the model not just find cracks but also figure out what kind they are,
which is super important for deciding how bad they are and planning repairs. Examples of labelled image frames are
shown in Figure 5.
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Figure 5. Examples of Labelled Images Frames

The labeled dataset was split into training, validation, and testing sets, as shown in Table 3, to make sure the model
could be built and checked thoroughly, using a rough 80-20 split, with 85% of the images (1900 frames) set aside
for training, 10% (207 frames) for validation, and 5% (103 frames) for testing, which makes sure the model learns
from a wide range of examples, checks its performance on new data, and gets properly tested for real-world use,
giving a solid measure of how well it can predict across different crack types.

Table 3. Distribution of Dataset for Training, Validation, and Testing

Class Label "l;ﬁf‘l;i;g V:Ia]l]il(:i:’l;:n Testing Images | Total
Alligator Cracks crack-alligator 760 80 40 880
Longitudinal Cracks crack-long 760 80 40 880
Transverse Cracks crack-trans 380 47 23 450
Total 1900 207 103 2210

3.4. DeepSeg-CrackNet Architecture

DeepSeg-CrackNet is a fresh hybrid deep learning framework built to handle both segmentation and classification
for a full-on pavement crack analysis, made specially to fit the unique patterns of Malaysian roads. It’s got two main
parts: a Deep Gradient ResNet for segmentation and a ResNet-50 backbone with a Modified Attention Mechanism
for classification, working together to map out cracks and identify their types, and Figure 6 gives a clear diagram of
the DeepSeg-CrackNet setup, showing how its segmentation and classification parts connect. This hybrid design
taps into the strengths of residual learning and attention mechanisms to nail down high accuracy in spotting and
sorting alligator, longitudinal, and transverse cracks.
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Figure 6. Methodological Flow

The segmentation part uses a Deep Gradient ResNet, a beefed-up version of the ResNet setup, fine-tuned for pixel-
level crack mapping, with multiple convolutional layers and residual connections that let the model dig into deep
features while dodging the vanishing gradient issue. Each residual block has batch normalization to keep training
steady and ReLU activation to add some non-linearity, making sure it pulls out strong features across different
scales, and skip connections in the network hold onto spatial details, letting the model catch fine crack patterns, like
the messy shapes of alligator cracks or the straight lines of longitudinal ones, spitting out a segmentation mask that
pinpoints crack areas with high accuracy.

The classification part builds on a ResNet-50 backbone, jazzed up with a Modified Attention Mechanism to sharpen
focus and cut down on noise, with ResNet-50’s deep 50-layer setup of convolutional and residual blocks giving a
solid base for feature extraction, while the attention mechanism—pulled from recent ideas—highlights the important
features, helping the model tell crack types apart even with tricky backgrounds like shadows or pavement markings.
The attention setup mixes channel and spatial attention, tweaking feature maps to zero in on crack-specific patterns,
and an Atrous Spatial Pyramid Pooling (ASPS) layer at the end of the classification pipeline pulls together multi-
scale features to tackle cracks of different sizes and shapes, a common challenge on Malaysian city roads.

Hyperparameters were adjusted to make DeepSeg-CrackNet work best for Malaysian crack patterns, as shown in
Table 4, and this custom setup, blending segmentation and classification, makes DeepSeg-CrackNet a strong tool for
pavement distress analysis, ready to give clear, useful insights for keeping Malaysia’s roads in shape.

Table 4. Hyperparameter Settings for DeepSeg-CrackNet

Hyperparameter Value

Learning Rate 0.001

Optimizer Adam
Epochs 200
Batch Size 16
Dropout Rate 0.5
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The hyperparameter values for DeepSeg-CrackNet, as shown in Table 4, were determined through a trial-and-error
approach to optimize the model’s performance on Malaysian road data. We started with common baseline values,
like a learning rate of 0.01 and a batch size of 32, but found the model struggled with convergence on our diverse
dataset. After several rounds of tweaking, we settled on a learning rate of 0.001, which allowed steady training
without overshooting, and a batch size of 16 to balance memory constraints with stable gradient updates. The Adam
optimizer was chosen for its reliability in handling noisy data, and we set 200 epochs to ensure the model had
enough time to learn crack patterns without overfitting, which we monitored closely. A dropout rate of 0.5 was
added to prevent the model from relying too heavily on specific features, especially given the varied lighting and
pavement textures in our images. This iterative process involved testing multiple combinations and checking
validation metrics like IoU and accuracy to find the sweet spot for our specific use case.

3.5 Crack Size Assessment and Metrological Quantification

DeepSeg-CrackNet measures crack sizes through a carefully calibrated process that turns segmentation results into
real-world numbers, calculating length (L) for linear cracks (longitudinal/transverse) by tracing the main axis of
connected components in the binary mask (I_b), and figuring out surface coverage (A) for areal cracks (alligator) by
adding up pixels, using the camera’s known setup (1.6m height, 3.1m lane width, 640x640px resolution) for
accuracy, as shown in Equation (1), Equation (2), and Equation (3).

Mathematical Formulation
1. Binary Mask Generation:
I_b(i,j) = {1 if pixel (i,j) € crack region (1)
{0 otherwise
2. Linear Crack Length:
L_pixels = max(ConnectedComponentAxis(I_b)) (2)
L_meters = L_pixels X (3.1 /640)
3. Alligator Crack Area:
A_pixels = XX 1 b(i,j) (sum over 640 X 640 image) (3)
A m? = A pixels x (3.1 X 2.8) /(640 X 640)
(Where 2.8m is the transverse field-of-view length at 1.6m height.)

This approach lines up with ASTM D6433 standards, making it easier to do automated PCI scoring and data-driven
maintenance decisions for Malaysia’s road network.

4. RESULTS AND DISCUSSIONS
4.1. Experimental Setup Overview

Testing out DeepSeg-CrackNet, a fancy hybrid deep learning model, meant checking how well it could spot, map
out, and sort pavement cracks using a dataset pulled together from roads in Selangor and Kuala Lumpur, with the
CRACKS500 dataset thrown in to mix things up a bit. The setup for this testing used some serious computing power
to handle the heavy lifting of deep learning, running on an HP Pavilion 15be408tx with an Intel Core i7-8750H
processor, 8 GB of DDR4 RAM, and a 1 TB hard drive, plus an NVIDIA GeForce GTX 1050 with 4 GB VRAM for
onboard graphics work, and some extra help from an NVIDIA GeForce RTX 4080 for faster training and predictions
when working remotely. The whole thing was built using Anaconda and Google Colab, with PyTorch as the main
framework since it’s great for setting up DeepSeg-CrackNet’s mixed design.

The dataset had 2210 images total, split up as 1900 for training, 207 for validation, and 103 for testing, just like it’s
laid out in the Methodology section (Table 3), with images cleaned up to a standard 640x640 pixel size, and little

10
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tweaks like horizontal and vertical flips and +20% brightness changes to match Malaysia’s range of road and
lighting conditions. DeepSeg-CrackNet was put through 200 rounds of training, using a learning rate of 0.001, the
Adam optimizer, a batch size of 16, and a dropout rate of 0.5 to keep it from overfitting, as shown in Table 4,
making sure the testing gave a solid look at how well the model works for real pavement damage analysis.

4.2. Segmentation Performance Analysis

DeepSeg-CrackNet’s ability to map out cracks was checked using a bunch of measures—accuracy, precision, recall,
Jaccard Coefficient (Intersection over Union, IoU), and Dice Coefficient—over the training and validation stages,
giving a full picture of how well it can outline crack edges. These measures were tracked across all 200 rounds of
training, showing how the model learns and handles new data it hasn’t seen before.

The model’s accuracy, shown in Figure 7, looks pretty strong during training, with the training accuracy (blue line)
starting around 80% and climbing fast, settling just under 95% by the end, while the validation accuracy (orange line)
keeps up closely, landing at about the same spot, which means it’s good at handling new stuff without overfitting.
Precision, in Figure 8, shows how many of the crack pixels it flagged were actually correct, hitting around 95% for
both training and validation, meaning it’s not throwing out too many false alarms. Recall, in Figure 9, levels off at
about 90% for both stages, showing the model catches most of the cracks out there.

Model Accuracy
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The Jaccard Coefficient (IoU), in Figure 10, keeps climbing and settles around 80% for both training and validation,
showing the model’s pretty consistent at matching up predicted crack areas with the real ones, and the Dice
Coefficient, in Figure 11, follows a similar path, sitting just a bit higher, which means there’s a lot of overlap
between what the model predicts and the actual cracks. These charts really back up how well DeepSeg-CrackNet
maps out cracks, which is super important for getting pavement analysis right.
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Figure 10. Model Jaccard Coefficient Plot

Model Dice Coeffient

0.9

0.8

Dice Coeffient

0.6

0.5

] 20 40 60 80 100
epoch

Figure 11. Model Dice Coefficient Plot
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Hard numbers back this up too, as laid out in Table 5, with a Mean IoU of 0.8388889 showing the model’s solid at
overlapping predicted and real crack areas, and a Mean Dice Coefficient of 0.8256968848551859 matching that
consistency, while the Hausdorff Distance, which checks the biggest gap between predicted and real edges, sits at
about 3.21 for both background and crack classes, proving the model’s spot-on at outlining cracks, making it a trusty
tool for real pavement damage analysis in Malaysia.

Table 5. Quantitative Metrics for Segmentation Model

Metric Value
Mean IoU 0.8388889
Mean Dice Coefficient 0.8256968848551859
Hausdorff Distance (Background) 3.2126949574078867
Hausdorff Distance (Crack) 3.2126949526675244

4.3. Visual Segmentation Results Across Crack Types

Taking a closer look at DeepSeg-CrackNet’s segmentation results gives a good sense of how it handles different
crack types—alligator, transverse, and longitudinal—that you’d see a lot on Malaysian city roads. Figure 12 shows
an alligator crack, with the original grayscale image on the left and the segmented one on the right, where the
original has a messy web of cracks that look like alligator skin, and the segmented version nails down those tricky
patterns, showing the model’s great at picking out big, complicated crack setups that are key for spotting serious
pavement problems.

Figure 12. Original and Segmented Image of Alligator Crack

Figure 13 shows a transverse crack, which cuts across the road direction, with the original image on the left showing
a clear line across the pavement, and the segmented one on the right capturing that line perfectly, making sure it’s
ready for deeper analysis. Then Figure 14 has a longitudinal crack, running along the road direction, with the raw
image on the left showing a thin, stretched-out crack that’s an early sign of trouble, and the segmented version on
the right tracing its length spot-on, giving a clear picture of the issue. These visuals prove DeepSeg-CrackNet’s solid
at mapping out all kinds of cracks, which is a must for checking road structures and planning repairs in Malaysia.
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Figure 14. Original and Segmented Image of Longitudinal Crack

4.4. Classification Performance Analysis

After mapping out the cracks, DeepSeg-CrackNet’s classification part, which uses a Residual block with a Modified
Attention Mechanism, sorts them into alligator, longitudinal, and transverse types, a big step for figuring out what
repairs are needed. Table 6 breaks down how well it did, showing precision, recall, and F1-score for each crack type.
along with the support (how many examples in the test dataset). For alligator cracks (class 0), it hits a precision of
0.84 and a recall of 0.96, making an F1-score of 0.90, meaning it’s awesome at catching almost all alligator cracks
accurately. Longitudinal cracks (class 1) get a precision of 0.89, a recall of 0.88, and an F1-score of 0.885, showing
it’s pretty dependable even with their tricky shapes. Transverse cracks (class 2) have a precision of 0.87 but a recall
0f 0.80, leading to an F1-score of 0.83, which suggests they’re a bit harder to catch.

Table 6. Classification Report for Residual Block with Modified Attention Mechanism

Class Precision Recall F1-Score Support
Alligator (0) 0.84 0.96 0.90 114
Longitudinal (1) 0.89 0.88 0.885 135
Transverse (2) 0.87 0.80 0.83 121
Overall Accuracy 0.85 370
Macro Avg 0.85 0.85 0.85 370
Weighted Avg 0.85 0.85 0.84 370
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The overall accuracy for classification is 0.85 (85%), with macro and weighted averages for precision, recall, and
Fl-score all hanging around 0.85, showing it’s pretty balanced across all crack types, and the confusion matrix,
coming up in Figure 15, gives a visual of how it did, showing alligator cracks correctly sorted in 110 out of 114
cases, with just 4 mistaken for longitudinal ones, while longitudinal cracks had some mix-ups, with 9 called alligator
cracks and 14 as transverse, and transverse cracks also got mixed up, mostly with longitudinal ones (18 cases),
pointing to a spot that could use some work. The spot-on segmentation really helps with these classification results,
since clear mapping makes it easier to sort cracks right, especially for alligator cracks with their high recall.
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Figure 15. Confusion Matrix for Residual block with Modified Attention Mechanism

4.5. Crack Measurement and Classification Results

DeepSeg-CrackNet’s crack measuring process takes things from just spotting cracks to getting their exact sizes,
which is key for figuring out how bad the pavement damage is, pulling crack areas from segmentation masks,
counting up pixels, and turning those into real-world measurements—meters for longitudinal and transverse cracks,
and square meters for alligator cracks using the camera setup (1.6 meters height, 3.1 meters road width).

Figure 16 shows a longitudinal crack, measured in meters to show how long it stretches along the road, giving a
good idea of how it might affect the pavement’s strength, while Figure 17 has a transverse crack, with its length in
meters showing how much damage crosses the road, which matters for checking risks like water seeping in, and
Figure 18 displays an alligator crack, measured in square meters to show the damaged area, pointing out the need for
bigger repairs since it’s a deeper issue.
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Figure 17. Transverse Crack Classification and Measurement

Figure 18. Alligator Crack Classification and Measurement

4.6. Validation of Crack Measurement Accuracy

Checking how accurate DeepSeg-CrackNet’s crack measurements are meant looking at how camera height affects
the lengths it detects, making sure the real-world conversions hold up, with Table 7 showing a comparison of
distance measurements at different heights (1.57m, 1.60m, 1.63m), looking at actual lengths versus detected ones
and their differences, like for a 0.25m actual length (A-B), the detected length at 1.60m is 0.255m (just +0.005m off),
showing it’s pretty close, while at 1.57m it’s 0.27m (+0.020m off) and at 1.63m it’s 0.238m (-0.012m off), and the

same pattern shows up for other lengths (like A-E: 1.50m actual, 1.513m at 1.60m with +0.013m off), proving
1.60m gives the best results.
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Table 7. Comparative Analysis of Distance Measurements at Different Camera Heights

Points Actual Detected Variation Detected Variation Detected Variation
Measured Length (m) at 1.57m Length (m) at 1.60m Length (m) at 1.63m
Length (m) at 1.57m at 1.60m at 1.63m
A-B 0.25 0.27 +0.020 0.255 +0.005 0.238 -0.012
A-C 0.50 0.543 +0.043 0.508 +0.008 0.485 -0.015
A-D 1.00 1.08 +0.080 1.027 +0.027 0.976 -0.024
A-E 1.50 1.605 +0.105 1.513 +0.013 1.474 -0.026

Figure 19 shows the detected lengths at the best 1.60m height, proving it’s super accurate, while Figure 20 shows
lengths at 1.57m that are a bit too high, and Figure 21 shows lengths at 1.63m that are a bit too low, making it clear
why picking the right camera height matters, and this check confirms the 1.60m height used in the data setup gives
reliable measurements, making DeepSeg-CrackNet great for precise pavement analysis.

X |/ 0.258 i

Figure 19. Detected Length (Camera Height 1.60m)
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Figure 21. Detected Length (Camera Height 1.63m)

4.7. Benchmarking Against Existing Models

DeepSeg-CrackNet outperforms CrackNet [6]. as shown in Table 8, due to its advanced hybrid architecture, which
seamlessly integrates Deep Gradient ResNet for segmentation and a Residual block with a Modified Attention
Mechanism for classification, specifically designed to tackle the complex crack patterns on Malaysian roads. Unlike
CrackNet’s standard multi-scale feature extraction, DeepSeg-CrackNet’s Deep Gradient ResNet employs residual
connections to capture fine-grained spatial details across multiple scales, enabling precise delineation of intricate
structures like alligator cracks, where it achieves a precision of 0.84 and recall of 0.96 compared to CrackNet’s
0.778 and 0.772. The CAFM enhances this by prioritizing crack-relevant features, effectively filtering out
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environmental noise such as shadows or road markings that often hinder CrackNet’s accuracy. This refined feature
extraction, paired with the Augmented SubPixel Shuffling (ASPS) decoder, sharpens crack boundaries, resulting in a
Mean IoU of 0.8388889, a marked improvement over CrackNet’s less precise segmentation.

The extended training period of DeepSeg-CrackNet, spanning 200 epochs compared to CrackNet’s 100, allows the
model to thoroughly learn the diverse crack morphologies in the RCD-IIUM dataset, which is critical for addressing
Malaysia’s unique pavement conditions. This dataset, tailored to tropical environments, includes pixel-wise
annotations and GPS-mapped imagery from Selangor and Kuala Lumpur, capturing specific damage patterns like
monsoon-induced stripping and thermal cracking not adequately represented in CrackNet’s more generic training
data. Prolonged training ensures robust generalization across varied lighting and pavement textures, as demonstrated
by DeepSeg-CrackNet’s superior precision (0.89 vs. 0.867) and recall (0.88 vs. 0.849) for longitudinal cracks. This
comprehensive training strategy enables DeepSeg-CrackNet to adapt to the nuanced crack formations influenced by
Malaysia’s heavy traffic and reclaimed tire polymer asphalt, providing a significant edge over CrackNet’s shorter
training approach.

A key innovation of DeepSeg-CrackNet is its metrological branch, which transforms segmentation masks into real-
world measurements using projective geometry, a feature absent in CrackNet. This capability delivers precise crack
lengths for longitudinal cracks and areas for alligator cracks, aligning with ASTM D6433 standards and enabling
data-driven maintenance decisions, such as prioritizing repairs for extensive alligator cracks over minor longitudinal
ones. The Modified Attention Mechanism further enhances classification by blending channel and spatial attention
to focus on distinct crack textures and orientations, contributing to high accuracy (85% overall) across crack types.
By leveraging the RCD-ITUM dataset’s rich local annotations and a carefully calibrated training process, DeepSeg-
CrackNet achieves consistent performance improvements, making it a highly effective tool for automated pavement
distress analysis in Malaysia’s challenging urban and tropical conditions.

Table 8. Benchmarking Results

Features/Criteria DeepSeg-CrackNet (This Study) CrackNet [6]
Methodology Deep Gradient ResNet + Residual Block with Modified CrackNet Network
gy Attention Mechanism Model
Data Source Custom Collected Data Custom Collected
Data
Epochs 200 100
Precision (Alligator) 0.84 0.778
Precision
(Longitudinal) 0.89 0.867
Precision (Transverse) 0.87 0.839
Recall (Alligator) 0.96 0.772
Recall (Longitudinal) 0.88 0.849
Recall (Transverse) 0.80 0.868

5. CONCLUSION

DeepSeg-CrackNet turned out to be a game-changer for pavement damage analysis in Malaysia, especially in busy
spots like Selangor and Kuala Lumpur, where fast city growth and heavy traffic really take a toll on roads, with its
high segmentation accuracy, hitting a Mean IoU of 0.8388889, and a classification accuracy of 85%, making it great
at catching alligator, longitudinal, and transverse cracks early on and sorting them out, which helps plan repairs
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before things get really bad, plus its knack for measuring crack sizes—{figuring out big alligator cracks in square
meters and smaller longitudinal ones in meters—makes it easier to focus repairs where they’re needed most, like
replacing pavement for huge alligator cracks or just sealing up minor longitudinal ones, saving money and keeping
roads safer, lining up perfectly with Malaysia’s goals for sustainable city growth by making maintenance smarter
and helping roads last longer in high-traffic areas.

Even with all its strengths, DeepSeg-CrackNet has some limits that open the door for more work down the road,
since things like super bright or dim lighting, or messy backgrounds not covered in the dataset, might throw it off,
and focusing on city roads might make it less useful for rural Malaysian areas with different pavement types and
damage patterns, so future efforts could add more variety to the dataset with different weather conditions and rural
roads to make the model more flexible, plus looking into lighter designs or trimming techniques could let it run in
real-time on smaller devices, like mobile inspection setups, making it more practical, and mixing in extra data types,
like 3D pavement scans or infrared images, could give a deeper look at crack severity, making DeepSeg-CrackNet
even better for keeping Malaysia’s roads safe and strong.

ACKNOWLEDGEMENT

The authors extend a special shoutout to the International Islamic University Malaysia and Multimedia University,
Cyberjaya, Malaysia for setting up such a solid research platform to make this work happen.

FUNDING STATEMENT

The authors want to say a huge thanks to the Malaysian Ministry of Higher Education (MOHE) for their awesome
support through the Fundamental Research Grant Scheme, FRGS/1/2021/TK02/UIAM/02/4, which gave this project
the funding and resources it needed to get off the ground.

AUTHOR CONTRIBUTIONS

Arselan Ashraf: Conceptualization, Data Curation, Methodology, Validation, Writing — Original Draft Preparation;
Ali Sophian: Project Administration, Supervision, Writing — Review & Editing;

Teddy Surya Gunawan: Project Administration, Supervision, Writing — Review & Editing;

Syed Asif Ahmad Qadri: Validation, Writing — Review & Editing.

CONFLICT OF INTERESTS

There is no conflict of interests.

ETHICS STATEMENTS

Our publication follow The Committee of Publication Ethics (COPE) guideline. https://publicationethics.org/

REFERENCES

[1] M. N. Mahmud et al., “Crack detection on asphalt road in malaysia using UAV images and YOLOv4,” in
2024 IEEE 14th International Conference on Control Svstem, Computing and Engineering (ICCSCE),
Penang, Malaysia, Aug. 2024, pp. 64—69. doi: 10.1109/ICCSCE61582.2024.10696027.

20



Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

[2]

[7]

[14]

A. Ashraf, A. Sophian, A. A. Shafie, T. S. Gunawan, and N. N. Ismail, “Machine learning-based pavement
crack detection, classification, and characterization: a review,” Bulletin of Electrical Engineering and
Informatics, vol. 12, no. 6, pp. 3601-3619, Dec. 2023, doi: 10.11591/eei.v12i6.5345.

A. Ashraf, A. Sophian, A. A. Shafie, T. S. Gunawan, N. N. Ismail, and A. A. Bawono, “Detection of road
cracks using convolutional neural networks and threshold segmentation,” Jouwrnal of Integrated and
Advanced Engineering (JIAE), vol. 2, no. 2, pp. 123—134, Sep. 2022, doi: 10.51662/jiae.v2i2.82.

R. Zhang, Y. Shi, and X. Yu, “Pavement crack detection based on deep learning,” in 2021 33rd Chinese
Control and Decision Conference (CCDC), Kunming, China, May 2021, pp. 7367-7372. doi:
10.1109/CCD(C52312.2021.9602216.

D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, and Y. Sekimoto, “RDD2020: An annotated image dataset
for automatic road damage detection using deep learning,” Data in Brief, vol. 36, p. 107133, Jun. 2021, doi:
10.1016/.dib.2021.107133.

Y. Zhao, L. Zhou, X. Wang, F. Wang, and G. Shi, “Highway crack detection and classification using UAV
remote sensing images based on CrackNet and CrackClassification,” Applied Sciences, vol. 13, no. 12, p.
7269, Jun. 2023, doi: 10.3390/app13127269.

A. Ashraf, A. Sophian, A. Akramin Shafie, T. Surya Gunawan, N. N. Ismail, and A. Aryo Bawono, “RCD-
ITUM: A comprehensive malaysian road crack dataset for infrastructure analysis,” in 2024 9th International
Conference on Mechatronics Engineering (ICOM), I1EEE, Aug. 2024, pp. 200-206. doi:
10.1109/ICOM61675.2024.10652339.

P. Chun, T. Yamane, and Y. Tsuzuki, “Automatic detection of cracks in asphalt pavement using deep
learning to overcome weaknesses in images and GIS visualization,” Applied Sciences, vol. 11, no. 3, p. 892,
Jan. 2021, doi: 10.3390/app11030892.

G. Li, X. Li, I. Zhou, D. Liu, and W. Ren, “Pixel-level bridge crack detection using a deep fusion about
recurrent residual convolution and context encoder network,” Measurement, vol. 176, p. 109171, May 2021,
doi: 10.1016/j.measurement.2021.109171.

H. Oliveira and P. L. Correia, “Automatic road crack segmentation using entropy and image dynamic
thresholding,” in 2009 17th European Signal Processing Conference (EUSIPCO), Glasgow, UK, Aug. 2009,
pp. 622-626.

H. Oliveira and P. L. Correia, “Automatic road crack detection and characterization,” IEEE Transactions on
Intelligent  Transportation  Svstems, vol. 14, mno. 1, pp. 155-168, Mar. 2013, doi:
10.1109/T1TS.2012.2208630.

L. Zhang, F. Yang, Y. Daniel Zhang, and Y. J. Zhu, “Road crack detection using deep convolutional neural
network,” in 2016 IEEE International Conference on Iimage Processing (ICIP), Phoenix, AZ, USA, Sep.
2016, pp. 3708-3712. doi: 10.1109/ICIP.2016.7533052.

L. Ali, H. AlJassmi, M. Swavaf, W. Khan, and F. Alnajjar, “Rs-net: Residual sharp U-Net architecture for
pavement crack segmentation and severity assessment,” Journal of Big Data, vol. 11, no. 1, p. 116, Aug.
2024. doi: 10.1186/340537-024-00981-y.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, real-time object
detection,” arXiv, 2016, arXiv:1506.02640. doi: 10.48550/arXiv.1506.02640.

21



Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

[15]

[19]

A. Zhang et al., “Deep learning—based fully automated pavement crack detection on 3D asphalt surfaces
with an improved CrackNet,” Journal of Computing in Civil Engineering, vol. 32, no. 5, Sep. 2018, Art. no.
04018044. doi: 10.1061/(ASCE)CP.1943-5487.0000775.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN.,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, no. 2, pp. 386-397. Feb. 2020. doi: 10.1109/TPAMI.2018.2844175.

G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOvS8,” Ultralytics, 2023, version 8.0.0. [Online].
Available: https://github.com/ultralytics/ultralytics.

J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 42, no. 8, pp. 2011-2023, Aug. 2020. doi:
10.1109/TPAMI.2019.2913372.

N. A. M. Yusof, M. K. Osman, M. H. M. Noor, A. Ibrahim, N. M. Tahir, and N. M. Yusof, “Crack detection
and classification in asphalt pavement images using deep convolution neural network,” in 2018 8th IEEE
International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia,
Nov. 2018, pp. 227-232. doi: 10.1109/ICCSCE.2018.8685007.

M. Nie and C. Wang, “Pavement Crack Detection based on YOLOV3,” in 2019 2nd International
Conference on Safety Produce Informatization (IICSPI), Chongging, China, Nov. 2019, pp. 327-330. doi:
10.1109/TICSPI48186.2019.9095956.

P.-W. Chin, K.-W. Ng, and N. Palanichamy, “Plant Disease Detection and Classification Using Deep
Learning Methods: A Comparison Study,” Journal of Informatics and Web Engineering, vol. 3, no. 1, pp.
155-168, Feb. 2024. doi: 10.33093/jiwe.2024.3.1.10.

U. Ali, Maizatul Akmar Ismail, Riyaz Ahamed Ariyaluran Habeeb, and Syed Roshaan Ali Shah,
“Performance Evaluation of YOLO Models in Plant Disease Detection,” Jowrnal of Informatics and Web
Engineering, vol. 3, no. 2, pp. 199-211, Jun. 2024. doi: 10.33093/jiwe.2024.3.2.15.

BIOGRAPHIES OF AUTHORS

Arselan Ashraf (Member, IEEE) is a Senior Lecturer at Multimedia University, Cyberjaya,

o Malaysia, holding a Ph.D. in Computer and Information Engineering from the International
oo Islamic University Malaysia (ITUM), where he also completed his M.S. degree in Computer and

Information Engineering. With a B.Tech. in Computer Science Engineering from Baba Ghulam

@' Shah University, India, his research specializes in Deep and machine learning, computer vision,
L and signal/image processing for infrastructure and biomedical applications, alongside expertise
“ in network security. An active educator and researcher, he bridges AT innovation with practical
engineering solutions while mentoring future technologists. Reachable

at arselan@mmu.edu.my.

22




Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

Ali Sophian is an associate professor in the Department of Mechatronics Engineering at
International Islamic University Malaysia (IIUM). He obtained his B.Eng. (Hons.) and Ph.D,
both in Electronics Engineering, from the University of Huddersfield, United Kingdom, in 1998
and 2004 respectively. Prior to joining ITUM in 2014, he used to work in the Mechatronics
group of Cummins Turbo Technologies, UK. His research interests include eddy current non-
destructive testing, machine vision and machine learning for road inspection applications, and
engineering education. He can be contacted at email: ali sophian@iium.edu.my.

?R

Teddy Surya Gunawan (Senior Member, TEEE) is a Professor in the Department of
Electrical and Computer Engineering at the International Islamic University Malaysia (ITUM).
Prof. Gunawan has held esteemed roles, including Visiting Research Fellow at UNSW (2010—
2021) and Adjunct Professor at Telkom University (2022—2023), and he currently serves as a
Senior Member of IEEE since 2012, previously chairing the IEEE Instrumentation and
Measurement Society — Malaysia Section. Prof. Gunawan holds multiple professional
engineering certifications, including Chartered Engineer (IET, UK), Insinyur Profesional Utama
(PII, Indonesia), ASEAN Engineer, ASEAN Chartered Professional Engineer, and APEC
Engineer, reflecting his commitment to professional excellence. Within ITUM, he has also
served as Head of Department (2015-2016) and Head of Programme Accreditation and Quality
Assurance (2017-2018) at the Faculty of Engineering, reinforcing his leadership and expertise
in the field. He can be contacted at: tsgunawan@iium.edu.my

Syed Asif Ahmad Qadri is cuwrrently a Ph.D. student at the Institute of Information Systems
and Applications at the College of Electrical Engineering and Computer Science at the National
Tsing Hua University (NTHU), Hsinchu, Taiwan. He received his master's degree in Computer
and Information Engineering (CIE) from the Intemational Islamic University Malaysia (ITUM).
An active IEEE member, his primary research interests encompass Signal and Image
Processing, Computer Vision, Deep Learning, Machine I earning, AToT, and Smart Agriculture.
He can be contacted at: syedasifi@m110.nthu.edu.tw.

23




