

Back

Comparative analysis of deep learning models for cell counting in microalgae samples

```
Algal Research • Article • 2025 • DOI: 10.1016/j.algal.2025.104403 ☐

Thiviyanathan, Vimal Angela a, b ⋈; Ker, Pin Jern W; Mohamed, Hassan b, d;

Zaki, Hasan Firdaus Mohd e; Lee, Hui Jing W; +3 authors

a Faculty of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Selangor Darul Ehsan, Bandar Sunway, 47500, Malaysia

Show all information

O

Citations Д

Full text ∨ Export ∨ Д Save to list
```

References (81)

Similar documents

Cited by (0)

Abstract

Document

Impact

Microalgae have demonstrated outstanding potential across various industries, including pharmaceuticals, biodiesel production, and animal feed, but their widespread adoption remains limited due to challenges in upstream production processes. This research aims to overcome the constraints of traditional microalgae monitoring techniques, where manual cell counting is both tedious and prone to errors, by leveraging deep learning methods to improve the accuracy and efficiency of cell counting. Three object detection models, namely, SSD, Faster R-CNN, and YOLOv8 were evaluated for their effectiveness in microalgae cell counting. These models were specifically selected for their strong potential in accurately detecting a wide range of objects. Among these, YOLOv8 outperformed the others, achieving a maximum F1 score of 0.95, 0.94, 0.97, 0.98, 0.98, and 0.99 for cell count ranges between 0–100, 101–200, 201–300, 301–400, 401–500 and >500 cells, respectively. These findings highlight YOLOv8's effectiveness in accurately detecting and counting microalgae cells with minimal error, as it combines a lightweight design with advanced feature

extraction. In comparison, Faster R-CNN struggles with small objects because it relies on a region proposal network, while SSD faces challenges due to its use of default bounding boxes. Therefore, unlike other works that solely focus on cell classification, this research emphasizes the potential of the YOLOv8 model for cell counting, which assists in identifying microalgae growth phases, a crucial factor in determining the optimal harvest time. Since microalgae produce different biomolecules at each growth stage, this information is valuable for optimizing their applications across various industries. © 2025 Elsevier B.V.

Author keywords

Deep learning; Faster R-CNN; Microalgae detection; Object detection; SSD; YOLO

Corresponding authors

Corresponding author	V.A. Thiviyanathan
Affiliation	Electrical & Electronics Department, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Selangor, Kajang, 43000, Malaysia
Email address	angela@uniten.edu.my

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Corresponding authors

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions
☐ Privacy policy ☐ Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. ⊅, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

RELX™