

Plasmonic enhancement in perovskite solar cells: Optimized light absorption and efficiency via modified Ag nanobipyramids

```
Physica B: Condensed Matter • Article • 2025 • DOI: 10.1016/j.physb.2025.417926 
Peng, Qiong <sup>a</sup>; Zaheer, Sahibzada Muhammad <sup>b</sup>; Li, Jingfeng <sup>b</sup>; Rehman, Javed <sup>c</sup>;

Shafiee, Saiful Arifin <sup>c</sup> ⋈; +2 authors
```

Show all information

Abstract

Perovskite solar cells (PSCs), representing third-generation photovoltaic technology, show tremendous potential due to their high efficiencies. However, a primary challenge is enhancing light absorption without increasing the thickness of the active layer (AL). This study introduces the integration of modified silver (Ag) nanobipyramids (NBPs), applied in $CH_3NH_3PbI_3$ -PSCs, and their light absorption enhancement efficiency was calculated using the finite element (FEM) method. We demonstrate that the plasmonic effects of modified Ag NBPs significantly enhance the J_{sc} 23.01 mA/cm² and power conversion efficiency (PCE) of the cells by 21.03 %. Further study shows that strategic variations in the depth, layers of Ag NBPs substantially boost light absorption. Finally, we discuss an optimization strategy for the arrangement of modified Ag NBPs within the AL. This

^aThe Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang, 421002, China

research introduces a new concept for advancing light absorption enhancement and PCEs in PSCs, and explores its potential for boosting the performance of various other types of solar cells. © 2025 Elsevier B.V.

Author keywords

Ag NBPs; Light absorption enhancement; Local surface plasmon resonance (LSPR); Perovskite solar cell (PSC); Power conversion efficiency (PCE); Simulation

Indexed keywords

Engineering controlled terms

Absorption efficiency; Conversion efficiency; Lead compounds; Plasmonics; Solar cells; Solar power generation; Surface plasmon resonance

Engineering uncontrolled terms

Absorption enhancement; Active Layer; Ag nanobipyramid; Light absorption enhancement; Local surface plasmon resonance; Local surface plasmon resonances; Perovskite solar cell; Power conversion efficiencies; Power conversion efficiency; Simulation

Engineering main heading

Light absorption

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Princess Nourah Bint Abdulrahman University See opportunities	PNURSP2025R19	

Princess Nourah Bint Abdulrahman University

See opportunities **↗**

Funding text

This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2025R19), Princess Nourah bint Abdulrahman University,

Corresponding authors

Corresponding author	S.A. Shafiee
Affiliation	Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Pahang, Kuantan, 25200, Malaysia
Email address	sabs@iium.edu.my
Corresponding author	M.K. Masood
Affiliation	Department of Physics, Hebei Normal University, Shijiazhuang, 050024, China
Email address	malikkashif232@gmail.com

 \bigcirc Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Funding details

Corresponding authors

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions \neg Privacy policy \neg Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. ⊅, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies \supset .

RELX™