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The inadequate regenerative capacity of cartilage renders osteoarthritis (OA) and cartilage injuries difficult to manage.
In tissue engineering, a scaffold facilitates establishing an environment favorable to cell proliferation, migration, and
adhesion. Moreover, diclofenac sodium can be administered locally due to the scaffold’s porous architecture, which
possesses anti-inflammatory characteristics. This study investigated the development and characterization of an
innovative scaffold formulation intended for potential application in cartilage repair associated with OA and cartilage
injuries. The scaffold was cross-linked with varying concentrations of GA (0.00%—-2.50%) and comprised chitosan,
gelatin, chondroitin sulfate, and PEG 400. The scaffold also contained the anti-inflammatory agent, diclofenac
sodium, which was dissolved in PEG 400 for targeted drug delivery. The pore diameter, porosity, compressive
strength, and degradation of the scaffolds were assessed following their dried form. The results indicated that GA
significantly influenced these attributes, with porosity, mechanical stability, and degradation control improved at an
optimal concentration of 0.50 percent. GA cross-linking between polymer chains enhanced the scaffold’s integrity
and augmented its mechanical properties through the establishment of more rigid structures. The cross-linking of the
amino group in chitosan with the sulfonate group in chondroitin sulfate enhanced the scaffold’s stability. The study’s
findings indicated that GA-optimized chitosan—gelatin—chondroitin sulfate-PEG 400-diclofenac scaffolds exhibited
suitable physicochemical and mechanical properties, supporting their potential use in localized drug delivery systems
for OA management.

INTRODUCTION

membrane. OA is a persistent, degenerative joint disorder [1].

The key characteristics of osteoarthritis (OA)
include the degeneration of articular cartilage, remodeling
of subchondral bone, and inflammation of the synovial
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It is the predominant form of arthritis and a significant factor
in pain, disability, and diminished quality of life among the
aging worldwide population [2]. In 2019, around 528 million
individuals globally were affected by OA [3,4]. The prevalence
in Asia is 31% for women and 23% for men over 24 years,
61% for women, and 53% for men aged 40-75. In Europe, the
prevalence is 14% for women and 12% for men over 22 years,
and 29% for women and 16% for men over 55 years [5,6]. In
Indonesia, OA prevalence is 5% among individuals under 40,
30% among those aged 40 to 60, and 65% among those over
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60. Meanwhile, according to gender, OA affects 5% of men and
12.7% of women [7.8].

An imbalance in the anabolic and catabolic factors
produced by chondrocytes leads to OA, a degenerative
joint disease [9]. This imbalance triggers the production of
cytokines and inflammatory mediators, resulting in the release
of nitric oxide (NO), which induces chondrocyte apoptosis
and degradation of the extracellular matrix (ECM) [10]. The
progressive degeneration of articular cartilage is a distinctive
feature [11,12]. Primary OA is defined as joint degeneration
without an identifiable cause. Concurrently, secondary OA arises
from abnormal articular cartilage, as observed in rheumatoid
arthritis (RA), or from abnormal force concentration inside the
joint, as seen in post-traumatic instances [13].

Joint pain, stiffness, and functional limitations are the
defining characteristics of OA. Pharmacological management
of OA generally includes diclofenac sodium, a member of
the Nonsteroidal Anti-Inflammatory Drug (NSAID) class.
Diclofenac sodium suppresses prostaglandin synthesis by
obstructing the cyclooxygenase (COX) enzyme, which catalyzes
the conversion of 2-arachidonic acid (AA) to prostaglandin
H2 in prostanoid biosynthesis [14]. Reports indicate that 30%
of patients who administered diclofenac sodium orally for an
extended duration encountered adverse effects, including renal
impairment, increased liver enzymes, and gastric ulcers [15].
The topical dosage form of diclofenac sodium possesses a
disadvantage [16,17]. Notwithstanding a lipophilic partition
coefficient of 13.4 (log p = 1.13), diclofenac sodium could not
efficiently extract its constituent from the vehicle. Moreover,
the topical administration of diclofenac sodium solely mitigates
symptomatic knee pain; it does notreverse cartilage degeneration
[18,19]. Patients with OA will experience disability if cartilage
degradation is not fully rectified.

Bone tissue engineering has significantly advanced as
a therapeutic strategy for addressing bone and cartilage defects
by restoring and maintaining native tissue functionality. Among
the wvarious approaches, scaffolds composed of ceramics
or polymers have been widely explored for their ability to
support tissue regeneration [20,21]. Diclofenac sodium has
been recognized for its potential to be locally and sustainably
delivered through scaffolds composed of chitosan, gelatin, and
chondroitin sulfate, which are also applicable for cartilage repair.
However, systemic oral administration of diclofenac sodium has
been associated with severe gastrointestinal and cardiovascular
risks, highlighting the need for safer, localized delivery systems
[22]. Scaffolds for cartilage regeneration must replicate the
morphology, structure, and function of native cartilage. Within
these porous structures, neighboring cells migrate, adhere,
proliferate, and differentiate to form new cartilage tissue [23].
The release of diclofenac sodium from such scaffolds may
reduce acute inflammatory responses by decreasing neutrophil
and macrophage infiltration at the injury site, thereby alleviating
pain and swelling [24]. This study presents a novel scaffold
formulation and systematic physicochemical characterization
of diclofenac-loaded chitosan—gelatin—chondroitin sulfate,
designed to improve mechanical performance and support
controlled local release of anti-inflammatory agents, potentially
relevant for cartilage repair applications.

In a previous study, a scaffold composed of chitosan,
gelatin, and chondroitin sulfate in a 50:25:25 ratio was
employed, resulting in a compressive strength of 10.58 MPa
and a high cell viability rate of 102.75%. These findings indicate
that the scaffold possesses favorable mechanical properties and
excellent biocompatibility, demonstrating its non-toxic nature
to cells [25]. Nonetheless, this composition ratio presents a
disadvantage, as the scaffold will disintegrate within about
two days. A cross-linking agent is required to improve the
scaffold’s properties and facilitate the progressive release of
diclofenac sodium. Upon the addition of a cross-linking agent
to the scaffold, it can attach to the polymer’s amino groups,
resulting in the formation of a-helical connections, which
causes the initially linear polymer threads to become thicker
and intertwined [23,26]. The pore diameter may consequently
diminish. Consequently, the scaffold degradation rate would
decrease while the volume of liquid influx would increase
somewhat [27,28].

A scaffold composed of chitosan, gelatin, and
chondroitin  sulfate, incorporating polyethylene glycol
(PEG) 400 as a plasticizer and diclofenac sodium as the
active pharmaceutical ingredient, was formulated using
glutaraldehyde (GA) as a cross-linking agent. GA maintains
bone-bonding strength by forming stable cross-links between
BHA and gelatin. Previous studies have demonstrated that GA,
among various cross-linking agents tested, results in superior
mechanical strength. The concentration range of GA used in
this study was carefully selected based on prior research [29],
which indicated that concentrations up to 2.5% are non-toxic.
The most effective concentrations for cross-linking activity
were reported to be 0.5% and 1.0% [30]. Accordingly, the
scaffold was formulated with varying concentrations of GA:
0%, 0.25%, 0.50%, 1.00%, and 2.50%. This formulation was
designed to assess the effect of different GA concentrations
on key scaffold properties, including mechanical strength,
pore diameter, porosity percentage, and degradation behavior
under physiological conditions. These investigations provide
a scientific basis for evaluating the efficiency of cross-linking
while ensuring the biocompatibility and functional performance
of the scaffold.

MATERIALS AND METHODS

Materials

This study utilized shrimp chitosan (CV. Multiguna,
Indonesia), gelatin (Cartino, Thailand), chondroitin sulfate, GA
(Sigma-Aldrich, USA), pro-analysis NaOH solution (Merck,
Germany), diclofenac sodium (Kalbe, Indonesia), pro-analysis
acetic acid (Mallinckrodt, UK), PEG-400, phosphate buffer
saline pH 7.4, ethanol 96%, and distilled water (Interlab,
Indonesia).

Methods

Preparation of chitosan—gelatin—chondroitin sulfate-diclofenac
scaffold composite

The scaffold was prepared using diclofenac sodium,
chondroitin sulfate, gelatin, and chitosan. The composition ratio
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of the three biopolymers followed a 50:25:25 proportion of
chitosan:gelatin:chondroitin sulfate, which corresponds to 2.5 g
of chitosan, 1.25 g of gelatin, and 1.25 g of chondroitin sulfate.
This ratio was determined based on previous optimization studies
showing favorable properties regarding pore size distribution
and interconnectivity. Moreover, incorporating chondroitin
sulfate contributed to an increase in compressive strength,
reaching 10.58 MPa and a high cell viability of 102.75%.
These results indicate that the scaffold exhibits excellent
mechanical integrity while remaining non-toxic to cells [24].
Specifically, 2.5 g of chitosan was solubilized in 100 ml of a
2% acetic acid solution and agitated until homogeneous with
a magnetic stirrer; 50 ml of warm distilled water (40°C—50°C)
was utilized to dissolve 1.25 g of gelatin. The chitosan solution
was subsequently included, and the mixture was stirred. The
chitosan—gelatin solution was thereafter stirred while 1.25 g of
chondroitin sulfate powder was incrementally introduced. A
1% NaOH solution neutralized the composition upon achieving
a homogeneous mixture. A 1% sodium diclofenac solution in
PEG 400 was incorporated post-neutralization and stirred until
fully dissolved and homogeneous. GA was then introduced as a
cross-linking agent at varying concentrations of 0.25%, 0.5%,
1%, and 2.5% (v/v) by mixing it directly into the homogeneous
solution. Cross-linking was conducted at room temperature
(25 °C) for 24 hours. After cross-linking, the scaffolds were
thoroughly washed with distilled water three times to remove
unreacted GA, minimizing potential cytotoxicity. Finally, the
scaffolds were subjected to freeze-drying (lyophilization) to
obtain the final porous structure in dry form. Table 1 illustrates
the formulation of the chitosan—gelatin—chondroitin sulfate-
sodium diclofenac scaffold implant with the inclusion of GA.

Characterization evaluation

Organoleptic tests, pore diameter evaluations utilizing
a scanning electron microscope (SEM) (Inspect S-50, FEI,
Japan), compressive strength evaluations with Autograph 2.1
(Autograph, Indonesia), and degradation analyses employing
PBS solution were conducted to characterize the chitosan—
gelatin—chondroitin sulfate scaffold composite incorporating
the cross-linking agent GA.

Organoleptic evaluation

The organoleptic evaluation of chitosan—gelatin—
chondroitin sulfate-diclofenac sodium scaffolds was conducted
to assess their color and physical properties at varying GA
concentrations (0%, 0.25%, 0.50%, 1.00%, and 2.50%). Three
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unbiased evaluators performed the assessments in a regulated
laboratory environment, and the results were recorded as
qualitative descriptions for subsequent comparison.

Pore diameter

The width of the pore, measured in micrometers
(um), is referred to as the pore diameter. A scaffold must
possess an appropriate pore diameter size. Pore size influences
gas exchange, nutrient transport, chondrocyte migration, and
nutrient infiltration into the scaffold. A scaffold specimen
measuring 5 mm in width and 3 mm in height was prepared
for testing. A sputter was employed to deposit a 3-minute gold
coating onto the scaffold. Upon placement of the coated sample
in the sample chamber, it was subjected to an electron beam
at a magnification of 1000 and a voltage of 5 kV. The detector
would identify the beam post-reflection. A picture may result
from an order of micron expansion or the dimensions of the
scaffold sample’s pores. This test was conducted using SEM
[31].

Porosity test

Porosity is a percentage ranging from 0% to 100%
that indicates the volume of voids inside the scaffold relative
to its total free space volume. The fluid transfer technique is
employed to conduct the porosity test. Ethanol was selected
due to its efficient absorption in the scaffold without inducing
contraction or swelling. The scaffold’s dry weight (ml) was
measured in its desiccated state. The mass of the ethanol and
the container was subsequently recorded as m? The scaffold
was thereafter placed in a container containing ethanol (m?).
Subsequently, it is immersed for 48 hours in 96% v/v ethanol.
The scaffold was dismantled after 48 hours, and the weights
of the ethanol and container were recorded (m4) [31]. The
following formula can be employed to ascertain porosity:

(m3-m4-ml)
(m2-m4)

Porosity (%) = x 100%

Compressive test

Compressive strength testing aimed to evaluate
whether the scaffold could withstand mechanical forces exerted
by surrounding tissues. Scaffold samples, 5 mm in diameter and
3 mm in height, were tested in a dry state at room temperature
using an Autograph universal testing machine. The compression
test was conducted at a constant speed of 5 mm/minutes. A
compressive load was applied to the scaffold during the test

Table 1. Formulation of chitosan—gelatin—chondroitin sulfate-diclofenac sodium scaffolds preparations with the addition of

GA.

Formulation C(l;t;)rsna)n ((;gerl:::)l Chondroitin sulfate (gram) Diclof(e;z:‘cnf;) dium (0/(53‘7)
Control 2.5 1.25 1.25 0.05 0
I 2.5 1.25 1.25 0.05 0.25
11 2.5 1.25 1.25 0.05 0.50
11 2.5 1.25 1.25 0.05 1.00
v 2.5 1.25 1.25 0.05 2.50
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until structural deformation was observed. The diameter and
height of the scaffold were recorded prior to testing to ensure
accuracy. The compressive strength value was calculated based
on the maximum force (in Newtons) applied before deformation
occurred, and the result was automatically displayed upon test
completion [31].

Degradation test

The degradation test was carried out by immersing the
scaffold in a pH 7.4 phosphate-buffered saline (PBS) solution
at 37 °C in an incubator. A cubic device measuring 1 x 1 x 1 cm
with four interconnected holes was used. The scaffold was
prepared and dried using a freeze-dryer prior to immersion.
The scaffold was immersed for a total of 14 days, and the mass
change was measured at specific time intervals: 1 day, 2 days, 3
days, 5 days, 7 days, 10 days, 12 days, and 14 days [31].

RESULTS AND DISCUSSION

This study focused on a scaffold utilizing sodium
diclofenac as the active component, composed of chitosan,
gelatin, chondroitin sulfate, and PEG-400. The scaffold
exhibits non-toxic, biodegradable characteristics and material
compatibility, which are essential prerequisites for further
development in cartilage repair applications for OA. GA
was employed as a cross-linking agent to enhance structural
stability. The maximum GA concentration was limited to 2.5%,
which has been reported to cause no cytotoxic effects—such as
cell damage or death—in human fibroblast cell lines (WI-38)
[29]. This finding is consistent with the study by Budiatin ez al.
[23], which demonstrated that scaffolds containing up to 2.5%
GA maintained >60% cell viability in MTT assays, thereby
classifying them as non-toxic.

The cytotoxicity of GA is also known to be time-
dependent. Sun et al. [29] reported that prolonged exposure
to GA (24 hours) significantly increased its toxicity, lowering
the 50% toxic concentration (TCsp) from 4.83 mM to 2.09
mM. However, short-term exposure with appropriate post-
treatment—such as extensive washing—can maintain GA
levels within biologically acceptable limits. Accordingly, in this
study, the cross-linking process was conducted with limited GA
exposure (24 hours), followed by three cycles of washing with
distilled water to remove unreacted GA, in line with procedures
recommended by previous studies [29,30]. This strategy was
implemented to minimize residual GA content and reduce the
risk of cytotoxicity. Furthermore, PEG-400 was incorporated as
a plasticizer to improve the scaffold’s elasticity and flexibility
by increasing intermolecular spacing, thereby enhancing its
resemblance to the mechanical properties of native cartilage
tissue [32].

Organoleptic evaluation

Dry samples (after freeze-drying) underwent
organoleptic evaluations through visual inspection. An
organoleptic study of the color of each chitosan—gelatin—
chondroitin sulfate-PEG 400-diclofenac sodium scaffold
implant sample indicated a color variation, as illustrated in
Figure 1, where the scaffold transitions from white to brown
with increasing GA concentration.

Figure 1. Differences in the color of implant scaffold preparations with the
addition of different GA concentrations. (a) Control, (b) GA 0.25, (c¢) 0.50, (d)
1.00, (e) 2.50%.

GA serves as a cross-linking agent in the construction
of this scaffold. GA is essential for enhancing the stability and
porosity of the scaffold by facilitating cross-linking among the
amine groups of chitosan and gelatin, as well as between chitosan
and chondroitin sulfate [26]. This study illustrates that the
scaffold’s color alters with increasing GA content. The observed
color changes indicated that the chemical reaction between GA
and chitosan facilitated the formation of chromophores [33,34].
A study by Budiatin ef al. [23] showed that the chitosan—gelatin—
diclofenac scaffold underwent a color change upon adding GA.
The color change is a consequence of a diazotization reaction
between GA and the scaffold material. An intensified brownish
hue is produced with an increase in GA concentration due to the
formation of more cross-linking bonds between the carbonyl
group (-C=0) in GA and the amine group (-NH2) from gelatin and
chitosan, along with the S-group from chondroitin sulfate [35].

Pore diameter

Figure 2 illustrates that SEM analysis was employed
to conduct morphological observations and ascertain the
scaffold’s pore width. Based on the results of the obtained
SEM observations, data were subsequently created to analyze
the observed pore diameters. Table 2 illustrates that increased
GA content reduces the scaffold’s pore diameter. The study’s
results revealed that all scaffold samples, save for the highest
concentration of 2.5%, possess pore diameters above 100 um.

The presence of GA influences the dimensions of the
pores that develop in the scaffold. The resultant cross-linking
will form an a-helix bond, causing the initially linear polymer
strands to tighten and coil around each other, enhancing the
scaffold’s density [36,37]. The scaffold necessitates pore
dimensions ranging from 100 to 200 um [38,39]. Narrow
pore widths may impede nutrition transfer and metabolic
waste removal and restrict cellular mobility. This may lead
to scaffold necrosis. Conversely, if the hole size is enormous,
cells would detach more easily from the scaffold, leading to
poor differentiation and proliferation processes [40—42]. The
results of this work align with the prior research conducted by
Zadeh and Zamanian [43], which showed that elevating the
concentration of cross-linking GA may reduce the scaffold’s
average pore size. Similarly, Samirah et al. [30] reported that
higher concentrations of GA result in smaller pore diameters,
indicating that GA significantly influences the structural
characteristics of bioscrew pores.

Porosity presentation

Table 3 presents the average porosity of the chitosan—
gelatin—chondroitin  sulfate-diclofenac scaffold at varying
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Figure 2. The appearance of the pore diameter of scaffolds with the addition
of different GA concentrations using SEM with a magnification of 600—1000x.
(A) Control; (B) GA 0.25%; (C) 0.50%; (D) 1.00%; and (E) 2.50%.

Table 2. The average pore diameter values chitosan—gelatin—
chondroitin sulfate-diclofenac sodium scaffolds preparations with the
addition of different GA concentration.

Pore diameter

GA concentration p-value
Min-Max (um)  Mean = SD (um)
Control 200241 216.80 +21.27
GA 0.25% 180-215 195.03 +18.60 0.767
GA 0.50% 128-171 153.93 £22.23" 0.043
GA 1.00% 110-112 111.62 +£0.97" 0.002
GA 2.50% 29-102 65.57 +36.05" 0.000

Data are expressed as the mean + SD of 3 replicates and analyzed by one-way
ANOVA. *p-value<0.05 compared to the control group.

doses of the GA cross-linking agent. As the concentration of
GA rose, the porosity percentages of the scaffold markedly
increased. Nonetheless, according to these findings, two

Table 3. The porosity average of chitosan—gelatin—chondroitin
sulfate-diclofenac sodium scaffolds containing different
concentrations of GA.

GA Concentration Porosity (%) p-value
Control 64.53 £ 1.09
GA 0.25% 74.65 +0.29" 0.002
GA 0.50% 77.79 +1.49" 0.002
GA 1.00% 82.53+0.96" 0.000
GA 2.50% 94.33 £2.08" 0.000

Data are expressed as the mean + SD of 3 replicates and analyzed by one-way
ANOVA. *p-value<0.05 compared to the control group.

Table 4. The compressive strength average of chitosan—gelatin—
chondroitin sulfate-diclofenac sodium scaffolds containing different
concentrations of GA.

GA Concentration Average + SD (MPa) p-value
Control 0.069 + 0.006
GA 0.25% 0.097 £ 0.009 0.995
GA 0.50% 0.156 +0.007 0.769
GA 1.00% 0.368 £0.115" 0.017
GA 2.50% 1.463 £0.168" 0.000

Data are expressed as the mean = SD of 3 replicates and analyzed by one-way
ANOVA. *p-value<0.05 compared to the control group.

scaffold samples—one with a GA concentration of 0.5% and
another with 1% —exhibit porosity values within the requisite
75%—90% range for scaffolds.

Incorporating GA facilitates the proliferation and
differentiation of chondrocyte cells, enhances cell migration
and vascularization, and increases the scaffold’s porosity to
the requisite range of 75%-90% porosity percentage values
[44]. The configuration of this hole is essential for enhancing
bioapplicability, accelerating bone repair, and providing an
increased surface area for gas and nutrient exchange [38,39].
Similar findings were seen in the work by Azami et al. [45],
who reported analogous results, indicating that the porosity of
the GEL-HA scaffold with GA was 85.1% more than that of
the GEL-HA scaffold devoid of GA, which measured 84.6%.
This study further illustrates that GA cross-linking enhances the
mechanical strength and compressive resistance of the scaffold
[23]. The cross-linking between the scaffold’s polymers is
the reason for this. The study’s results met the criteria for a
potential scaffold compressive strength (0.01-3 MPa) based on
the mechanical properties of the target cartilage tissue [46,47].

Compressive strength

Table 4 presents the outcomes of experiments assessing
the compressive strength of scaffolds composed of chitosan,
gelatin, chondroitin sulfate, and diclofenac sodium, which
incorporate differing quantities of GA. The results indicated
that increasing the GA concentration significantly enhances
the compressive strength of the scaffold. Scaffolds containing
0.5% GA exhibited superior compressive strength compared
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Table 5. Degradation percentage average of chitosan—gelatin—chondroitin sulfate-diclofenac scaffolds containing different concentrations of GA
after 14 days.

Day (%)
GA Concentration 1 2 3 5 7 10 12 14 p-value
Control 23.81+043 32.64+0.87 3882+£028 45.85+0.33 51.73£0.72 59.74+0.78 67.13+£0.63 89.02+7.15 <0.001*
GA 0.25% 2298+0.14 30.98+0.32 37.74+£0.75 45.07+0.69 5029+0.52 58.78+0.13 6544+0.72 80.54+3.31 <0.001*
GA 0.50% 22.06+0.44 2878+1.15 36.09+0.16 41.50+£0.82 49.51+0.17 5838+0.21 64.49+0.06 73.16+2.06 <0.001*
GA 1.00% 20.89£0.60 26.25+0.59 35.13+£0.56 40.54+0.32 4854+032 56.23+0.35 62.89+1.29 70.38+0.30 <0.001*
GA 2.50% 19.50+£0.58 25.00+0.68 33.75+0.20 39.46+0.55 46.77+0.51 5433+1.23 60.89+0.07 68.05+0.30 <0.001*

Data are expressed as the mean + SD of 3 replicates and analyzed by repeated measure ANOVA.

*p-value<0.05 compared to the control group.

GA Concentration
N Control

E= GA0.25%
80 m 6a0s0%
3 GA 1.00%
Bl GA250%

Degradation (%)

Degradation Percentage of Scaffolds with Different GA Concentrations Over 14 Days

EEEEEEEEEEEEEEEREEEE

Day

Figure 3. Degradation percentage of scaffolds with different GA concentrations over 14 days.

to scaffolds with different GA concentrations. Conversely,
scaffolds lacking GA had reduced compressive strength.

Degradation test

The degradation test in this study was conducted by
immersing the scaffold in phosphate-buffered saline (PBS)
solution at pH 7.4. While enzymatic degradation more closely
replicates the physiological breakdown of cartilage tissue,
PBS-only models are routinely used for preliminary scaffold
assessment, as supported by recent literature. Yue ef al. [48]
evaluated the degradation behavior of gelatin methacrylate and
PLA-silk-based scaffolds in PBS at pH 7.4 over a 30-day period.
Despite the absence of enzymatic agents, the scaffolds showed
progressive weight loss over time. These findings reinforced
the reliability of PBS as a suitable medium for simulating
early-stage scaffold degradation and drug release kinetics in
physiological-like conditions.

Table 5 presents the results of the degradation test
conducted in this study. The results show that increasing the GA
concentration might reduce the weight loss % of the chitosan—
gelatin—chondroitin  sulfate-diclofenac scaffold. Figure 3
presents a bar chart illustrating the scaffold’s weight loss

tendency over 14 days across different GA concentrations. The
proportion of weight decrease was greater for scaffolds without
GA than for those containing GA. All groups had a consistent
increase in degradation over time.

GA enhances the durability of scaffolds, ensuring
their stability even after a fortnight. This study corroborates
other research indicating that GA can inhibit degradation by
augmenting resistance to the scaffold [30,49,50]. Research
conducted by Samirah er al. [30] demonstrated that GA
stabilizes gelatin, which is susceptible to deterioration, with
an optimal concentration ranging from 0.1% to 1%. Pinto et
al. [51] indicated that GA concentrations beyond 1% may
lead to cross-linking saturation, thus diminishing its benefits.
The principal cause is the formation of cross-linking bonds
between the carbonyl group (-C=0) in GA and the carboxyl
group (COOH) from chondroitin sulfate, along with the amine
group (-NH,) from gelatin and chitosan [52]. Increased cross-
linking bonds are established, necessitating the rupture of
additional bonds prior to the polymer’s degradation in the
liquid at elevated GA concentrations. As the concentration of
GA increases, the quantity of degraded particles will diminish
due to a reduced fluid passage through the scaffold [53].
Furthermore, incorporating GA as a cross-linking agent in the
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scaffold formulation facilitates sustained release of diclofenac
sodium, which may minimize potential interference with
cartilage repair and provide a platform for further investigation
in regenerative applications.

This study successfully characterized scaffolds
incorporating various concentrations of GA as a cross-linking
agent. However, several limitations should be acknowledged.
First, the visual assessment primarily focused on color changes,
which limits the generalizability of the findings and should
be interpreted cautiously. Second, the degradation testing
conditions did not fully replicate the physiological environment
and thus may not accurately reflect in vivo performance.
Moreover, the study did not include in vivo testing to evaluate
the scaffold’s functional efficacy. Another limitation lies
in the absence of cytotoxicity and in vitro cell compatibility
assessments, which are essential for determining the scaffold’s
biological safety, particularly considering the potential cytotoxic
effects of residual GA. Furthermore, the drug release profile of
sodium diclofenac, including cumulative release, burst release,
and sustained release behavior, was not evaluated, despite its
critical importance for understanding the scaffold’s therapeutic
potential and anti-inflammatory performance. Biological and
anti-inflammatory validations were likewise not included.

Further research is required to assess the scaffold’s
effects on cell proliferation, viability, and differentiation,
as well as to conduct quantitative drug release studies, GA
cytotoxicity testing, and investigations into chondrocyte
behavior and cytokine response assays. These efforts are crucial
for comprehensively determining the scaffold’s safety and
efficacy for biomedical applications. Despite these limitations,
the findings suggest that scaffolds composed of chitosan,
gelatin, chondroitin sulfate, and PEG-400, cross-linked with
GA, exhibit enhanced mechanical strength, structural stability,
and physicochemical properties, supporting their potential
for further development in cartilage-mimicking scaffolds and
localized drug delivery systems.

CONCLUSION

This study highlights the potential of GA-cross-linked
chitosan—gelatin—chondroitin sulfate scaffolds as a platform
for further development in OA-related cartilage repair, based
on their physicochemical properties and drug-release behavior.
The findings indicate that GA content significantly influences
the optimization of scaffold properties. With additional GA, the
resultant scaffold exhibits a more pronounced color, reduced
pore diameter, increased porosity percentage, enhanced
compressive strength, and diminished degradation percentage.
The optimal concentration of GA as a cross-linking agent to
improve the characteristics of diclofenac sodium scaffold
implants made from chitosan, gelatin, and chondroitin sulfate
is 0.5%.

This study did not include biocompatibility testing
or in vitro assays, representing key limitations. Future studies
should investigate cytotoxicity, drug release profiles, and
cellular responses to comprehensively evaluate the scaffold’s
safety and functionality. While this research provides critical
insights into scaffold design and characterization, subsequent
investigations should focus on in vivo validation to assess

biocompatibility and therapeutic efficacy in relevant animal
models. Exploring additional therapeutic agents and their
synergistic interactions with scaffold-based delivery systems
is recommended to enhance the scaffold’s applicability in
various tissue engineering contexts. Interdisciplinary strategies
combining biomaterials development, controlled drug delivery,
and clinical translation represent a promising direction for
advancing cartilage repair approaches and improving OA
treatment outcomes.
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