Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Q

Back

Enhanced obstacle detection using bilateral visionaided transformer neural network for visually impaired persons

Cluster Computing • Article • Open Access • 2025 • DOI: 10.1007/s10586-025-05740-z

```
Alarood, Ala a, b ⋈; Atoum, Mohammed Salem is; Manaf, Azizah Abdul d, e ⋈;

Abubakar, Adamu b, d, e ⋈; Alsmadi, Izzat f, g ⋈

a College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia

Show all information

O
Citations Д

View PDF Full text ∨ Export ∨ Д Save to list

Document Impact Cited by (0) References (32) Similar documents
```

Abstract

Obstacle detection remains vital in autonomous navigation and assistive technologies, especially for visually impaired individuals. This work introduces an enhanced obstacle detection framework based on a Bilateral Vision Transformer and Convolution Kernel Neural Network (BViT-CKNN). The system incorporates stereo vision data and applies a bilateral filter to reduce noise while preserving edge details. A Vision Transformer (ViT) model is then used for global feature extraction, and a Convolution Kernel Neural Network (CKNN) captures fine-grained local features. Evaluated using the COCO dataset, the proposed BViT-CKNN achieves superior performance in precision (0.93), recall (0.91), F1-score (0.92), and Mean Absolute Error (MAE) reduction (3.16%) compared to existing methods. © This is a U.S.

Government work and not under copyright protection in the US; foreign copyright protection may apply 2025.

Author keywords

Bilateral filter vision transformer; Convolution Kernel Neural Network; Obstacle detection; Visually impaired

Indexed keywords

Engineering controlled terms

Assistive technology; Convolution; Copyrights; Human rehabilitation equipment; Neural networks; Nonlinear filtering; Stereo image processing; Stereo vision; Vision aids

Engineering uncontrolled terms

Autonomous navigation; Bilateral filter vision transformer; Bilateral filters; Convolution kernel; Convolution kernel neural network; Navigation technology; Neural-networks; Obstacles detection; Visually impaired; Visually impaired persons

Engineering main heading

Obstacle detectors

Corresponding authors

Corresponding	A. Alarood
author	
Affiliation	College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
Email address	aasoleman@uj.edu.sa

© Copyright 2025 Elsevier B.V., All rights reserved.