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Abstract

Obstacle detection remains vital in autonomous navigation and assistive technologies, especially for visually impaired
individuals. This work introduces an enhanced obstacle detection framework based on a Bilateral Vision Transformer and
Convolution Kernel Neural Network (BViT-CKNN). The system incorporates stereo vision data and applies a bilateral
filter to reduce noise while preserving edge details. A Vision Transformer (ViT) model is then used for global feature
extraction, and a Convolution Kernel Neural Network (CKNN) captures fine-grained local features. Evaluated using the
COCO dataset, the proposed BViT-CKNN achieves superior performance in precision (0.93), recall (0.91), Fl-score
(0.92), and Mean Absolute Error (MAE) reduction (3.16%) compared to existing methods.

Keywords Visually impaired - Obstacle detection - Bilateral filter vision transformer - Convolution Kernel Neural
Network

1 Introduction
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driven fields, such as autonomous vehicles, mobile robot-
ics, and surveillance systems. The significance of robust and
dependable obstacle detection in assistive technology for
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known and unknown surroundings due to the lack of visual
indicators. Thus, technological devices that can detect and
identify barriers in real-time significantly improve auton-
omy, safety, and quality of life. Nonetheless, despite prog-
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methods, providing more scalable and flexible solutions.
Convolutional Neural Networks (CNNs) have demonstrated
significant efficacy owing to their capacity to learn spatial
hierarchies and local properties from unprocessed picture
data. Concurrently, transformer-based architectures—ini-
tially designed for natural language processing—have
started to exhibit remarkable efficacy in computer vision
problems, primarily owing to their ability to simulate long-
range relationships and global context via self-attention
processes.

In recent years, object detection algorithms such as
YOLO (You Only Look Once) [1] and MobileNet [2] have
garnered considerable interest for their capacity to execute
rapid and efficient object identification in real-time appli-
cations. YOLO models partition an input image into grids
and directly forecast bounding boxes and class probabilities
from whole images in a single evaluation, yielding rapid
inference. Conversely, Mobile Net prioritizes lightweight
topologies for mobile and embedded devices, including
depth wise separable convolutions, to minimize computa-
tional expense. Notwithstanding their benefits, both mod-
els face performance compromises when implemented in
intricate real-world settings characterized by several object
categories, fluctuating illumination, occlusions, and diminu-
tive objects. YOLO may encounter difficulties with precise
localization in densely cluttered environments, whereas
Mobile Net may sacrifice precision for efficiency. These
restrictions are particularly significant when the end-user is
a visually impaired individual who needs a high-reliability
level for safe and efficient navigation. An in-depth quali-
tative and quantitative analysis employing artificial intelli-
gence techniques was investigated in [3]. A low-cost, single
device mechanism provided with obstacle detection and
identification features to improve user navigation without
employing multiple detection devices was presented in [4].
Yet another convolutional transformer to improve efficiency
of multi-head attention with improved with improved accu-
racy was proposed in [5] to assist visually challenged. In
[6] a hybridization of YOLOv4 and the COCO dataset,
facilitating to improve object recognition while controlling
the advantages of obstacle recognition was proposed with
improved accuracy.

Blindness relates to the visual perception loss that can
bring about mobility and self-reliance problems for visually
impaired people. As a consequence some research has been
performed by several researchers with the intent of solv-
ing problems encountered in day to day life. Nevertheless,
people with visual impairments still pose numerous issues
that make their lives painful. Machine learning technique
was applied in [7] for obstacle avoided with minimal time.

Computer vision techniques were applied in [8] with the
intent of detecting objects in the nearly areas and convey
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this to the visually impaired uses via voice messages accu-
rately. Yet another method to concentrate on accuracy
aspects of obstacle detection, employing lightweight feature
aware enhanced target detection network was proposed in
[9]. Artificial Intelligence (Al) techniques were integrated
with sensoring mechanism [10] for visually impaired peo-
ple. An optimized deep learning algorithm employing social
optimization technique based on the Deep Convolutional
Network (Deep CNN) for ease facilitation of visually dam-
aged persons was proposed in [11]. By employing this Deep
CNN attained improved accuracy. Yet another enhanced
feature attention method to focus on the reproducibility was
designed in [12] with improved precision.

To address this gap, we propose new hybrid architecture
named Bilateral Vision Transformer with Convolutional
K-Nearest Neighbor (BViT-CKNN). This model utilizes
the synergistic advantages of Vision Transformers (ViTs)
and Convolutional Neural Networks (CNNs) to establish a
more comprehensive and efficient obstacle detection pipe-
line. Vision Transformers excel at capturing long-range
dependencies and global context via their self-attention
mechanisms, which is particularly advantageous in situ-
ations when impediments manifest in many positions and
shapes. Nonetheless, ViTs may encounter difficulties recog-
nizing tiny local details because of the absence of inductive
biases characteristic of CNNs. To mitigate this constraint,
we incorporate a CKNN (Convolutional K-Nearest Neigh-
bor) module to enhance the object boundary information
and local features that may be compromised in the atten-
tion-based global analysis. By integrating both modules,
BVIiT-CKNN can concurrently analyze global semantics
and localized characteristics, yielding enhanced precision
and reliability in obstacle recognition.

A crucial element of our system is the bidirectional filter-
ing procedure utilized in the preprocessing phase. The bilat-
eral filter is a non-linear, edge-preserving, noise-reducing
smoothing filter that retains crisp edges by evaluating both
the spatial proximity and intensity similarity of pixels. For
those with visual impairments, preserving edge informa-
tion is especially vital when minor misdetections may result
in accidents. Implementing bilateral filtering before fea-
ture extraction enhances picture feature clarity, diminishes
artifacts, and optimizes the efficacy of following detection
phases.

The hybrid model operates via the subsequent pipeline:
(1) input images undergo preprocessing through bilateral
filtering to enhance edge definition and diminish visual
noise; (2) a Vision Transformer module extracts elevated,
global semantic features from the image; (3) these fea-
tures are transmitted to a CKNN module that accentuates
local detail refinement, facilitating precise delineation of
object contours; (4) a classification head forecasts object
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categories utilizing the amalgamated feature representa-
tions. This sequential and synergistic approach enhances
detection accuracy and assures resilience against real-world
visual aberrations, rendering it especially suitable for assis-
tive applications.

We assess our suggested framework utilizing the COCO
dataset, a prevalent benchmark in object detection encom-
passing a broad array of commonplace objects in various
settings and orientations. Our findings indicate that BViT-
CKNN exceeds contemporary methodologies in essential
performance parameters, such as mean Average Precision
(mAP), precision-recall equilibrium, and inference reli-
ability across diverse image circumstances. These enhance-
ments indicate that our methodology is efficient in controlled
benchmark settings and shows potential for implementation
in real-world assistive systems.

The key contributions of this study are outlined as
follows:

e We introduce a novel hybrid deep learning architecture,
BVIiT-CKNN, which combines the global contextual un-
derstanding of Vision Transformers with the localized
feature refinement of CNN-based K-Nearest Neigh-
bor (CKNN) operations to achieve improved obstacle
detection.

e A bilateral filtering technique is applied during prepro-
cessing to enhance edge sharpness and overall image
quality, facilitating more accurate obstacle identification
under varied visual conditions.

e The proposed model adopts a modular design, where
the Vision Transformer captures long-range semantic
dependencies while the CKNN module ensures fine-
grained spatial precision and detail enhancement.

e Extensive experiments conducted on the COCO dataset
show that our approach outperforms existing state-of-
the-art object detection methods, delivering higher ac-
curacy and greater robustness across diverse scenarios.

The remainder of this paper is organized as follows: Sect. 2
reviews existing literature and methodologies on obstacle
detection using traditional filtering and deep learning tech-
niques. Section 3 briefly introduces the proposed BViT-
CKNN framework, including its architecture, components,
and processing pipeline. Section 4 presents our experimen-
tal setup, dataset details, training procedures, and evaluation
metrics. Section 5 comprehensively assesses the proposed
method compared with other state-of-the-art techniques,
analyzing performance under various conditions. Finally,
Sect. 6 concludes the paper by discussing future directions
and potential applications in real-world assistive systems.

2 Related work

Obstacle detection for visually impaired individuals has
garnered significant attention due to advances in computer
vision, Al, and deep learning, aiming to develop real-time,
accurate, and context-aware assistive systems. Existing
approaches primarily use modified object detectors like
YOLOVS and SSDLite MobileNetV2, offering fast infer-
ence and precision but often lacking robust error handling
and generalizability. Transformer-based models and atten-
tion mechanisms have improved global context understand-
ing and classification accuracy, yet struggle with local detail
refinement and reliable error minimization. Transfer learn-
ing with pre-trained CNNs enhances accuracy and reduces
training time but faces limitations in adaptability under
varied conditions. Sensor-integrated solutions demonstrate
promise in practical deployment but frequently compro-
mise speed, accuracy, or user convenience. These limita-
tions across methodologies underscore the need for a hybrid
model like BViT-CKNN, which integrates global and local
feature learning for enhanced obstacle detection.

A holistic review of the current state of the art methods in
edge deep learning concentrating on computer vision appli-
cations, in specific medical diagnostics was investigated
in [13]. An overview of the indispensable concepts and
technical advantages of edge deep learning was presented,
drawing attention to the potentiality of this technique in rev-
olutionizing wide range of domains. A review of Artificial
Neural Networks in ascertaining the requirements of visu-
ally impaired persons was designed in [14].

Numerous artificial intelligence techniques focusing on
visually impaired was proposed in [15]. A Viola Jones and
TensorFlow Object Detection method to design modest and
versatile framework for visually impaired to assist them
in their daily routines was designed in [16]. By using this
method obstructions were detected with a notable high effi-
ciency. Specific obstacle detection facing visually impaired
in recognizing food was proposed in [17] employing multi-
scale feature fusion network with texture feature extraction
model. With this type of design ensured to classify food as
accurately as possible.

Investigating discerning visual patterns from image
local notable regions is extensively utilized for fine-grained
visual classification tasks, to name a few being, classifica-
tion plant or animal species. An extensive amount of com-
plicated networks have been evolved for discerning learning
feature representations. In [18] a novel local structure infor-
mation (LSI) learning method was proposed to fine notably
regions accurately.

An adaptable grid generated based on the immense
object size within user’s proximity employing innova-
tive neural perception was designed in [19] with improved
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accuracy rate. Also to extract rich feature on the immense
object size within user’s proximity detailed feature extrac-
tion model employing encoder decoder convolution model
was proposed in [19] that in turn achieved improved accu-
racy. An assistive system employing point cloud registration
was designed in [20] for obstacle detection. Novel strategy
YOLOSEG was proposed in [21] for intelligent road seg-
mentation and obstacle detection of railway trespasser.
But precision was not improved. Lightweight dual-branch
semantic segmentation network was developed in [22] to
improve water surface obstacle detection. However failed
to enhance the recall.

Several systematic reviews and meta-analyses have
mapped the landscape of assistive technologies for the visu-
ally impaired. For example, in [23], a review of 54 studies
highlighted significant advances in localization and map-
ping techniques, while [24] focused on computer vision
methods. Despite the breadth of approaches, these studies
often reveal persistent gaps, including inadequate perfor-
mance in uncontrolled environments, lack of portability,
and absence of real-time feedback mechanisms.

More recent approaches have proposed transformer-
based models, such as in [25], targeting multi-object detec-
tion with improved classification accuracy. Others, like
[26], used Obstacle-Transformer architectures to maintain
constant inference time for trajectory forecasting. Despite
promising results, many of these models fail to reduce
MSE sulfficiently and lack balanced local and global feature
extraction—both critical for reliable obstacle detection.

A comparative summary of the key findings of previ-
ous research is presented in Table 1. The table highlights
a range of deep learning approaches in recent studies to

aid visually impaired individuals through obstacle detec-
tion systems. Modified YOLOVS, as used by Ahmed Ben
Atitallah et al. [1], demonstrated improved speed and pre-
cision due to backbone enhancements but lacked Mean
Absolute Error (MAE) considerations. Raihan Bin Islam
et al. [2] applied SSDLite MobileNetV2, offering light-
weight deployment and high precision, though it struggled
in generalizing across diverse environments. Xinrong Li
et al. [27]'s multimodal attention network showed strong
classification accuracy by integrating spatial and temporal
cues but did not directly address error minimization. Pre-
trained CNN models and deep transfer learning approaches
are enhanced usability and accuracy. However, they faced
limitations in reliability and MAE reduction, as seen in the
works of Wasiq Khan et al. [28] and Bineeth Kuriakose et
al. [29], respectively. Cost-effective systems, such as the one
by Xinnan Leong et al. [30], improved F1 scores in single-
device setups but suffered from slow inference. Advanced
architectures like convolutional transformers and hybrid
YOLOv4-COCO models, explored by Sunnia Ikram et al.
[25] and Yahia Said et al. [31], achieved strong accuracy
and detection rates, although their error mitigation remained
inadequate. Lastly, transformer-based detection, notably in
the study by Nasrin Bayat et al. [32], provided robust class
recognition but lacked contextual depth, underscoring the
need for more holistic and error-aware solutions in assistive
navigation technologies:

Table 1 Comparative summary of  Study Method Contribution Merits Limitations
the previous research studies key [1] Modified YOLOvVS Enhanced backbone and train- Improved speed  MAE not
findings . R .. ..
ing optimization for low-vision and precision addressed
assistance
[2] SSDLite Lightweight detector for assistive High precision Poor generaliza-
MobileNetV2 tools tion in varied
scenarios
[27]  Multimodal atten- Integrated spatial and temporal High classifica- No MAE
tion network attention tion accuracy minimization
[28] Pre-trained CNN  Improved usability and scene Enhanced Low reliability
perception accuracy
[29]  Deep transfer Leveraged pre-trained models for ~ Good Failed to reduce
learning accuracy performance MAE
[30]  Low-costsingle-  Focused on F1 score in affordable  Increased F1 Slow inference
device system setups score
[25]  Convolutional Combined CNN and attention Strong accuracy  Inadequate error
Transformer mechanisms minimization
[31] YOLOv4+COCO Hybrid method for object detection High detection Still unreliable for
rate visually impaired
[32]  Transformer-based Focused on classification accuracy  Strong class Incomplete
obstacle detection recognition context
understanding
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3 Research gaps and motivation for BViT-
CKNN

The collective review reveals a recurring pattern: while var-
ious models succeed in improving one or two performance
aspects (accuracy, precision, speed), they often fail to
deliver a comprehensive solution that balances local detail
preservation, global context awareness, and error minimiza-
tion—all of which are essential for the safe navigation of
visually impaired individuals.

Additionally, several existing approaches neglect the
integration of edge-preserving filters, such as bilateral fil-
ters, which can play a critical role in enhancing image clar-
ity and object boundary detection, especially under variable
lighting and environmental noise.

This motivates our proposed framework, Bilateral Vision
Transformer with Convolutional K-Nearest Neighbor
(BViT-CKNN). Unlike existing models, BViT-CKNN:

e Enhances input image quality using bilateral filtering to
preserve edges and reduce noise.

e Combines a Vision Transformer (ViT) for global seman-
tic understanding with a Convolutional KNN (CKNN)
module for fine-grained local detail refinement.

e Maintains a low error margin while ensuring real-time
performance.

e Demonstrates superior accuracy and robustness on chal-
lenging datasets such as COCO.

Our approach sets a new benchmark for reliable, effi-
cient, and practical obstacle detection tailored for visually
impaired individuals by addressing the local-global feature
extraction gap and explicitly targeting error minimization
metrics.

4 Methodology

Vision plays a critical role in human perception and daily
activity navigation. For individuals with visual impair-
ments, the absence or limitation of sight imposes substantial
challenges in obstacle avoidance and environmental inter-
action. To address these challenges, this study proposes an
advanced framework—Bilateral Vision Transformer and
Convolution Kernel Neural Network (BViT-CKNN)—for
enhanced obstacle detection.

The proposed method integrates a Bilateral Filter Vision
Transformer for global contextual feature extraction and
a Convolution Kernel Neural Network for localized, fine-
grained feature refinement. The architecture is designed to
capture high-level semantic information and detailed local
characteristics, improving object classification and obstacle

identification accuracy, especially in real-world, complex
environments.

4.1 Architecture overview

The overall architecture of BViT-CKNN is illustrated in
Fig. 1. The figure demonstrates the overall workflow of the
proposed BVIiT-CKNN hybrid obstacle detection frame-
work, which is designed to assist visually impaired indi-
viduals with enhanced accuracy and precision. The process
begins with the COCO dataset, which contains 80 object
classes commonly used for object detection tasks. These
classes undergo bilateral filter-based preprocessing, which
enhances image quality by preserving edges while reducing
noise—crucial for effective obstacle recognition in diverse
and real-world visual conditions.

Following preprocessing, the data is passed through two
parallel yet complementary modules. The first is the Bilat-
eral Filter Vision Transformer-based Global Feature Extrac-
tion, which captures long-range semantic relationships and
contextual information across the entire image. The second
is the Convolution Kernel Neural Network-based Local
Feature Extraction, which focuses on fine-grained spatial
details and precise boundary detection using localized con-
volutional operations.

The outputs of both modules are integrated to produce
an accurate and precise obstacle detection result, benefiting
from global context understanding and local feature refine-
ment. This architecture effectively balances the strengths of
transformer models in capturing broad contextual patterns
and CNNs in enhancing spatial accuracy, making it highly
suitable for assistive technologies in complex environments.

4.2 Experimental dataset

The experimental evaluation of the proposed BViT-CKNN
model is conducted using the COCO (Common Objects in
Context) dataset, a comprehensive and challenging bench-
mark extensively adopted for object detection, segmen-
tation, and image captioning tasks. The COCO dataset is
particularly well-suited for obstacle detection systems tar-
geted at visually impaired individuals due to its diversity
in scene contexts and object categories. It contains over
165,000 annotated images, with over 80 object categories,
offering instance-level annotations and contextual infor-
mation such as object segmentation masks and key points.
These rich annotations enable the development and testing
of models that detect objects and understand spatial rela-
tionships and complex environments—capabilities essential
for real-time assistive navigation systems.

The dataset is systematically organized into multiple
semantic categories, as shown in Table 2, which maps object
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Fig. 1 Architecture diagram of the

proposed Bilateral Vision Trans-
former and Convolution Kernel

BViT-CKNN enhanced obstacle detection
involving diverse collection of images via
dataset with distinct object classes

v

Pre-processing

Bilateral Filter Vision ‘
Transformer-based Global
Feature Extraction

)

Local feature extraction

Convolution Kernel Neural ‘
Network model

v

Classification

Real-time navigation

v

Achieving an improving classification accuracy
and precision

Neural Network (BViT-CKNN) COCO Dataset
method

Table 2 Categories in the COCO dataset

S. No Categories 1D

1 Person ID Id-1

2 Vehicle Id-2t09

3 Outdoor Id-10to 15
4 Animal Id-16t0 25
5 Accessory Id - 26 to 33
6 Sports Id — 34 to 43
7 Kitchen Id — 44 to 51
8 Food Id - 52 to 61
9 Furniture Id - 62 to 70
10 Electronic Id-71t0 77
11 Appliance Id —78-82
12 Indoor Id — 84-90

classes to their respective identification ranges. The Person
category (ID 1) includes human figures critical for colli-
sion avoidance in crowded areas. The Vehicle category (IDs
2-9) includes various modes of transportation- bicycles,
cars, and buses—essential for outdoor mobility assistance.
Outdoor (IDs 10-15) comprises environmental elements
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such as trees and benches, while the Animal category (IDs
16-25) enhances the system's capability to detect dynamic,
unpredictable obstacles like pets.

Other significant categories include Accessory (IDs
26-33) and Sports (IDs 34-43), which add to the dataset's
contextual complexity. The Kitchen (IDs 44-51) and Food
(IDs 52-61) classes support indoor navigation and scene
recognition applications. Categories like Furniture (IDs
62-70), Electronic devices (IDs 71-77), and Appliances
(IDs 78-82) reflect indoor object interactions, whereas
Indoor (IDs 84-90) classes encompass general in-home
items and spaces.

By training and evaluating the model on such a diverse
and context-rich dataset, the proposed framework is
expected to generalize well across a wide range of real-
world scenarios, ensuring its practical applicability and reli-
ability in assisting visually impaired users during navigation
and obstacle avoidance.
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4.3 Bilateral filter vision transformer-based global
feature extraction

Preprocessing plays a vital role in obstacle detection for
visually impaired individuals by enhancing image quality
and reducing noise, which improves the accuracy of subse-
quent tasks like object detection and tracking. The proposed
method employs a bilateral filter before processing with a
Vision Transformer (ViT). This filter smooths the image
while preserving important edges, unlike traditional filters
that may blur them. By integrating bilateral edge-preserv-
ing smoothing with ViT, the system enhances image clar-
ity, helping the model focus on relevant features better. The
bilateral filter replaces each pixel's intensity with a weighted
average of neighbouring pixels, where the weights are based
on both spatial closeness and intensity differences—thereby
ensuring edge preservation and effective noise reduction to
support improved object detection performance.

Let “SI’ represents the Sample Training Image, and then
the Bilateral Filter output image ‘S7%*v¢?* is mathemati-
cally derived as given below.

SF = Sfiltcrcd (pz)
S ST (i) RE (1S (i)~ TG (1)

Norm
i€

SK (| [piv1 — pil )

Norm = Z RK (||SI (p;) — ST (piv1)l])
g, € (2)

SK (| |Pi —pz‘+1| |)

From the above Eq. (1), (2) sample filtered training image is
denoted as ‘SF”’, and weight normalization results are rep-
resented as N orm’.The pixel intensity values in the sample
training image are restored with a weighted mean of inten-
sity values of the neighbouring pixel. Moreover, ’SI’ and
¢ gfiltered> represent the Sample Training Image and filtered
image, respectively, based on the window centre 'a’, ‘p;'
indicates the coordinates of the current pixel to be filtered,
and 'p; 11" represented as a neighbouring pixel. Moreover,
the bilateral filter function in our work utilizes spatial ker-
nel 'SK” (i.e. smoothing differences in pixel spatial coordi-
nates) and range kernel ‘ RK” (i.e. smoothing differences in
pixel intensity) intensity values to preserve sharp edges of
corresponding Sample Training Images based on different
classes (i.e. 80 classes). Following this, the weight normal-
ization results are arrived at using 'Norm’ in Eq. (2).

The proposed Vision-aided Transformer (ViT) in the
ViT-NN method specifically consists of two paramount ele-
ments: a feature extractor and a classifier. Our work uses
preprocessed or filtered samples for further processing (i.e.,
feature extraction and classification). Important features

from filtered images were discovered. On the other hand,
the task of the classifier is to split the sample-filtered train-
ing image into distinct classes. Moreover, in the proposed
method, both global context understanding using a Bilat-
eral Filter Vision Transformer and fine-grained local feature
extraction using CNN are designed for feature extraction.

Transformer encoder layers employed with feature
extractor. It comprises multi-head self-attention by position-
wise feed-forward network. The proposed technique con-
centrates on numerous portions of sample-filtered training
images and ascertains associations among them via self-
attention. At input, every layer of the sequence obtains non-
linear transformation.

Assume all patches are tokens with a sample-filtered
training image 'SF" sequence. At first, the sample-filtered
training image is separated into fixed-size patches. Every
patch is converted to a vector. The sample filtered training
image'SF” sequence is split into non-overlapping patches
of fixed size ‘16 * 16pixels' and converted into a vector as
given below.

SFl SFl
SF, SF,
sp=| 5P| oh G
SFNn_1 SFn_1
SFN SFN

From the above Eq. (3) sample filtered training image
‘SF;, ={SF1,SFy,...,SFnx_1,SFN}" sequence or
image, dimensions ‘h * w * C” is split to ‘N’ non-overlap-

ping patches of size ‘P * P’. ‘N = (h;;l}) ’

employed to esti-
mate patches. With the converted vector according to the
above (3), each patch is then flattened into a one-dimen-
sional vector by employing the Learnable Projection Matrix
as given below.

LM e R(P*C)*D (4)

From the above Eq. %4)5 ‘LM’ is indicated as a linear pro-
jection matrix, ‘€ R\Y") is denoted as the input vector,
'D’ denotes the dimensionality of embedding result, ‘P2
> is represented as patch sizes and 'C” specifies classes.
The flattened patch into a one-dimensional vector result is
obtained using Eq. (4). The above-flattened vectors are then
passed via linear projection matrix ('L M") to generate patch
embedding results and are mathematically represented as
given below.

PE = [SF1LM,SFoLM,... ,SFNLM]+ LM p,s (5)

From the above Eq. (5), the patch embedding results 'PE”’
are arrived at based on the linear projection matrix (‘LM")
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results of the first sample filtered training image 'SFy LM
’, linear projection matrix (‘LM’) results of second sam-
ple filtered training image ‘SF3 LM’ and so on in addition
to the positional encoding results of the linear projection
matrix ‘LM p,,’ respectively.

The proposed model learns spatial correlations among
patches. With subsequent patch embedding, positional
encoding of every token is included. Encoding results of the
linear projection matrix ‘LM p,s € RV*P* also preserves
spatial information that is said to be lost during the process
of flattening. Lastly, important features are selected by patch
embeddings and positional encodings. These broadcast to
transformer encoder layers.

Figure 2 illustrates the preprocessing stage of the pro-
posed BViT-CKNN obstacle detection framework, empha-
sizing the role of bilateral filtering in enhancing image
quality before feature extraction. The process begins with
an input image from the COCO dataset containing real-
world objects and scenes with complex backgrounds. This
image—the original image—is then passed through a bilat-
eral filter function, a non-linear, edge-preserving, and noise-
reducing smoothing technique.

Unlike traditional filters that often blur edges, the bilat-
eral filter effectively smooths homogeneous regions while
preserving crucial edge details. This capability is significant
for obstacle detection systems targeted at visually impaired
individuals, where precise boundary recognition and edge
clarity are critical for accurate object localization. The out-
put is a filtered image that maintains strong object outlines
and suppresses unnecessary background noise, creating an
optimal input for the subsequent feature extraction modules.
This enhanced visual input significantly improves the per-
formance of deep learning models by allowing them to focus

Fig. 2 Structure of Bilateral Filter
based preprocessing model

The COCO
Dataset
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on meaningful structures within the image, ultimately con-
tributing to more accurate and reliable obstacle detection.

4.4 Convolution Kernel neural network-based local
feature extraction

Convolution Kernel Neural Network (CKNN) as a core
local feature extractor. It isn't a standard term in deep learn-
ing and denotes to core functionality of CNNs, where con-
volutional kernels (or filters) act as local feature extractors.
CNNs leverage these kernels to identify patterns within
local regions of input data, such as images, and this process
is fundamental to their ability to learn hierarchical feature.
The CKNN is not a standard or extensively recognized in
deep learning literature. It appears to be a misnomer or a
localized term for a concept that can be described using
established terminology.A standard CNN employs convo-
lutional layers with a set of kernels to extract the features.
Each kernel is considered to identify the specific patterns or
features within a local accessible field. The CKNN as a core
local feature extractor aligns directly with the fundamental
purpose of convolutional layers in CNNs.

The specific calculation process of Convolution Kernel-
based Local Feature Extraction is given below. For each
parallel convolution layer, an 'N — gram’ convolution
between patch embedding results and different sized con-
volution kernels ‘CK = (CK,,CKa,...,CKp)’ is per-
formed. ‘CK; € RE*P” with ‘K’ representing the kernel
size and ‘D’ denoting the dimensionality of embedding.
Figure 3 shows the structure of Convolution Kernel-based
Local Feature Extraction.

As shown in the above figure, in the Convolution Kernel-
based Local Feature Extraction model implementation. Var-
ious extractions ‘N — gram’ feature classes are included in

—> Bilateral
Filter

function

Original image l

Filtered image J
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Patch Embedding

PE1 PE2 PE3 PEN

Visual Convolution ]

Local Features
Extracted

Fig. 3 Structure of Convolution Kernel-based Local Feature Extraction model

several convolutional kernels of divergent sizes. For local
features, an image combination of different classes is cap-
tured via distinct kernel sizes. Visual feature map matrix
‘V FM,;’is mathematically formulated as given below.

VFM, = PE® CK; (6)

From the above Eq. (6),'®' represents the convolution oper-
ation of 'C'K;” on patch embedding results ‘PE’. ‘V F M,
'is denoted below.

VFM,; = f (CK,; * PE + f) 7)

From Eq. (7), ‘VFM,’is indicated as local fine-grained
features. Employing a non-linear activation function °f’,
the Convolution Kernel maps the original patch embedding
results to a visual feature map highlighting specific features
or patterns (i.e. edges). In this manner, the output matrices
of the convolution layers ‘VEM,,VFMs,...VFM,; are
obtained. These output matrices highlight specific features
or patterns (i.e., edges) and better capture intrinsic obsta-
cles, thereby improving overall performance.

4.5 Transformer encoder-based global feature
extraction

The transformers is factor of object detection systems where
IoU is crucial, the IoUestimate itself is not an internal opera-
tion of the Transformer encoder during its feature extraction
process. The encoder focuses on learning inclusive feature
representations, which are then analyzed by subsequent
modules (like prediction heads) to leverage IoU for tasks
such as bounding box regression and evaluation.

From above Fig. 4, the Transformer encoder —based
Global Feature Extraction is described. Transformer encoder
layers execute different patch sequence ‘PE’. Two chief
elements are used in each encoder layer. Local and global
figures obtained via self-attention. The self-attention mech-
anism permits the model to assess the significance of each
patch in proportion to all others, obtaining both local and
global contextual information. The Transformer encoder's
main role in feature extraction is to capture global depen-
dencies and relative information within input sequence
(e.g., image patches in vision transformers or tokens in
natural language processing). The IoU is a standard metric
for evaluating the performance of object detection models,
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Fig. 4 Transformer Encoder-based
Global Feature Extraction
CcOCO Transformer Encoder-based
Dataset Global Feature Extraction
Encoder layers perform diverse
PE
Local Global ]
Feature Feature
Bounding Intersection Feed Forward Classification
over Union Networks head

where a high IoU between predicted and ground-truth boxes
indicates accurate localization.

4.5.1 Bounding intersection over union-based multi-head
self-attention

In the context of enhanced obstacle detection and computer
vision, utilizing multi-head self-attention with Intersection
over Union (IoU) for measuring bounding box exploits the
potentiality of self-attention mechanisms to boost object
localization and detection accuracy, frequently by fine-
tuning bounding box predictions on the basis of contextual
information and optimizing IoU for improving object detec-
tion performance. A bounding box, being a shape, highlights
an object in an image.

The bounding box possesses several features, including
bounding box height 'BB;,’°, bounding box width ‘BB,,
', and bounding box class 'C”. Then, bounding box centre
coordinates ‘(Pcenter, Yeenter)’ by 'BB,," and ‘BB’ are
obtained as given below.

BBC

Pcenter = PE |: SE p:| (8)
BBC

Gcenter = PE |: Sth:| (9)

From the above Egs. (8) and (9), centre coordinates of the
bounding box '(Peenter, Geenter ) results are arrived at based
on the bounding box center pixel width ‘BBC,’, bounding

@ Springer

box center pixel height ‘BBC|’, sample filtered training
image width ‘SF,,’, sample filtered training image height
‘SFp.

BB, = PE {BBCW} (10)
BBh:PE[BBCh] (11)
h

Similarly, from the above Egs. (10) and (11), the bounding
box coordinate width ‘BB,,” and bounding box coordinate
height ‘BBj},’ results are arrived at using the bounding box
centre width 'BBC,,', bounding box centre height 'BBC',
> respectively.

Res (SF,L) = [BBwy BBh7 (pcentera QCenter)] (12)
A
ToU [Res (SF)] = reaofoveﬂap
Areaofunion 3
_ |Res(SF,) N Res (SF,)| (13)

~ |Res(SF,) U Res (SF,)|

Finally, from the above equation, the Intersection over Union
results 'ToU [Res (SF;)] are arrived at based on the degree
of overlap between bounding boxes. An ‘ToU [Res (SF};)]
” score of ‘1’ indicates perfect overlap ‘X', denoting pre-
dicted and ground truth bounding regions being identical,
hence forming the input to the transformer encoder. On the
other hand, the'IoU [Res (SF;)]” score of ‘0'indicates no
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overlap, denoting the predicted and ground truth bounding
regions found to be entirely disjoint, hence not considered
for further processing.

Assume input ‘X’ on layer ‘I’, the self-attention function
measures attention scores via three linear projections ‘@Q;’,
‘K;', and 'V}’ as given below.

Q= XW} (14)
K = XW} (15)
Vi = XWy (16)

From the above Egs. (14), (15) and (16), ‘W}’, ‘Wk', and

'Wy' denote the learning weight matrices for the corre-
sponding resultant sample filtered images at layer 'I’. Fol-
lowing the results obtained above, the attention scores are
evaluated with the aid of scaled dot-product attention, as
given below.

QrK[l
Vd

From the above equation results (17), attention scores of
three linear projections ‘ Attention (Q, K1, V)" were mea-
sured. It provides multiple attention head outputs, which are
represented below.

Attention (Qy, K, V;) = Softmax ( ) Vi a7

Multi — head (X;) = [Heady, Heads, . .., Head] * WP (18)
From the above Eq. (18), multi-head attention results
‘Multi — head (X;) are arrived at based on the ‘H’ num-
ber of attention heads ‘Heady’ and learning weight matrix
W, respectively.

4.5.1.1 Feed forward networks Multiple attention heads
and position-wise feed-forward networks are used for patch
embedding.

FFN (X;) = GELU (X;W! + ) « Wi + b (19)

From the above Eq. (19), the feed-forward net-
work' FF'N (X;)’ results of the ‘lth’ perfect overlap ‘X’
results are arrived at based on the weight matrices * 11’,
‘W’ and bias matrices ‘b}’, ‘b’ activated via the ‘GELU
> function. Residual connection and layer normalization are

measuredby feature vector sequence as given below.

X1 = LayerNorm (FFN (Multi — head (X;)) + X;) (20)

From the above Eq. (20), ‘X1’ denotes the ‘I + 1’ perfect
overlap ‘X results.

4.5.1.2 Classification head The classifier is carried out to
predict sample training input image class labels. It is used
for generated patch embedding. The classified results are
obtained using a softmax activation function.

SO = Softmax (XiWC + bc) 2n

From the above Eq. (21), the predicted class probability
result'SO’ is arrived at based on the total number of encoder
layers ‘L’, ‘W’ and ‘b¢' forming the weight matrix for
classification and bias for classification, respectively. The
flow diagram of the proposed BViT-CKNN is illustrated in
Fig. 4.

The pseudo-code representation of enhanced obstacle
detection for visually impaired people using a Bilateral
Vision-aided Transformer Neural Network is given below.
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Input: Dataset ‘ DS °, Sample Training Images Classes “ C =
{Clr CZ: ey CM}‘

Output: Fine-grained feature extraction with precise and error-minimized enhanced obstacle

< SI=1{51,55....Sn} ",

detection

1: Initialize ‘N = 25000°, ‘M = 80’

2: Begin

3: For each Dataset ‘DS’ with Sample Training Images ‘S’ and Classes ‘C”

// Preprocessing using Bilateral Filter Vision Transformer

4: Estimate Bilateral Filter output image using equation (1)

5.Derived weight normalization results using equation (2)

6. Obtain preprocessed filtered images

7. Sample filtered image is separated into fixed-size patches

5: Convert each patch into vector according to equation (3)

6. For cach patch Flattened into one dimensional vector using Learnable Projection Matrix in
equation (4)

7: Formulate linear embedding and Positional Encoding results according to (5)

//Convolution Kernel-based Local Feature Extraction

8: Evaluate visual feature map matrix according to (6)

9: Obtain local fine-grained features according to (7)

10: Return local fine-grained features ‘VFM;”

/[Transformer Encoder-based Global Feature Extraction

//Positional Encoding

11: Evaluate center coordinates of bounding box ‘(Pcenters Gcenter)’s bounding box width ‘BB,
and height ‘BB),” according to (8), (9), (10) and (11)

13: Measure Intersection over Union results according to (13)

14: If‘loU [Res (SF)] =1’

15: Then go to step 21

16: End if

17:1f “IoU [Res (SF)] = 0

18: Then go to step 6

19: End if

20: End for

//Transformer Encoder

21: For each Dataset ‘DS’ with positional encoded results ‘Res (SF;)’ and Classes ‘C”
//Bounding Intersection Over Union-based Multi-Head Self-Attention

22: Measure the attention scores for each patch via three linear projections ‘Q;°, ‘K;’,
‘Vy’according to (14), (15) and (16)

23: Evaluate attention scores are evaluated with the aid of scaled dot-product attention according
to (17)

24: Evaluate multiple attention heads according to (18)

//Feed Forward Networks

25: Evaluate position-wise feed-forward network to each patch embedding independently
according to (19)

26: Evaluate global feature extractor results according to (20)

/[Classification Head

27: Evaluate classified results via softmax activation function according to (21)

28:  Return sample output ‘SO

29: End for

30: End

Algorithm 1 Bilateral Vision-aided Transformer Neural Network for
enhanced obstacle detection with visually impaired people

As given in the above algorithm, with the objective of
enhancing the precision and accuracy involved in enhanced
obstacle detection with visually impaired people in a com-
putationally efficient manner, the overall process is split into
three parts. First, the COCO (Common Objects in Context)
dataset obtained from https://www.kaggle.com/code/arman
asgharpoor1993/coco-dataset-tutorial-image-segmentation/
notebook as input is subjected to preprocessing using Bilat-
eral Filter Vision Transformer. Using this model, the raw
input images in the corresponding objects are considered
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edge preserved and minimize noise via a non-linear func-
tion, reducing the overall mean square error. Second, the
obtained sample filtered training image is then flattened,
and then Linear Embedding and Positional Encoding func-
tions are applied where a dimensional image is converted
into a single dimension via the flattening process and spa-
tial information being lost during flattening is preserved via
Positional Encoding.Following this Convolution, a Kernel-
based Local Feature Extraction model is applied to the
flattened and encoded images to extract fine-grained local
features accurately. Finally, the Transformer Encoder-based
Global Feature Extraction model is applied to the flattened
and encoded images to extract global contextual images pre-
cisely. Here, using Bounding Intersection Over Union-based
Multi-Head Self-Attention aids in considerably improving
precision and recall factors. This, in turn, ensures that the
classified output results are computationally efficient, hence
paving enhanced object detection mechanisms for visually
impaired people.

5 Case analysis and inferences

In this section, case analysis of enhanced obstacle detection
using different classes of objects obtained from the COCO
dataset is simulated by applying the Bilateral Vision Trans-
former and Convolution Kernel Neural Network (BViT-
CKNN) method. Figure 5, given below, shows the sample
classes of images, namely, vehicles, animals, food, furni-
ture, and electronics.

Five different classes of objects (i.e. samples) are used to
perform the simulation, as shown in the above figure. With
a dataset consisting of 80 distinct object classes, includ-
ing common objects like vehicles, outdoor, indoor, animal,
food and more, each object class is associated with a unique
ID. In our simulation scenario, vehicle ID (2 to 9), animal
ID (16 to 25), food ID (52 to 61), furniture ID (62 to 70)
and electronic ID (71 to 77) are used for enhanced obstacle
detection. The bilateral filter function, by employing both
spatial kernel and range kernel intensity values, preserves
sharp edges for different classes (i.e. 80 classes). This, in
turn, aids in filtering the irrelevant portion of the image
and retaining the essential portion of the image for further
processing, therefore reducing overall mean absolute error.
Figure 6 illustrates the output of preprocessed results for the
different classes (a) vehicle, (b) animal, (c¢) food, (d) furni-
ture, and (e) electronics, respectively.

Five different classes of objects are provided as input in
the above figure, and they have varying levels of complex-
ity. The above preprocessed results are provided as input for
obtaining fine-grained local feature extraction employing
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Fig.5 Flow chart diagram of proposed
BViT-CKNN

Vehicle

Sample training image and classes

v

Apply Bilateral Filter Vision
Transformer

v

Obtain Pre-processed Image

v

Apply Convolution Kernal Neural
Network Model

v

Extract Local Feature

v

Transformer Encoder Based Global
Feature Extraction

v

Measure Centre

Coordinates of the bounding box width and height

If
‘IoU [Res (SF))] =
T

Obtain Classification results

v

Classify the object classes

T

Food

Electronics

Fig. 6 Input sample images collected from the COCO dataset with five different classes (i.e. vehicle, animal, food, furniture and electronics)
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the Convolution Kernel Neural Network model. The results
are given in Fig. 7.

Figures 7 (a) and (b) given above show the local and
global context feature extracted results when applied with
vehicle preprocessed images, (c), (d) representing the local
and global context feature extracted results of animal pre-
processed images and so on for three more different classes
of objects. Here, first, the preprocessed sample classes of
objects with the objective of improving the model's effec-
tivenessvisual feature map matrix were employed, therefore
paving the way for accurate and precise obstacle detection
results. Here, applying both the local and global feature
extracted results to classification, in turn, aids in detecting
different obstacles, therefore aiding visually impaired indi-
viduals precisely. Hence, summarizing both local and global
image features accurately and precisely describes enhanced
obstacles with varying levels of complexity. These vary-
ing complexities are handled using Bounding Intersection

Over Union-based Multi-Head Self-Attention. With this, the
overall precision and recall rate were found to be improved
by addressing varying levels of complexities via multi-head
self-attention of the transformer encoder layer.

6 Experimental and setup

This section discusses the parametric analysis for proposed
enhanced obstacle detection for handling visually impaired
people with the aid of Bilateral Vision Transformer and
Convolution Kernel Neural Network (BViT-CKNN).
Simulations are performed in MATLAB-based graphical
programming environment for modeling, simulating and
analyzing multi-domain dynamical systems on a on a com-
puter Intel(R) Core (TM) i7-6700HQ CPU@2.60 GHz with
a RAM of 32 GB running Windows. The initial split pro-
vides training (83 K), validation (41 K) and test (41 K) sets.

Sample objects

Pre-processed results

Fig.7 five different classes of Classes of object
objects (i.e. vehicle, animal, food, _
furniture and electronics) of input Vehicle
images applied to Bilateral Filter
preprocessing for obtaining the
preprocessed results
Animal
Food
Furniture
Electronics
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The model Inference Time (ms/image) depends on deep
learning method, hardware setup is GPU/CPU, embedded
device Vs desktop, model size is 224 x 224, Time is describe
the 15-30 ms and Model Size (MB): 5 to 15 MB.Fair com-
parison analysis is made using the four methods, BViT-
CKNN, modified YOLO v5 neural network[1],SSDLite
MobileNetV2 [2], and State-of-art (SOTA) work, namely
BLIP, where the same objects possessing different classes
of images are used for validating the performance metrics.
Five different classes, namely, vehicle, animal, food, furni-
ture, and electronic, are considered for the performance of
simulations.

6.1 Precision and recall

It is presented to enhance obstacle detection for visually
impaired people.

TP

Pre=p 1 Fp -
TP

Bee=p 7N @)

From the above Egs. (22) and (23) ‘Pre’ is precision,
‘Rec’ is recall, “T'P’ is true positive (i.e., vehicle sample
objects detected as vehicle objects), false positive rate' F' P
'(i.e. vehicle sample objects detected as animal object) false
negative rate' "N’ (i.e. animal sample objects detected as
vehicle object) respectively. Table 3 given below lists the
precision and recall analysis employing BViT-CKNN and
existing methods, modified YOLO v5 neural network [1],
SSDLite MobileNetV2 [2] and BLIP.

Figures 8, 9 given above shows the precision results with
respect to 150,000 different sample images with respect to
five distinct classes obtained from the Common Objects in
Context dataset for the proposed BViT-CKNN and existing
methods, modified YOLO v5 neural network [1], SSDLite

MobileNetV2 [2] and BLIP. From the above figure with
simulation performed for 15,000 images, the true positive
rate using the three methods were observed to be 13,700,
13,000, 12,500, and 11,000, whereas the false positive rate
using the three methods was found to be 300, 1000, 1500
and 3000 respectively. Precision was observed to be 97%,
92%, 89%, 78% or BVIiT-CKNN, [1, 2] and BLIP. Bet-
ter results were provided for precision using the proposed
BViT-CKNN method.

Figure 10 given above shows the recall rate results with
respect to 150,000 different object categories obtained from
the COCO dataset for the three different methods, BViT-
CKNN, modified YOLO v5 neural network [1], SSDLite
MobileNetV2 [2] and BLIP respectively. From the above
figure with simulation performed for 15,000 images, the
true positive rate using the three methods was observed to
be 13,700, 13,000, 12,500 and 11,000, whereas the false
negative rate using the three methods was found to be 200,
300, 400 and 600 respectively. With this, the overall recall
rate when applied with the three methods was found to be
98%, 97%, 96% and 94%, respectively. This, in turn, con-
firms comparative better results for recall rate using the pro-
posed BViIT-CKNN method.

Contrary to conventional methods, from the above two
results of precision and recall, comparative results showed
betterment using the proposed BViT-CKNN method. It
hasbeen improved byseparate local feature extraction and
global feature extraction. By applying the Convolution
Kernel-based Local Feature Extraction model, flattened and
encoded images were used to extract fine-grained local fea-
tures. To enhance object localization and detection, Bound-
ing Intersection over Union was employed.Combining these
two ensured enhanced obstacle detection even in the pres-
ence of five different classes (i.e. vehicle, animal, food,and
furniture, electronic for simulation). With this, the overall
precision using the proposed BViT-CKNN method was
Said to be improved by 6% upon comparison to [1], 18%
upon comparison to [2] and 24% upon comparison to BLIP.

Table 3 Tabulation of precision and recall using BViT-CKNN, modified YOLO v5 neural network [1], SSDLite MobileNetV2 [2] and BLIP

Samples Precision Recall
BViT-CKNN modified YOLO  SSDLite BLIP BViT-CKNN modified YOLO SSDLite BLIP
v5 neural network Mobile- v5 neural net- Mobile-
[1] NetV2 [2] work [1] NetV2 [2]
15,000 0.97 0.92 0.89 0.78 0.98 0.97 0.96 0.94
30,000 0.95 0.9 0.8 0.76 0.96 0.86 0.81 0.78
45,000 0.93 0.88 0.78 0.73 0.93 0.83 0.78 0.75
60,000 0.9 0.85 0.75 0.71 091 0.81 0.76 0.7
75,000 0.88 0.82 0.72 0.69 0.89 0.79 0.74 0.68
90,000 091 0.86 0.76 0.7 0.87 0.77 0.72 0.68
105,000 0.93 0.88 0.78 0.72 0.88 0.78 0.73 0.69
120,000 0.95 0.9 0.8 0.74 0.9 0.8 0.75 0.72
135,000 0.95 0.9 0.8 0.75 0.92 0.82 0.77 0.74
150,000 0.97 0.92 0.82 0.78 0.95 0.85 0.8 0.76
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Fig. 8 Preprocessed results as input
by using Convolution Kernel-based
Local Feature Extraction and Trans-
former Encoder-based Global Feature
Extraction to extract fine-grained
local and global context feature
extracted results for enhanced object
detection
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Fig. 9 Graphical representation of precision with number of samples forproposed BViT-CKNN and existing methods, modified YOLO v5 neural

network [1], SSDLite MobileNetV2 [2] and BLIP

BVIiT-CKNN of recall was found to be increased by 11%,
18%and 24% than [1, 2] and BLIP.

6.2 F1-score

Second, in this section, the F1-score analysis is made. The
metric for Evaluation of Translation with Explicit Ordering
(METEOR) score is used for the evaluation of machine-
translation output. METEOR metric is considered for both
harmonic means of precision and recall.In statistical analysis
of binary classification (i.e., detection of enhanced obstacles
for visually impaired people), the F1-score or F-measure is
a measure of predictive performance. The F1-score is math-
ematically formulated as given below.

Pre x Rec
F1-— =2k ——— 24
score * Pre + Rec 24)

Table 4, the Fl-score using proposed BViT-CKNN and
existing methods, modified YOLO v5 neural network [1],
SSDLite MobileNetV2 [2] and BLIP, respectively.

Figure 11, given above, illustrates the Fl-score with
respect to 150,000 different sample images provided

as input. From the above figurative representation, the
F1-score observed using the three methods was found to be
neither directly proportionate nor inversely proportionate to
sample images considered as input. From the above simu-
lations performed, the BViT-CKNN of the highest F-score
value has0.97, whereas [1, 2], and BLIP were found to be
0.94, 0.92 and 0.85. This simulation result corroborates the
objective of the highest F1-score values using the proposed
BviT-CKNN method when compared to [1, 2] and BLIP.

6.3 Mean Absolute Error (MAE)

Depth estimation outlines the procedure of estimating dis-
tances from sensor data with varying levels of complexity,
obviously in a two-dimensional array of depth range data.
The varying levels of complexity here include multiple
objects, occlusion and different backgrounds. MAEdeter-
minesstandardtotaldissimilarityamongforecastedand actu-
alranges in image processing and depth estimation. The
Mean Absolute Error is mathematically formulated as given
below.
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Fig. 10 Performance analysis of recall with number of samples for proposed BViT-CKNN and existing methods, modified YOLO v5 neural net-

work [1], SSDLite MobileNetV2 [2] and BLIP

Table 4 Tabulation of F1-score using BViT-CKNN, modified YOLO
v5 neural network [1], SSDLite MobileNetV2 [2] and BLIP

Samples  Fl-score
BViT-CKNN  modified SSDLite ~ BLIP
YOLO v5 neu- Mobile-
ral network [1] NetV2 [2]
15,000  0.974974 0.944339 0.923676  0.852558
30,000 0.954974 0.879545 0.804969  0.76987
45,000 0.93 0.854269 0.78 0.739865
60,000  0.904972 0.829518 0.754967  0.704965
75,000  0.884972 0.80472 0.729863  0.684964
90,000  0.889551 0.812515 0.739459  0.689855
105,000  0.904309 0.826988 0.754172  0.704681
120,000 0.924324 0.847059 0.774194  0.729863
135,000 0.934759 0.85814 0.784713  0.744966
150,000  0.959896 0.883616 0.809877  0.76987
1 N
MAE = + ; (SI; — S0;) (25)

From the above Eq. (25), the Mean Absolute Error ‘M AFE
> is measured based on the actual sample input ‘SI;’ for the
‘4 — th’ observation and classified sample output ‘SO;’ for
the ‘¢ — th’ observation with respect to a total number of ‘N
> samples. Table 5, given below, shows the mean absolute
error using proposed BviT-CKNN and existing methods,
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modified YOLO v5 neural network [1], SSDLite Mobile-
NetV2 [2] and BLIP, respectively. See Fig. 12.

MAE is shown in Fig. 11. Improving the sample size also
causes a proportionate increase in MAE. However, simula-
tions performed for ten different iterations show the error
found to be minimized using the proposed BViT-CKNN
method upon comparison to [1, 2] and BLIP. With 15,000
samples provided as input, the correct classified sample out-
put using the proposed BViT-CKNN method was observed
to be 14,750, whereas using [1, 2], and BLIP was found to
be 14,600, 14,500 and 14,400, respectively. With this, the
overall mean absolute error using the three methods was
observed to be 1.66%, 2.66% [1], 3.33% [2] and 4% BLIP,
respectively. The reason behind the minimization of MAE
using the proposed BViT-CKNN method was the applica-
tion of a Bilateral filter-based preprocessing model. Apply-
ing this preprocessing not only smoothens the image but
also preserves the edges and reduces noise. MAE of BViT-
CKNN decreased by 21%, 41%, and 48% over [1, 2], and
BLIP.

6.4 Ablation study
Ablation studies are utilized in computer vision to develop

obstacle detection for visually impaired people's lives. The
ablation study is the concept of removing a certain part of
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Fig. 11 Result of Fl-score with number of samples for proposed BViT-CKNN and existing methods, modified YOLO v5 neural network [1],

SSDLite MobileNetV2 [2] and BLIP

Table 5 Tabulation of mean absolute errorusing BviT-CKNN, modi-
fied YOLO v5 neural network [1], SSDLite MobileNetV2 [2] and
BLIP

Samples ~ Mean absolute error
BviT-CKNN modified SSDLite ~ BLIP

YOLO v5 neu- Mobile-

ral network [1]  NetV2 [2]
15,000 1.66 2.66 3.33 4
30,000 1.85 2.85 3.85 4.55
45,000 2.35 3 4.35 4.85
60,000 2.55 3.35 4.95 5.45
75,000 2.95 3.55 5.25 5.75
90,000 3.35 3.85 5.55 6.25
105,000 3.85 4.25 5.85 6.65
120,000 4.15 4.85 6 7
135,000 4.35 5.15 6.36 7.35
150,000 4.55 5.55 6.84 7.65

the network to get a better understanding of the network
behaviour. In addition, an ablation study in the context of
Vision Transformer (ViT) named deep learning is employed
to determine each component's importance or contribution
in a neural network model. It removes or"ablates"certain
parts of the model, such as a specific layer or neuron, and
observes the resulting impact on the method result. An abla-
tion study is conducted, to examine the significance of each
contribution involved in the proposed BViT-CKNN method.
Table 6 given below lists the ablation study employing pro-
posed BViT-CKNN and existing methods, modified YOLO
v5 neural network [1], SSDLite MobileNetV2 [2], and BLIP.

Table 6 shows the ablation study outcomes for four meth-
ods using the COCO dataset. The proposed BViT-CKNN
method is divided into three major parts, namely prepro-
cessing, local and global feature extraction, and classi-
fication. In an ablation study, portions of the samples are
consistently removed to find significant images in the data-
set. Initially, samples from the given database are taken as
input. Preprocessing is performed with the Bilateral Filter
Vision Transformer model to remove noise images in a
dataset. After that, global and local features are extracted
to classify the results. From the chosen extracted features,
dissimilar object classes are detected in a precise manner.
The results of the BViT-CKNN method are achieved with
higher precision, recall, and Fl-score by 0.93, 0.91, and
0.92, respectively, compared to existing methods.

6.5 Discussion

This study compares the proposedBViT-CKNN method
with the existing [1] and [2], which are discussed with
the COCO dataset based on various parameters, such as
precision, recall, F1 score and Mean Absolute Error. The
proposed BViT-CKNN method is evaluated with different
performance metrics, namely, precision, recall, F1 score and
Mean Absolute error with respect to different numbers of
samples. The results confirm that the proposed BViT-CKNN
method improved precision by 16%, recall by 18%, F-score
by 0.97%, and Mean Absolute Error reduced by 37%when
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Fig. 12 Impact of Mean absolute error with the number of samples for proposed BViT-CKNN and existing methods, modified YOLO v5 neural

network [1], SSDLite MobileNetV2 [2] and BLIP

Table 6 Ablation study results of the proposed BViT-CKNN method
compared to the baseline models for the COCO dataset

Methods/ Proposed Existing modi- Existing BLIP
Parame- BViT-CKNN fied YOLO v5 SSDLite
ters name neural network Mobile-

[1] NetV2 [2]
Precision  0.93 0.88 0.79 0.73
Recall 0.91 0.82 0.78 0.74
Fl-score  0.92 0.85 0.78 0.73
Mean 3.16 3.9 5.23 5.95
Square
Error

compared to the existing methods [1, 2] using the COCO
dataset.

7 Evaluation metrics for BLEU, METEOR, or
CIDEr using proposed BViT-CKNN method

BLEU (Bi-Lingual Evaluation Understudy) is the evalua-
tion metric to estimate the unigram or n-gram between the
two images. It is a precision measure.The metric for Evalu-
ation of Translation with Explicit Ordering (METEOR) is
based on the harmonic mean of precision and recall.Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) is
the metric employed for the NLP domain. It related to image
and video captioning evaluation based on the recall and
precisionConsensus-Based Image Description Evaluation

@ Springer

(CIDEr) is image and video description evaluation met-
ric based on human consensus.The BLEU and METEOR
are metrics mainlyconsidered for evaluating the quality of
machine-generated text, such as in machine translation or
image captioning. They measure the similarity between a
candidate text and one or more reference texts. These met-
rics are not directly applicable to evaluating the accuracy
of bounding box detection or classification in a visual pipe-
line. However, it is essential to recognize that in these cases,
BLEU and METEOR are evaluating the linguistic output,
and any correlation with bounding box or classification
accuracy is an indirect consequence of the visual pipeline's
contribution to the quality of the generated text. They are
not direct metrics for evaluating the visual components
themselves.

Figure 13 shows the comparison of BLEU, METEOR, or
CIDEr for the proposed BVIT-CKNN method and existing
methods.

Figure 13 given above shows the BLEU, METEOR, or
CIDEr results using four methods, namely proposed BViT-
CKNN and existing methods, modified YOLO v5 neural
network [1], SSDLite MobileNetV2 [2] and BLIP. As a
result, the proposed BViT-CKNN provides better BLEU,
METEOR, or CIDEr score values than compared to exist-
ing methods.
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Fig. 13 Results of BLEU, METEOR, or CIDEr for proposed BViT-CKNN and existing methods, modified YOLO v5 neural network [1], SSD Lite

MobileNetV2 [2] and BLIP

8 Real-world scenario of traffic crossings

In our work, the proposed BViT-CKNN is suitable for
real-world traffic crossing scenarios. An obstacle detection
system is utilized to improve safety. It is designed to recog-
nize and signal the presence of crosswalks, helping users
navigate to and cross them safely. It is used to identify and
warn about potential hazards like bollards, poles, or parked
vehicles that obstruct pedestrian traffic. Timely warnings
are offered to prevent accidents by sudden obstacles in the
environment. These systems significantly reduce the risk
of collisions and injuries by determining the obstacles and
providing alerts.The ability to detect and avoid obstacles
can lessen the anxiety and fear associated with navigating
public spaces.

9 Conclusion

Enhanced obstacle detection for visually impaired persons
employing a Bilateral Vision Transformer and Convolution
Kernel Neural Network (BViT-CKNN) is introduced.Pre-
processing was designed withtwo processes for enhanced
obstacle detection in the distinct collection of images
sub-grouped into dissimilar classes. The preprocess-
ing and global feature extraction section is analytical and
straightforward, using a Bilateral Filter function and Vision

Transformer-based Global Feature Extraction Genera-
tive Adversarial Network via Bounding Intersection Over
Union-based Multi-Head Self-Attention aids in enhanc-
ing precision and recall. Obtained filtered images are fed
into the Convolution Kernel Neural Network to carry out
fine-grained local feature extraction for enhanced obstacle
detection in dissimilar classes with improved accuracy.
Finally, with the aid of the results learnt in the classification
head activated via the sigmoid activation function, obstacle
detection in distinct classes of objects was attained precisely
and accurately. The outcome of BViT-CKNN is superior
to that of traditional methods. The results of the proposed
BVIiT-CKNN are to provide better performance with higher
precision, recall, and F1 score with reduced MAE.
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