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INTRODUCTION
The key characteristics of osteoarthritis (OA) 

include the degeneration of articular cartilage, remodeling 
of subchondral bone, and inflammation of the synovial 

membrane. OA is a persistent, degenerative joint disorder [1]. 
It is the predominant form of arthritis and a significant factor 
in pain, disability, and diminished quality of life among the 
aging worldwide population [2]. In 2019, around 528 million 
individuals globally were affected by OA [3,4]. The prevalence 
in Asia is 31% for women and 23% for men over 24 years, 
61% for women, and 53% for men aged 40–75. In Europe, the 
prevalence is 14% for women and 12% for men over 22 years, 
and 29% for women and 16% for men over 55 years [5,6]. In 
Indonesia, OA prevalence is 5% among individuals under 40, 
30% among those aged 40 to 60, and 65% among those over 
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ABSTRACT
The inadequate regenerative capacity of cartilage renders osteoarthritis (OA) and cartilage injuries difficult to manage. 
In tissue engineering, a scaffold facilitates establishing an environment favorable to cell proliferation, migration, and 
adhesion. Moreover, diclofenac sodium can be administered locally due to the scaffold’s porous architecture, which 
possesses anti-inflammatory characteristics. This study investigated the development and characterization of an 
innovative scaffold formulation intended for potential application in cartilage repair associated with OA and cartilage 
injuries. The scaffold was cross-linked with varying concentrations of GA (0.00%–2.50%) and comprised chitosan, 
gelatin, chondroitin sulfate, and PEG 400. The scaffold also contained the anti-inflammatory agent, diclofenac 
sodium, which was dissolved in PEG 400 for targeted drug delivery. The pore diameter, porosity, compressive 
strength, and degradation of the scaffolds were assessed following their dried form. The results indicated that GA 
significantly influenced these attributes, with porosity, mechanical stability, and degradation control improved at an 
optimal concentration of 0.50 percent. GA cross-linking between polymer chains enhanced the scaffold’s integrity 
and augmented its mechanical properties through the establishment of more rigid structures. The cross-linking of the 
amino group in chitosan with the sulfonate group in chondroitin sulfate enhanced the scaffold’s stability. The study’s 
findings indicated that GA-optimized chitosan–gelatin–chondroitin sulfate-PEG 400-diclofenac scaffolds exhibited 
suitable physicochemical and mechanical properties, supporting their potential use in localized drug delivery systems 
for OA management.
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In a previous study, a scaffold composed of chitosan, 
gelatin, and chondroitin sulfate in a 50:25:25 ratio was 
employed, resulting in a compressive strength of 10.58 MPa 
and a high cell viability rate of 102.75%. These findings indicate 
that the scaffold possesses favorable mechanical properties and 
excellent biocompatibility, demonstrating its non-toxic nature 
to cells [25]. Nonetheless, this composition ratio presents a 
disadvantage, as the scaffold will disintegrate within about 
two days. A cross-linking agent is required to improve the 
scaffold’s properties and facilitate the progressive release of 
diclofenac sodium. Upon the addition of a cross-linking agent 
to the scaffold, it can attach to the polymer’s amino groups, 
resulting in the formation of 𝛼-helical connections, which 
causes the initially linear polymer threads to become thicker 
and intertwined [23,26]. The pore diameter may consequently 
diminish. Consequently, the scaffold degradation rate would 
decrease while the volume of liquid influx would increase 
somewhat  [27,28].

A scaffold composed of chitosan, gelatin, and 
chondroitin sulfate, incorporating polyethylene glycol 
(PEG) 400 as a plasticizer and diclofenac sodium as the 
active pharmaceutical ingredient, was formulated using 
glutaraldehyde (GA) as a cross-linking agent. GA maintains 
bone-bonding strength by forming stable cross-links between 
BHA and gelatin. Previous studies have demonstrated that GA, 
among various cross-linking agents tested, results in superior 
mechanical strength. The concentration range of GA used in 
this study was carefully selected based on prior research [29], 
which indicated that concentrations up to 2.5% are non-toxic. 
The most effective concentrations for cross-linking activity 
were reported to be 0.5% and 1.0% [30]. Accordingly, the 
scaffold was formulated with varying concentrations of GA: 
0%, 0.25%, 0.50%, 1.00%, and 2.50%. This formulation was 
designed to assess the effect of different GA concentrations 
on key scaffold properties, including mechanical strength, 
pore diameter, porosity percentage, and degradation behavior 
under physiological conditions. These investigations provide 
a scientific basis for evaluating the efficiency of cross-linking 
while ensuring the biocompatibility and functional performance 
of the scaffold.

MATERIALS AND METHODS

Materials
This study utilized shrimp chitosan (CV. Multiguna, 

Indonesia), gelatin (Cartino, Thailand), chondroitin sulfate, GA 
(Sigma-Aldrich, USA), pro-analysis NaOH solution (Merck, 
Germany), diclofenac sodium (Kalbe, Indonesia), pro-analysis 
acetic acid (Mallinckrodt, UK), PEG-400, phosphate buffer 
saline pH 7.4, ethanol 96%, and distilled water (Interlab, 
Indonesia).

Methods

Preparation of chitosan–gelatin–chondroitin sulfate-diclofenac 
scaffold composite

The scaffold was prepared using diclofenac sodium, 
chondroitin sulfate, gelatin, and chitosan. The composition ratio 

60. Meanwhile, according to gender, OA affects 5% of men and 
12.7% of women [7,8].

An imbalance in the anabolic and catabolic factors 
produced by chondrocytes leads to OA, a degenerative 
joint disease [9]. This imbalance triggers the production of 
cytokines and inflammatory mediators, resulting in the release 
of nitric oxide (NO), which induces chondrocyte apoptosis 
and degradation of the extracellular matrix (ECM) [10]. The 
progressive degeneration of articular cartilage is a distinctive 
feature [11,12]. Primary OA is defined as joint degeneration 
without an identifiable cause. Concurrently, secondary OA arises 
from abnormal articular cartilage, as observed in rheumatoid 
arthritis (RA), or from abnormal force concentration inside the 
joint, as seen in post-traumatic instances [13].

Joint pain, stiffness, and functional limitations are the 
defining characteristics of OA. Pharmacological management 
of OA generally includes diclofenac sodium, a member of 
the Nonsteroidal Anti-Inflammatory Drug (NSAID) class. 
Diclofenac sodium suppresses prostaglandin synthesis by 
obstructing the cyclooxygenase (COX) enzyme, which catalyzes 
the conversion of 2-arachidonic acid (AA) to prostaglandin 
H2 in prostanoid biosynthesis [14]. Reports indicate that 30% 
of patients who administered diclofenac sodium orally for an 
extended duration encountered adverse effects, including renal 
impairment, increased liver enzymes, and gastric ulcers [15]. 
The topical dosage form of diclofenac sodium possesses a 
disadvantage [16,17]. Notwithstanding a lipophilic partition 
coefficient of 13.4 (log p = 1.13), diclofenac sodium could not 
efficiently extract its constituent from the vehicle. Moreover, 
the topical administration of diclofenac sodium solely mitigates 
symptomatic knee pain; it does not reverse cartilage degeneration 
[18,19]. Patients with OA will experience disability if cartilage 
degradation is not fully rectified.

Bone tissue engineering has significantly advanced as 
a therapeutic strategy for addressing bone and cartilage defects 
by restoring and maintaining native tissue functionality. Among 
the various approaches, scaffolds composed of ceramics 
or polymers have been widely explored for their ability to 
support tissue regeneration [20,21]. Diclofenac sodium has 
been recognized for its potential to be locally and sustainably 
delivered through scaffolds composed of chitosan, gelatin, and 
chondroitin sulfate, which are also applicable for cartilage repair. 
However, systemic oral administration of diclofenac sodium has 
been associated with severe gastrointestinal and cardiovascular 
risks, highlighting the need for safer, localized delivery systems 
[22]. Scaffolds for cartilage regeneration must replicate the 
morphology, structure, and function of native cartilage. Within 
these porous structures, neighboring cells migrate, adhere, 
proliferate, and differentiate to form new cartilage tissue [23]. 
The release of diclofenac sodium from such scaffolds may 
reduce acute inflammatory responses by decreasing neutrophil 
and macrophage infiltration at the injury site, thereby alleviating 
pain and swelling [24]. This study presents a novel scaffold 
formulation and systematic physicochemical characterization 
of diclofenac-loaded chitosan–gelatin–chondroitin sulfate, 
designed to improve mechanical performance and support 
controlled local release of anti-inflammatory agents, potentially 
relevant for cartilage repair applications. 
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of the three biopolymers followed a 50:25:25 proportion of 
chitosan:gelatin:chondroitin sulfate, which corresponds to 2.5 g 
of chitosan, 1.25 g of gelatin, and 1.25 g of chondroitin sulfate. 
This ratio was determined based on previous optimization studies 
showing favorable properties regarding pore size distribution 
and interconnectivity. Moreover, incorporating chondroitin 
sulfate contributed to an increase in compressive strength, 
reaching 10.58 MPa and a high cell viability of 102.75%. 
These results indicate that the scaffold exhibits excellent 
mechanical integrity while remaining non-toxic to cells [24]. 
Specifically, 2.5 g of chitosan was solubilized in 100 ml of a 
2% acetic acid solution and agitated until homogeneous with 
a magnetic stirrer; 50 ml of warm distilled water (40°C–50°C) 
was utilized to dissolve 1.25 g of gelatin. The chitosan solution 
was subsequently included, and the mixture was stirred. The 
chitosan–gelatin solution was thereafter stirred while 1.25 g of 
chondroitin sulfate powder was incrementally introduced. A 
1% NaOH solution neutralized the composition upon achieving 
a homogeneous mixture. A 1% sodium diclofenac solution in 
PEG 400 was incorporated post-neutralization and stirred until 
fully dissolved and homogeneous. GA was then introduced as a 
cross-linking agent at varying concentrations of 0.25%, 0.5%, 
1%, and 2.5% (v/v) by mixing it directly into the homogeneous 
solution. Cross-linking was conducted at room temperature 
(25 °C) for 24 hours. After cross-linking, the scaffolds were 
thoroughly washed with distilled water three times to remove 
unreacted GA, minimizing potential cytotoxicity. Finally, the 
scaffolds were subjected to freeze-drying (lyophilization) to 
obtain the final porous structure in dry form. Table 1 illustrates 
the formulation of the chitosan–gelatin–chondroitin sulfate-
sodium diclofenac scaffold implant with the inclusion of GA.

Characterization evaluation
Organoleptic tests, pore diameter evaluations utilizing 

a scanning electron microscope (SEM) (Inspect S-50, FEI, 
Japan), compressive strength evaluations with Autograph 2.1 
(Autograph, Indonesia), and degradation analyses employing 
PBS solution were conducted to characterize the chitosan–
gelatin–chondroitin sulfate scaffold composite incorporating 
the cross-linking agent GA.

Organoleptic evaluation
The organoleptic evaluation of chitosan–gelatin–

chondroitin sulfate-diclofenac sodium scaffolds was conducted 
to assess their color and physical properties at varying GA 
concentrations (0%, 0.25%, 0.50%, 1.00%, and 2.50%). Three 

unbiased evaluators performed the assessments in a regulated 
laboratory environment, and the results were recorded as 
qualitative descriptions for subsequent comparison.

Pore diameter 
The width of the pore, measured in micrometers 

(μm), is referred to as the pore diameter. A scaffold must 
possess an appropriate pore diameter size. Pore size influences 
gas exchange, nutrient transport, chondrocyte migration, and 
nutrient infiltration into the scaffold. A scaffold specimen 
measuring 5 mm in width and 3 mm in height was prepared 
for testing. A sputter was employed to deposit a 3-minute gold 
coating onto the scaffold. Upon placement of the coated sample 
in the sample chamber, it was subjected to an electron beam 
at a magnification of 1000 and a voltage of 5 kV. The detector 
would identify the beam post-reflection. A picture may result 
from an order of micron expansion or the dimensions of the 
scaffold sample’s pores. This test was conducted using SEM 
[31].

Porosity test 
Porosity is a percentage ranging from 0% to 100% 

that indicates the volume of voids inside the scaffold relative 
to its total free space volume. The fluid transfer technique is 
employed to conduct the porosity test. Ethanol was selected 
due to its efficient absorption in the scaffold without inducing 
contraction or swelling. The scaffold’s dry weight (m1) was 
measured in its desiccated state. The mass of the ethanol and 
the container was subsequently recorded as m2. The scaffold 
was thereafter placed in a container containing ethanol (m3). 
Subsequently, it is immersed for 48 hours in 96% v/v ethanol. 
The scaffold was dismantled after 48 hours, and the weights 
of the ethanol and container were recorded (m4) [31]. The 
following formula can be employed to ascertain porosity:

Porosity (%) =
(m3-m4-m1)

× 100%
(m2-m4)

Compressive test
Compressive strength testing aimed to evaluate 

whether the scaffold could withstand mechanical forces exerted 
by surrounding tissues. Scaffold samples, 5 mm in diameter and 
3 mm in height, were tested in a dry state at room temperature 
using an Autograph universal testing machine. The compression 
test was conducted at a constant speed of 5 mm/minutes. A 
compressive load was applied to the scaffold during the test 

Table 1. Formulation of chitosan–gelatin–chondroitin sulfate-diclofenac sodium scaffolds preparations with the addition of 
GA.

Formulation Chitosan 
(gram)

Gelatin 
(gram) Chondroitin sulfate (gram) Diclofenac sodium 

(gram)
GA 

(%v/v)

Control 2.5 1.25 1.25 0.05 0

I 2.5 1.25 1.25 0.05 0.25

II 2.5 1.25 1.25 0.05 0.50

III 2.5 1.25 1.25 0.05 1.00

IV 2.5 1.25 1.25 0.05 2.50
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until structural deformation was observed. The diameter and 
height of the scaffold were recorded prior to testing to ensure 
accuracy. The compressive strength value was calculated based 
on the maximum force (in Newtons) applied before deformation 
occurred, and the result was automatically displayed upon test 
completion [31].

Degradation test
The degradation test was carried out by immersing the 

scaffold in a pH 7.4 phosphate-buffered saline (PBS) solution 
at 37 °C in an incubator. A cubic device measuring 1 × 1 × 1 cm 
with four interconnected holes was used. The scaffold was 
prepared and dried using a freeze-dryer prior to immersion. 
The scaffold was immersed for a total of 14 days, and the mass 
change was measured at specific time intervals: 1 day, 2 days, 3 
days, 5 days, 7 days, 10 days, 12 days, and 14 days [31].

RESULTS AND DISCUSSION
This study focused on a scaffold utilizing sodium 

diclofenac as the active component, composed of chitosan, 
gelatin, chondroitin sulfate, and PEG-400. The scaffold 
exhibits non-toxic, biodegradable characteristics and material 
compatibility, which are essential prerequisites for further 
development in cartilage repair applications for OA. GA 
was employed as a cross-linking agent to enhance structural 
stability. The maximum GA concentration was limited to 2.5%, 
which has been reported to cause no cytotoxic effects—such as 
cell damage or death—in human fibroblast cell lines (WI-38) 
[29]. This finding is consistent with the study by Budiatin et al. 
[23], which demonstrated that scaffolds containing up to 2.5% 
GA maintained ≥60% cell viability in MTT assays, thereby 
classifying them as non-toxic. 

The cytotoxicity of GA is also known to be time-
dependent. Sun et al. [29] reported that prolonged exposure 
to GA (24 hours) significantly increased its toxicity, lowering 
the 50% toxic concentration (TC₅₀) from 4.83 mM to 2.09 
mM. However, short-term exposure with appropriate post-
treatment—such as extensive washing—can maintain GA 
levels within biologically acceptable limits. Accordingly, in this 
study, the cross-linking process was conducted with limited GA 
exposure (24 hours), followed by three cycles of washing with 
distilled water to remove unreacted GA, in line with procedures 
recommended by previous studies [29,30]. This strategy was 
implemented to minimize residual GA content and reduce the 
risk of cytotoxicity. Furthermore, PEG-400 was incorporated as 
a plasticizer to improve the scaffold’s elasticity and flexibility 
by increasing intermolecular spacing, thereby enhancing its 
resemblance to the mechanical properties of native cartilage 
tissue [32].

Organoleptic evaluation
Dry samples (after freeze-drying) underwent 

organoleptic evaluations through visual inspection. An 
organoleptic study of the color of each chitosan–gelatin–
chondroitin sulfate-PEG 400-diclofenac sodium scaffold 
implant sample indicated a color variation, as illustrated in 
Figure 1, where the scaffold transitions from white to brown 
with increasing GA concentration.

GA serves as a cross-linking agent in the construction 
of this scaffold. GA is essential for enhancing the stability and 
porosity of the scaffold by facilitating cross-linking among the 
amine groups of chitosan and gelatin, as well as between chitosan 
and chondroitin sulfate [26]. This study illustrates that the 
scaffold’s color alters with increasing GA content. The observed 
color changes indicated that the chemical reaction between GA 
and chitosan facilitated the formation of chromophores [33,34]. 
A study by Budiatin et al. [23] showed that the chitosan–gelatin–
diclofenac scaffold underwent a color change upon adding GA. 
The color change is a consequence of a diazotization reaction 
between GA and the scaffold material. An intensified brownish 
hue is produced with an increase in GA concentration due to the 
formation of more cross-linking bonds between the carbonyl 
group (-C=O) in GA and the amine group (-NH2) from gelatin and 
chitosan, along with the S-group from chondroitin sulfate [35]. 

Pore diameter
Figure 2 illustrates that SEM analysis was employed 

to conduct morphological observations and ascertain the 
scaffold’s pore width. Based on the results of the obtained 
SEM observations, data were subsequently created to analyze 
the observed pore diameters. Table 2 illustrates that increased 
GA content reduces the scaffold’s pore diameter. The study’s 
results revealed that all scaffold samples, save for the highest 
concentration of 2.5%, possess pore diameters above 100 μm. 

The presence of GA influences the dimensions of the 
pores that develop in the scaffold. The resultant cross-linking 
will form an α-helix bond, causing the initially linear polymer 
strands to tighten and coil around each other, enhancing the 
scaffold’s density [36,37]. The scaffold necessitates pore 
dimensions ranging from 100 to 200 μm [38,39]. Narrow 
pore widths may impede nutrition transfer and metabolic 
waste removal and restrict cellular mobility. This may lead 
to scaffold necrosis. Conversely, if the hole size is enormous, 
cells would detach more easily from the scaffold, leading to 
poor differentiation and proliferation processes [40–42]. The 
results of this work align with the prior research conducted by 
Zadeh and Zamanian [43], which showed that elevating the 
concentration of cross-linking GA may reduce the scaffold’s 
average pore size. Similarly, Samirah et al. [30] reported that 
higher concentrations of GA result in smaller pore diameters, 
indicating that GA significantly influences the structural 
characteristics of bioscrew pores.

Porosity presentation
Table 3 presents the average porosity of the chitosan–

gelatin–chondroitin sulfate-diclofenac scaffold at varying 

Figure 1. Differences in the color of implant scaffold preparations with the 
addition of different GA concentrations. (a) Control, (b) GA 0.25, (c) 0.50, (d) 
1.00, (e) 2.50%.
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scaffold samples—one with a GA concentration of 0.5% and 
another with 1%—exhibit porosity values within the requisite 
75%–90% range for scaffolds.

Incorporating GA facilitates the proliferation and 
differentiation of chondrocyte cells, enhances cell migration 
and vascularization, and increases the scaffold’s porosity to 
the requisite range of 75%–90% porosity percentage values 
[44]. The configuration of this hole is essential for enhancing 
bioapplicability, accelerating bone repair, and providing an 
increased surface area for gas and nutrient exchange [38,39]. 
Similar findings were seen in the work by Azami et al. [45], 
who reported analogous results, indicating that the porosity of 
the GEL-HA scaffold with GA was 85.1% more than that of 
the GEL-HA scaffold devoid of GA, which measured 84.6%. 
This study further illustrates that GA cross-linking enhances the 
mechanical strength and compressive resistance of the scaffold 
[23]. The cross-linking between the scaffold’s polymers is 
the reason for this. The study’s results met the criteria for a 
potential scaffold compressive strength (0.01–3 MPa) based on 
the mechanical properties of the target cartilage tissue [46,47].

Compressive strength
Table 4 presents the outcomes of experiments assessing 

the compressive strength of scaffolds composed of chitosan, 
gelatin, chondroitin sulfate, and diclofenac sodium, which 
incorporate differing quantities of GA. The results indicated 
that increasing the GA concentration significantly enhances 
the compressive strength of the scaffold. Scaffolds containing 
0.5% GA exhibited superior compressive strength compared 

doses of the GA cross-linking agent. As the concentration of 
GA rose, the porosity percentages of the scaffold markedly 
increased. Nonetheless, according to these findings, two 

Table 2. The average pore diameter values chitosan–gelatin–
chondroitin sulfate-diclofenac sodium scaffolds preparations with the 

addition of different GA concentration.

GA concentration
Pore diameter 

p-value
Min-Max (μm) Mean ± SD (μm)

Control 200–241 216.80 ± 21.27

GA 0.25% 180–215 195.03 ±18.60 0.767

GA 0.50% 128–171 153.93 ± 22.23* 0.043

GA 1.00% 110–112 111.62 ± 0.97* 0.002

GA 2.50% 29–102 65.57 ± 36.05* 0.000

Data are expressed as the mean ± SD of 3 replicates and analyzed by one-way 
ANOVA. *p-value<0.05 compared to the control group.

Table 3. The porosity average of chitosan–gelatin–chondroitin 
sulfate-diclofenac sodium scaffolds containing different 

concentrations of GA.

GA Concentration Porosity (%) p-value

Control 64.53 ± 1.09

GA 0.25% 74.65 ± 0.29* 0.002

GA 0.50% 77.79 ± 1.49* 0.002

GA 1.00% 82.53 ± 0.96* 0.000

GA 2.50% 94.33 ± 2.08* 0.000

Data are expressed as the mean ± SD of 3 replicates and analyzed by one-way 
ANOVA. *p-value<0.05 compared to the control group.

Figure 2. The appearance of the pore diameter of scaffolds with the addition 
of different GA concentrations using SEM with a magnification of 600–1000x. 
(A) Control; (B) GA 0.25%; (C) 0.50%; (D) 1.00%; and (E) 2.50%.

Table 4. The compressive strength average of chitosan–gelatin–
chondroitin sulfate-diclofenac sodium scaffolds containing different 

concentrations of GA.

GA Concentration Average ± SD (MPa) p-value

Control 0.069 ± 0.006

GA 0.25% 0.097 ± 0.009 0.995

GA 0.50% 0.156 ± 0.007 0.769

GA 1.00% 0.368 ± 0.115* 0.017

GA 2.50% 1.463 ± 0.168* 0.000

Data are expressed as the mean ± SD of 3 replicates and analyzed by one-way 
ANOVA. *p-value<0.05 compared to the control group.
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to scaffolds with different GA concentrations. Conversely, 
scaffolds lacking GA had reduced compressive strength. 

Degradation test
The degradation test in this study was conducted by 

immersing the scaffold in phosphate-buffered saline (PBS) 
solution at pH 7.4. While enzymatic degradation more closely 
replicates the physiological breakdown of cartilage tissue, 
PBS-only models are routinely used for preliminary scaffold 
assessment, as supported by recent literature. Yue et al. [48] 
evaluated the degradation behavior of gelatin methacrylate and 
PLA-silk-based scaffolds in PBS at pH 7.4 over a 30-day period. 
Despite the absence of enzymatic agents, the scaffolds showed 
progressive weight loss over time. These findings reinforced 
the reliability of PBS as a suitable medium for simulating 
early-stage scaffold degradation and drug release kinetics in 
physiological-like conditions.

Table 5 presents the results of the degradation test 
conducted in this study. The results show that increasing the GA 
concentration might reduce the weight loss % of the chitosan–
gelatin–chondroitin sulfate-diclofenac scaffold. Figure 3  
presents a bar chart illustrating the scaffold’s weight loss 

tendency over 14 days across different GA concentrations. The 
proportion of weight decrease was greater for scaffolds without 
GA than for those containing GA. All groups had a consistent 
increase in degradation over time.

GA enhances the durability of scaffolds, ensuring 
their stability even after a fortnight. This study corroborates 
other research indicating that GA can inhibit degradation by 
augmenting resistance to the scaffold [30,49,50]. Research 
conducted by Samirah et al. [30] demonstrated that GA 
stabilizes gelatin, which is susceptible to deterioration, with 
an optimal concentration ranging from 0.1% to 1%. Pinto et 
al. [51] indicated that GA concentrations beyond 1% may 
lead to cross-linking saturation, thus diminishing its benefits. 
The principal cause is the formation of cross-linking bonds 
between the carbonyl group (-C=O) in GA and the carboxyl 
group (COOH) from chondroitin sulfate, along with the amine 
group (-NH2) from gelatin and chitosan [52]. Increased cross-
linking bonds are established, necessitating the rupture of 
additional bonds prior to the polymer’s degradation in the 
liquid at elevated GA concentrations. As the concentration of 
GA increases, the quantity of degraded particles will diminish 
due to a reduced fluid passage through the scaffold [53]. 
Furthermore, incorporating GA as a cross-linking agent in the 

Table 5. Degradation percentage average of chitosan–gelatin–chondroitin sulfate-diclofenac scaffolds containing different concentrations of GA 
after 14 days.

Day (%)

GA Concentration 1 2 3 5 7 10 12 14 p-value

Control 23.81 ± 0.43 32.64 ± 0.87 38.82 ± 0.28 45.85 ± 0.33 51.73 ± 0.72 59.74 ± 0.78 67.13 ± 0.63 89.02 ± 7.15 <0.001*

GA 0.25% 22.98 ± 0.14 30.98 ± 0.32 37.74 ± 0.75 45.07 ± 0.69 50.29 ± 0.52 58.78 ± 0.13 65.44 ± 0.72 80.54 ± 3.31 <0.001*

GA 0.50% 22.06 ± 0.44 28.78 ± 1.15 36.09 ± 0.16 41.50 ± 0.82 49.51 ± 0.17 58.38 ± 0.21 64.49 ± 0.06 73.16 ± 2.06 <0.001*

GA 1.00% 20.89 ± 0.60 26.25 ± 0.59 35.13 ± 0.56 40.54 ± 0.32 48.54 ± 0.32 56.23 ± 0.35 62.89 ± 1.29 70.38 ± 0.30 <0.001*

GA 2.50% 19.50 ± 0.58 25.00 ± 0.68 33.75 ± 0.20 39.46 ± 0.55 46.77 ± 0.51 54.33 ± 1.23 60.89 ± 0.07 68.05 ± 0.30 <0.001*

Data are expressed as the mean ± SD of 3 replicates and analyzed by repeated measure ANOVA. 
*p-value<0.05 compared to the control group.

Figure 3. Degradation percentage of scaffolds with different GA concentrations over 14 days.
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scaffold formulation facilitates sustained release of diclofenac 
sodium, which may minimize potential interference with 
cartilage repair and provide a platform for further investigation 
in regenerative applications.

This study successfully characterized scaffolds 
incorporating various concentrations of GA as a cross-linking 
agent. However, several limitations should be acknowledged. 
First, the visual assessment primarily focused on color changes, 
which limits the generalizability of the findings and should 
be interpreted cautiously. Second, the degradation testing 
conditions did not fully replicate the physiological environment 
and thus may not accurately reflect in vivo performance. 
Moreover, the study did not include in vivo testing to evaluate 
the scaffold’s functional efficacy. Another limitation lies 
in the absence of cytotoxicity and in vitro cell compatibility 
assessments, which are essential for determining the scaffold’s 
biological safety, particularly considering the potential cytotoxic 
effects of residual GA. Furthermore, the drug release profile of 
sodium diclofenac, including cumulative release, burst release, 
and sustained release behavior, was not evaluated, despite its 
critical importance for understanding the scaffold’s therapeutic 
potential and anti-inflammatory performance. Biological and 
anti-inflammatory validations were likewise not included.

Further research is required to assess the scaffold’s 
effects on cell proliferation, viability, and differentiation, 
as well as to conduct quantitative drug release studies, GA 
cytotoxicity testing, and investigations into chondrocyte 
behavior and cytokine response assays. These efforts are crucial 
for comprehensively determining the scaffold’s safety and 
efficacy for biomedical applications. Despite these limitations, 
the findings suggest that scaffolds composed of chitosan, 
gelatin, chondroitin sulfate, and PEG-400, cross-linked with 
GA, exhibit enhanced mechanical strength, structural stability, 
and physicochemical properties, supporting their potential 
for further development in cartilage-mimicking scaffolds and 
localized drug delivery systems.

CONCLUSION
This study highlights the potential of GA-cross-linked 

chitosan–gelatin–chondroitin sulfate scaffolds as a platform 
for further development in OA-related cartilage repair, based 
on their physicochemical properties and drug-release behavior. 
The findings indicate that GA content significantly influences 
the optimization of scaffold properties. With additional GA, the 
resultant scaffold exhibits a more pronounced color, reduced 
pore diameter, increased porosity percentage, enhanced 
compressive strength, and diminished degradation percentage. 
The optimal concentration of GA as a cross-linking agent to 
improve the characteristics of diclofenac sodium scaffold 
implants made from chitosan, gelatin, and chondroitin sulfate 
is 0.5%.

This study did not include biocompatibility testing 
or in vitro assays, representing key limitations. Future studies 
should investigate cytotoxicity, drug release profiles, and 
cellular responses to comprehensively evaluate the scaffold’s 
safety and functionality. While this research provides critical 
insights into scaffold design and characterization, subsequent 
investigations should focus on in vivo validation to assess 

biocompatibility and therapeutic efficacy in relevant animal 
models. Exploring additional therapeutic agents and their 
synergistic interactions with scaffold-based delivery systems 
is recommended to enhance the scaffold’s applicability in 
various tissue engineering contexts. Interdisciplinary strategies 
combining biomaterials development, controlled drug delivery, 
and clinical translation represent a promising direction for 
advancing cartilage repair approaches and improving OA 
treatment outcomes.
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