

Scopus

SciVal 7

Create account

Sign in

Application of metabolomics and chemometrics for authentication of vegetable oils and adulteration detection: a review

European Food Research and Technology • Review • 2025 • DOI: 10.1007/s00217-025-04832-9

 $\underline{Sulaiman, Najwa}^{a,b} \boxtimes ; \underline{Sanny, Maimunah}^{b,c}; \underline{Yeoh, Chee \ Beng}^{a}; \underline{Ahmad \ Tarmizi, Azmil \ Haizam}^{a}; \underline{Nordin, Noordiana}^{c}; \underline{+4 \ authors}$

^a Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Selangor, Kajang, 43000, Malaysia

Full text ✓ Export ✓ ☐ Save to list

References (143)

Similar documents

Abstract

The authentication and detection of adulteration in food are critical for ensuring food safety, quality and consumer protection. Vegetable oils are one of the significant diets in human nutrition, and hence its authenticity as well as safety are of utmost importance to ensure safe consumption and fairness of international trade. Metabolomics coupled with chemometrics, have been widely used as an accurate measurement of complex metabolite profiles in vegetable oils. This integrated methodology allows for the full identification of chemical compositions of vegetable oils and the detection of potential adulterants. This review outlines recent advances and applications of metabolomics in combination with chemometrics for the authentication and adulteration detection in vegetable oils, Various chromatographic and spectroscopic techniques combined with chemometrics such as multivariate statistical analysis for interpretation of big data sets enables the discovery of potential characteristic markers for authentication and adulteration detection in vegetable oils. Identifying the most suitable analytical technique and chemometrics tool helps in the marker discovery for authentication purposes, and can be further explored for the development of rapid detection technique for safety assessment by authorized regulatory bodies. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.

Author keywords

Authentication; Metabolomics; Multivariate analysis; Rapid detection; Vegetable oils

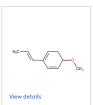
Indexed keywords

Engineering controlled terms

Chemical detection; Chromatography; Consumer protection; Food safety; International trade; Metabolites; Nutrition; Reviews; Safety engineering

Engineering uncontrolled terms

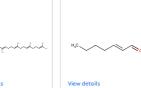
Accurate measurement; Chemometrices; Food-safety; Human nutrition; Measurements of; Metabolite profiles; Metabolomics; Multi variate analysis; Rapid detection; Safety qualities

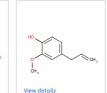

Engineering main heading

Authentication: Multivariant analysis

Reaxys Chemistry database information

Reaxys is designed to support chemistry researchers at every stage with the ability to investigated chemistry related research topics in peer-reviewed literature, patents and substance databases. Reaxys retrieves substances, substance properties, reaction and synthesis data.


Substances



View all substances (9)

Powered by Reaxys

Corresponding authors

Corresponding author N. Sulaiman

Affiliation

Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Selangor, Kajang, 43000, Malaysia

Email address

najwa.sulaiman@mpob.gov.my

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Reaxys Chemistry database information

Corresponding authors

About Scopus

Scopus blog Scopus API

Privacy matters

Language