

Create account

Sign in

Molecular Docking and ADME Profiles of Hyrtiosulawesine Derivatives Targeting pfLDH: Exploring Potential as Antimalarial Agents

Asian Journal of Chemistry • Article • Open Access • 2024 • DOI: 10.14233/ajchem.2024.32318

 $\underline{Zulkifli,Siti}\,\underline{Zafirah}^{\alpha,b};\underline{Abdul}\,\underline{Aziz,Ahmad}\,\underline{Amzar}^{c};\underline{Saaidin,Aimi}\,\underline{Suhaily}^{\alpha};\underline{Hamzah,Nurasyikin}^{c};\underline{Pungot,Noor}\,\underline{Hidayah}^{\alpha,b}\,\underline{\boxtimes}\,\underline{Amzah},$

a Organic Synthesis Laboratory, Institute of Science (IOS), Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Bandar Puncak Alam, 42300, Malaysia

Show all information

1 39th percentile Citation 👃

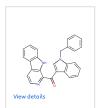
Full text ✓ Export ✓ □ Save to list

Cited by (1)

References (20)

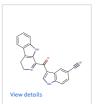
Similar documents

Abstract

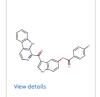

The relentless rise in Plasmodium falciparum's resistance to existing antimalarial drugs has sparked an urgent quest for novel therapeutic agents. For centuries, natural resources have been the bedrock of medicinal remedies, with β -carboline emerging as a beacon of hope in antimalarial research. In this study, we delve into the potential of hyrtiosulawesine derivatives as revolutionary antimalarial compounds, utilizing hyrtiosulawesine as the crucial scaffold. Employing a sophisticated amalgamation of molecular docking and ADME (absorption, distribution, metabolism and excretion) profiling, we meticulously screened an extensive library of hyrtiosulawesine's derivatives against P. falciparum. Based on advanced computational techniques, the binding affinities and interaction profiles were assessed and culminating in the selection of the most promising candidates based on their exceptional binding interactions. Moreover, the comprehensive ADME analyses were performed to assess the pharmacokinetic properties of these derivatives, ensuring their suitability as drug candidates. The results showed that most of the analogues exhibited strong binding affinities (-7.2 to -9.8 kcal/mol) to the Plasmodium falciparum lactate dehydrogenase (pfLDH) protein, surpassing that of hyrtiosulawesine itself. Among these, compounds at and 1w demonstrated the strongest binding, likely due to hydrogen bonding with Arg171 and Asn197. ADME profiling revealed that all hyrtiosulawesine derivatives displayed favourable drug-likeness properties and adhered to the Lipinski Rule of 5 (Ros) indicating their potential efficacy as antimalarial agents. This investigation provides a foundation for further in vitro and in vivo investigations paving the way for the development of effective treatments against malaria. © 2024 Asian Publication Corporation. All rights reserved.

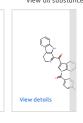
Author keywords

ADME; Antimalarial; Hyrtiosulawesine analogues; Molecular docking


Reaxys Chemistry database information

Reaxys is designed to support chemistry researchers at every stage with the ability to investigated chemistry related research topics in peer-reviewed literature, patents and substance databases. Reaxys retrieves substances, substance properties, reaction and synthesis data.





Organic Synthesis Laboratory, Institute of Science (IOS), Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Bandar Puncak Alam, 42300, Malaysia

Powered by Reaxys

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications

Ministry of Hiaher Education. Malaysia

Funding sponsor

Funding text

This work was financially supported under the Fundamental Research Grant Scheme (FRGS/1/2022/STG04/UITM/02/7) funded by the Ministry of Education, Malaysia

Corresponding authors

Corresponding author

N.H. Pungot

Acronym

Fmail address

Affiliation

noorhidayah977@uitm.edu.my

© Copyright 2024 Elsevier B.V., All rights reserved.