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Abstract: Stunting is a major global health concern, particularly in low- and middle-income
countries, due to its persistently high prevalence. It often originates from chronic malnu-
trition during the critical first 1000 days of life. Maternal and child nutrition are critical
determinants of a child’s growth and development. This article aimed to explore the impact,
causes, and evidence-based strategies to accelerate the reduction of stunting incidence
worldwide. This review was undertaken with sources from PubMed, Scopus, Google
Scholar, Science Direct, and MEDLINE from October 2024 to January 2025. This review
was undertaken with sources from PubMed, Scopus, Google Scholar, Science Direct, and
MEDLINE from October 2024 to January 2025 using the keyword “Stunting”, “Causes of
stunting”, “Stunting Impact”, “Stunting Intervention”, and “Stunting Prevention”. The
findings highlight the multifactorial causes of stunting, including maternal malnutrition,
inadequate breastfeeding and complementary feeding, poor sanitation, and socioeconomic
factors. Stunting is associated with impaired linear growth, cognitive deficits, gut dysbiosis,
endocrine disruption, anemia, and increased risk of chronic diseases later in life. Address-
ing stunting demands multisectoral strategies focusing on maternal and child nutrition,
infection prevention, improved WASH (Water, Sanitation, and Hygiene) practices, and so-
cioeconomic support. The evidence presented may guide policy development and targeted
interventions to prevent stunting and its long-term effects.

Keywords: children; dysbiosis; growth failure; stunting; undernutrition

1. Introduction
Stunting can be described as a condition where a child is significantly shorter than the

expected height for their age. The WHO has a standard for measuring stunting in children,
which is measured by the “Z score” assessment [1,2]. Stunting is a condition where a child’s
height-to-age ratio is less than two standard deviations (SDs) below the median value for
their age, indicating potential limitations in the child’s ongoing development. Globally,
it is agreed to identify stunting by measuring the body length ratio of −2 SD against the
age from the WHO median standard value, which is categorized as mild or moderate
stunting. Meanwhile, children with a body length ratio of −3 SD against age from the
WHO median standard value are categorized as having severe stunting [2,3]. Stunting in
children begins from the early stages of life until the first three or four years [1,4,5]. The
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first 1000 days of life are a crucial period for determining a child’s future development,
both in terms of physical and mental health [6–8]. Stunting syndrome can be identified
as part of a continuous process cycle, starting from maternal nutrition during pregnancy,
which is passed on to the child and continues into the next cycle through several factors, as
explained in Figure 1 [9].
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environmental conditions, sanitation, and water quality [10]. Infant development is influ-
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feeding. The WHO recommends exclusive breastfeeding until 2 years of age, followed by 
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Figure 1. Stunting Syndrome: This figure explains how stunting syndrome is identified as a con-
tinuous cycle. Several factors that influence the intergenerational stunting syndrome cycle include
genetic factors, nutritional deficiencies in mothers and children throughout life, inadequate breast-
feeding, improper complementary feeding, infectious diseases and inflammation, and social factors
such as lack of resources across generations and poverty. Various pathological alterations due to
impaired linear growth in early life are associated with heightened morbidity and mortality rates,
decreased physical ability, poor brain development, diminished economic prospects, and an in-
creased risk of metabolic disorders in adulthood. HAZ—Height-for-Age Score (Created in BioRender,
https://www.biorender.com/, accessed on 18 April 2025).

The causes of stunting, according to the conceptual framework proposed by the WHO,
represent a complex and multifactorial issue. These factors include household conditions,
inadequate complementary feeding, non-exclusive breastfeeding, infectious diseases, polit-
ical economy, education, access to healthcare, social and cultural influences, environmental
conditions, sanitation, and water quality [10]. Infant development is influenced by maternal
nutrition, starting from pregnancy and continuing throughout breastfeeding. The WHO
recommends exclusive breastfeeding until 2 years of age, followed by the gradual introduc-
tion of complementary foods starting at 6 months of age [11,12]. After reaching 6 months of
age, children’s energy and nutritional needs increase, so in addition to breastfeeding, com-
plementary feeding is necessary to meet these additional energy and nutritional needs [13].
Poor maternal nutrition during pregnancy can limit fetal development and increase the
consequences of stunting in children [14]. Inadequate complementary feeding involves
insufficient food, excessive reliance on instant foods (often only mixed with water), using
contaminated water, and storing food improperly in open spaces or unclean containers,
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allowing bacteria to grow and potentially leading to infections in children [10]. In addition
to inadequate nutrition, poor sanitation conditions in households can lead to prolonged
exposure to environmental pathogens, resulting in alterations to the function and mor-
phology of the gut microbiota, which potentially impair children’s growth [15–17]. Poor
household economic conditions, particularly low income, may exacerbate difficulties in
affording nutritious food and accessing healthcare [8]. Stunting can lead to long-term effects
such as diminished cognitive function, poor educational achievements, lower productivity,
decreased earnings in adulthood, and an increased likelihood of chronic nutrition-related
diseases in later life [18]. Despite a steady decline in its incidence, stunting remains a
global issue. In 2022, UNICEF, the WHO, and The World Bank reported that 148.1 million
children under the age of 5, representing 22.3% of this population, were affected by stunt-
ing. Although its incidence continues to decrease, further performance is needed to meet
the target prevalence of 13.5% by 2030. The required global average annual reduction
(AAR) to reach this target is 6.08%. Most children affected by stunting currently reside
in Asia, accounting for 52% of the global total, and Africa, comprising 43% of the global
total [19]. Thus, strategies from various sectors are essential to reduce the global burden of
stunting. This article discussed the impacts of stunting, including growth failure, cognitive
impairments, dysbiosis or enteric electrical dysfunction, endocrine system dysregulation,
and anemia, while explaining the mechanisms contributing to these outcomes. Several
studies investigating the relationship between the impacts of stunting are summarized
in Appendix A, Table A1. Additionally, this article outlines strategies for preventing the
impacts of stunting through targeted interventions aimed at reducing both the occurrence
and consequences of stunting. A summary of general and specific strategies is presented in
Appendix B, Table A2.

2. Methods of Search and Inclusion of Articles
Articles were searched on PubMed and Google Scholar, Scopus, and Science Direct,

from October 2024 to January 2025. The websites of scientific organizations, such as
the WHO, were also searched. The keywords were focused on defining: (1) the impact
and consequences of stunting; (2) causes of stunting; (3) growth failure; (4) cognitive
impairment; (5) gut microbiota; (6) dysbiosis; (7) anemia; (8) diabetes mellitus; (9) stunting
intervention; (10) WASH; (11) SHINE; (12) stunting prevention. All studies were uploaded
onto Mendeley’s reference management platform, and identical references were removed.

The screening selection of articles was based on the main topic. The inclusion criteria
were (1) classified as cohort study, cross-sectional study, case control study, randomized
clinical trials, quasi-experimental study, and observational studies; (2) published between
1 January 2014 and 31 December 2024 in the English language; (3) stunting impact and
consequences; (4) cause of stunting; (5) national strategy to accelerate stunting reduction.
Exclusion criteria are as follows: articles in a language other than English; in vitro studies;
animal studies; historical data; book.

3. Stunting Impact and Its Causes
3.1. Growth Failure

Nutrition provided to children directly impacts their growth and development from
childhood through adulthood [20,21]. A child’s growth is influenced by household condi-
tions, family environment, infections, and dietary patterns [14,20]. Girls with stunting or
of short stature (Height-for-Age Z-score < −2) had significantly lower intakes of calcium,
β-carotene, riboflavin, niacin, zinc, iron, folic acid, and ascorbic acid than their counterparts
with normal height according to a cross-sectional study conducted in India [22]. A meta-
analysis revealed that children receiving nutrition enriched with multiple micronutrients
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experienced a small but significant improvement in height, weight, and motor develop-
ment. Energy, protein, and other nutrients are essential for promoting growth [23]. The
mechanism by which nutritional intake affects growth is illustrated in Figure 2.
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resistance to growth hormone occurs peripherally, accompanied by a reduction in hepatic 
IGF-1 levels. The decrease in IGF-1 can induce protein catabolism by increasing amino 
acid levels in the gluconeogenesis pathway [24,27]. A peptide hormone called insulin-like 
growth factor 1 (IGF-1) promotes cell division, development, and proliferation and is es-
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Figure 2. Explanation of the role of nutrition and endocrine regulation in stimulating
growth. IGF-1—insulin-like growth factor 1; IGF-2—insulin-like growth factor 2; GH—growth
hormone; GHRH—Growth Hormone Releasing Hormone; MC3R—Melanoconine-3 Receptor;
T3—triiodothyronine; Ca2+—calcium; Zn2+—zinc; Mg2+—magnesium; Cu—copper (Created in
BioRender, https://www.biorender.com/, accessed on 3 December 2024).

As a key macronutrient, protein plays a crucial role in linear growth as it meets the
metabolic demands of amino acids necessary for tissue development. Consuming protein
can raise the levels of hormones such as insulin and insulin-like growth factor 1 (IGF-
1), which promote endochondral ossification and enable longitudinal bone growth [24].
Restriction of protein consumption and reduced energy intake have significantly decreased
IGF-1 levels in the body [25,26]. Under hypoglycemia or prolonged fasting conditions,
resistance to growth hormone occurs peripherally, accompanied by a reduction in hepatic
IGF-1 levels. The decrease in IGF-1 can induce protein catabolism by increasing amino
acid levels in the gluconeogenesis pathway [24,27]. A peptide hormone called insulin-like
growth factor 1 (IGF-1) promotes cell division, development, and proliferation and is
essential for muscle hypertrophy [28,29]. This hormone is primarily synthesized in the
liver in response to stimulation by growth hormone (GH) [30]. Apart from this regulating
system, the liver and adipose tissue create fibroblast growth factor 21 (FGF-21), essential for
metabolism and biological activities related to fatty acid oxidation, gluconeogenesis, and
ketogenesis. In fasting states, FGF-21 levels are elevated in the liver, which in turn reduces
growth hormone receptor expression and induces growth hormone resistance, as depicted
in Figure 3. In addition, IGF-1 may exhibit diurnal fluctuations influenced by growth
hormone secretion and feeding cycles. Nutritional deficiency can significantly disrupt the
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chronobiology (daily rhythmic patterns) of IGF-1 by reducing IGF-1 production, disrupting
the growth hormone–IGF-1 axis, altering circadian regulation, and having consequences
for growth and development [31–33].
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↓—decrease (Created in BioRender, https://www.biorender.com/, accessed on 23 December 2024).

Based on the explanation regarding the physiological factors of GH, IGF-I, and FGF21,
it can be concluded that adequate nutrition can stimulate the combined actions of growth
hormone (GH) and IGF-I during childhood and adolescence to promote long-term growth
and somatic maturation. These adaptations may predispose individuals to a heightened
sensitivity to IGF-1 oversecretion when exposed to overfeeding or excessive caloric intake
in adulthood. The altered metabolic set points, established during childhood, may increase
the risk of developing conditions such as obesity and cardiovascular diseases in adulthood,
particularly under conditions of caloric excess that stimulate IGF-1 activity [34,35].

3.2. Cognitive Impairment

Children experiencing chronic stunting exhibit significantly lower cognitive abilities
compared to normal children. Children with stunting are 3.6 times more likely to experience
cognitive impairments than children without stunting [36,37]. The first 1000 days of life
are a critical time for the growth and development of the brain. Adequate nutrition during
pregnancy is essential for the optimal neurodevelopment of the infant. A cross-sectional
study conducted in Pakistan found that stunted children exhibited impairments in lan-
guage abilities and motor adaptation, which is consistent with other research suggesting
that malnutrition adversely affects motor skills [38,39]. A diverse range of macronutrients
and micronutrients is crucial for brain development. Carbohydrates, as a primary energy
source, play a key role in cell metabolism and the formation of brain structures. Protein
is involved in developing hippocampal structures, synaptogenesis (particularly essential
amino acids), growth factor synthesis, cell proliferation, and differentiation.Additionally,
fats are necessary for myelin synthesis, synapse formation, and the visual cortex. Vitamins
and minerals, as micronutrients, also contribute significantly to cell metabolism, synaptic
function, and myelin formation [40]. Iron plays a critical role in early brain development,
particularly during the neonatal period and early childhood. Research has shown that iron
deficiency during these stages is a key contributor to disturbances in cognitive develop-
ment [41,42]. Thus, fats, vitamins, and minerals are indispensable for proper brain growth,
especially during the early years. Deficiencies in any of these nutrients can negatively
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affect cognitive, emotional, and motor development. Balanced nutrition is key to ensuring
optimal brain health.

The consequences of stunting on cognitive function can be attributed to inadequate
protein intake. Compared to their non-stunted counterparts, children with stunting have
reduced levels of critical amino acids. Amino acids are necessary for synthesizing proteins
and activating the mammalian target of rapamycin complex 1 (mTORC1) essential for
developing numerous tissues, including myelination [43]. When amino acid levels are low-
ered, mTORC1 disperses in the cytosol and remains inactive. This inactive mTORC1 state
may promote lipid synthesis while inhibiting myelination processes within the nervous
system, leading to impaired cognition [43,44] (Figure 4).
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Figure 4. The role of amino acids in the mTORC pathway in inducing impaired cognition.
mTORC—mammalian target of rapamycin; mTORC1—mammalian target of rapamycin com-
plex 1; mTORC2—mammalian target of rapamycin complex 2; GDP—guanosine diphosphate;
GTP—guanosine triphosphate; Rag—regulator proteins, Rag A/B is small rags, Rag C/D is large
rags, while Rag A/B forms a heterodimer with product of Rafg C/D (Created in BioRender,
https://www.biorender.com/, accessed on 23 December 2024).

Stunting can also affect the structure and pathological function of the brain. Chronic
malnutrition in the central nervous system can cause tissue damage, reduce synapses and
synaptic neurotransmitters, inhibit myelination, and impair the development of dendritic
branches during brain development [45]. Stunting and cognitive abilities are strongly
associated with lasting effects contributing to poorer educational outcomes over time [46].
Thus, addressing stunting is an urgent public health priority, as early intervention is critical
to prevent irreversible cognitive decline. Without timely action, the long-term impact on
brain development can hinder a child’s learning potential, academic performance, and
future productivity, ultimately affecting both individual well-being and societal progress.
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3.3. Dysbiosis (Infection, Enteric Environmental Dysfunction)

Stunting is caused by various factors, including intestinal infections and diarrheal
diseases [47]. The gut microbiota refers to the collection of microorganisms, primarily
bacteria, bacteriophages, fungi, yeasts, and other viruses such as protozoa and archaea,
that form a complex ecosystem within the human digestive tract [48,49]. Dysbiosis is an
imbalance in the gut microbiota composition caused by chronic consumption of enteric
pathogens. These enteric pathogens activate the intestines’ immune system, leading to
localized and systemic inflammation. This condition affects the intestines’ physiological and
structural integrity, impairing the intestinal barrier’s function and increasing permeability.
This state is called enteric environmental dysfunction (EED), which can disrupt nutrient
absorption, ultimately resulting in nutrient deficiencies in children [15]; this mechanism is
illustrated in Figure 5.
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Several studies have shown that children with stunting display a distinctive gut
microbiota conformation compared to their non-stunted counterparts. According to a
long-term study in India, children with stunting had higher levels of Desulfovibrio spp.
and lower levels of Bifidobacterium longum and Lactobacillus mucosae [50]. Stunted children
exhibited higher levels of Escherichia coli/Shigella spp. and Campylobacter spp., while
non-pathogenic microbiota was found in lower quantities [51]. Moreover, an increase in
Ruminococcus groups 1 and 2, Clostridium sensu stricto, and Collinsella was noted in children
with stunting, whereas no such changes were observed in non-stunted children [52]. Based
on [53], children with stunting have reduced levels of Prevotella 9, which is prevalent
in children with appropriate nutritional conditions. Dysbiosis has been associated with
reduced short-chain fatty acids (SCFAs) production, increased intestinal permeability, and
an elevated susceptibility to infections. Micronutrient metabolism and bioavailability may
be impacted by alterations in intestinal barrier function brought on by the microbiome.
These procedures may impair intestinal function and restrict children’s ability to grow
normally [54]. Zinc homeostasis, the process by which the body maintains a stable zinc
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level, is primarily regulated through intestinal absorption. A study has demonstrated
that a significant portion of dietary zinc intake, approximately 20%, is utilized by the
gut microbiota. Another study also revealed that zinc deficiency caused the alteration of
the gut microbiota and their functional capacity [55,56]. A global study has shown that
diarrheal diseases cause stunting problems in many developing countries [57]. Stunting
is also associated with inadequate drinking water sources and poor sanitation facilities.
Poor household hygiene practices, such as ineffective handwashing to reduce exposure
to enteric pathogens, can lead to diarrhea or inflammation in the digestive tract [58].
In summary, timely intervention in cases of stunting is crucial to prevent dysbiosis, as
prolonged undernutrition can disrupt the gut microbiota, weakening immune function
and impairing nutrient absorption. Managing stunting early supports healthy growth and
development and helps maintain a balanced gut ecosystem essential for long-term health.

3.4. Endocrine Dysregulation
3.4.1. Hypothyroid

Iodine is a vital micronutrient necessary for the synthesis of thyroid hormones, thyrox-
ine (T4), and triiodothyronine (T3), which are essential during pregnancy to support the
developmental requirements of the fetal nervous system [59]. Iodine needs to increase by
over 50% during pregnancy. Insufficient iodine intake during pregnancy can lead to mater-
nal and fetal hypothyroidism. Research has shown the consequences of iodine deficiency
based on its timing and severity, with the most severe consequence being cretinism [60]. A
deficiency in thyroid hormones, or hypothyroidism, can lead to functional and metabolic
disorders that interfere with overall growth and development, a condition known as iodine
deficiency disorder (IDD) [61]. The pituitary gland releases thyroid-stimulating hormone
(TSH) after receiving a thyrotropin-releasing hormone (TRH) from the brain’s hypotha-
lamus. TSH binds to TSH receptors on thyroid follicular cells. Iodine from consumed
food is absorbed into the thyroid gland and stored as iodide (I−). The enzyme thyroid
peroxidase (TPO) oxidizes this iodide into its active form. The oxidized iodine binds
with its precursor protein, thyroglobulin, produced by thyroid follicular cells in a process
known as thyroglobulin iodination. This iodination forms monoiodotyrosine (MIT) and
diiodotyrosine (DIT). The coupling process then forms the main thyroid hormones, thy-
roxine (T4) and triiodothyronine (T3). The thyroid gland releases these hormones into
the bloodstream, controlling several bodily functions, such as energy metabolism, growth
and development, and body temperature regulation [62]. The stages of thyroid hormone
formation are depicted in Figure 6.

However, in the case of malnutrition experienced by children with stunting, the regula-
tion of thyroid hormone formation necessary for growth becomes impaired. This represents
an adaptive mechanism of endocrine dysregulation, as illustrated in Figure 7. A study
reviewing iodine deficiency disorders (IDDs) as a predictor of stunting demonstrated,
through a logistic regression model, that students with clinical goiter and urinary iodine
concentration (UIC) below 17 µg/L were associated with stunting [63]. Another study
revealed that the occurrence of hypothyroidism in infants before birth could affect cog-
nitive abilities, primarily due to hippocampal dysfunction [64]. A study examining the
relationship between hypothyroid mice and cognitive function, using mice induced with
5 or 50 ppm propylthiouracil (PTU) in drinking water from day 14 to day 21 post-birth,
showed that hypothyroid mice exhibited cognitive impairment. This was evidenced by
the OLT (object location test) discrimination ratio, which was significantly altered in the
PTU-induced group compared to the control group. Furthermore, this study reported
a reduction in neurotransmitter levels (glutamate, γ-aminobutyric acid, and glycine) in
the hippocampus, as measured by in vivo microdialysis during OLT testing. Thus, the
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disruption of neurotransmitter secretion can cause hippocampal dysfunction and persist
into adulthood [65]. Thyroid hormones play a crucial role in fetal nervous system de-
velopment. During the mid-first trimester, iodine requirements increased to support T4
hormone production [66]. Total T4, free T4, and T4 binding globulin levels are expected to
rise, particularly after the seventh week of pregnancy, facilitating neuronal proliferation
and migration in the cerebral cortex. During the second and third trimesters, serum TSH
gradually increases, although it remains lower than in non-pregnant women [67].
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3.4.2. Diabetes Mellitus

Children with low birth weight are often associated with an increased risk of obesity
and type 2 diabetes in adulthood [68,69]. A Japanese study indicates that low birth weight
markedly elevates the risk of type 2 diabetes relative to the control group, especially if

https://www.biorender.com/
https://www.biorender.com/
https://www.biorender.com/


Nutrients 2025, 17, 1493 10 of 29

obesity or overweight occurs in adulthood [70]. Nutritional deficiencies during pregnancy
and low birth weight result in the suboptimal development of insulin-producing cells in
the pancreas, increasing susceptibility to metabolic disorders, including type 2 diabetes,
later in life [71]. A study revealed that children with mild stunting had higher glucose
and insulin levels, reduced beta-cell function, and increased insulin resistance as the main
characteristics of type 2 diabetes [72]. Under conditions of nutritional deficiency, children
experience a reduction in glucose levels, which leads to the decreased secretion of insulin
and IGF-1 in the body. Decreased IGF-1 levels can trigger side effects in gluconeogenesis
and increased cortisol levels. Additionally, reduced leptin levels can induce increased
lipolysis and heightened insulin resistance, hindering glucose absorption in muscle tissues
and increasing muscle protein breakdown, leading to elevated cortisol levels in the adrenal
glands, as illustrated in Figure 7 [73,74].

3.4.3. Anemia

Anemia, or iron deficiency, is defined as a condition in which the hemoglobin (Hb)
levels, relative to body height, are less than 11 g/dL in children under the age of five years.
One in four children in Ethiopia experiences Coexisting Anemia and Stunting (CAS), with
a prevalence rate of 24.4% from 2005 to 2016 [75]. Anemia in children typically occurs after
six months of age and can worsen if iron-rich foods or supplements are not consumed
adequately [76]. Fifty percent of anemia cases are attributed to iron deficiency; however,
other causes, such as infections, environmental enteropathy, and the spread of infectious
diseases, also contribute to the condition. Recurrent infections disrupt nutrient absorption
in the digestive tract, leading to nutrient deficiencies and anemia in children [77,78]. Infec-
tions may also lead to inflammation, reducing IGF-1 levels, affecting nutrient intake, and
increasing the excretion of essential nutrients for growth [9]. Malaria, for instance, induces
inflammation and contributes to anemia [79]. Other potential causes of anemia include
nutritional deficiencies, such as a lack of vitamins A, B6, B12, C, D, and E, riboflavin, copper,
and folic acid. While these deficiencies are relatively rare, and their global contribution
to anemia is likely minimal, the impact on anemia development can be synergistic in
cases where dietary patterns result in micronutrient deficiencies [80]. Therefore, anemia
is considered a multifactorial disease arising from iron deficiency, malaria, helminthiasis,
schistosomiasis, hemoglobinopathies, and other micronutrient deficiencies. Additionally,
anemia is closely associated with malnutrition-related diseases; conversely, conditions such
as stunting, wasting, and obesity can contribute to the development of anemia [81].

4. Accelerated Strategies to Reduce Stunting Prevalence as Part of the
Sustainable Development Goal (SDG) of Countries

The persistently high prevalence of stunting presents a significant barrier for several
countries in achieving the Sustainable Development Goals (SDGs). According to the
Conceptual Framework of the Determinants of Child Undernutrition, efforts to reduce
stunting prevalence must target both direct and indirect causes of malnutrition. Direct
causes are related to insufficient nutritional intake and recurrent infectious diseases. Indirect
causes include social conditions (such as infant and child feeding practices, education,
sanitation, and workplace conditions), food security (access to adequate nutrition), health
environments (access to healthcare services), and household conditions (access to clean
water, drinking water, and sanitation) [82,83]. Strategies implemented by various countries
to prevent stunting encompass a range of interrelated interventions, including prevention
strategies, intervention strategies, and multisectoral policies and approaches, as illustrated
in Figure 8.
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Figure 8. Multisectoral strategies for reducing stunting prevalence. (Created on Microsoft Word,
https://www.microsoft.com/en-us/microsoft-365/word, accessed on 30 December 2024).

4.1. Prevention Strategies

Effective prevention strategies require addressing the root causes of stunting. Cur-
rently, national and international programs, including guidelines issued by the WHO, are
available to adopt a comprehensive and multisectoral approach to preventing malnutrition.
The WHO recommendations for achieving the Global Nutrition Targets 2025 include several
interventions, such as providing energy and protein supplements to pregnant women,
implementing programs that educate and promote nutritional needs during pregnancy,
monitoring health quality, ensuring attention to hygienic conditions, clean water, and
preventing infectious diseases [84].

4.1.1. Maternal Health and Nutrition

Maternal nutritional status during pregnancy is crucial for the child’s early develop-
ment. The Maternal Nutrition Literacy (MNL) program implemented for pregnant women
in Indonesia has proven to have an impact on preventing stunting. During pregnancy, this
literacy and education program includes education on exclusive breastfeeding, introduc-
ing complementary foods, practical demonstrations on preparing complementary foods,
monitoring child growth, and promoting proper sanitation management [85]. The WHO
has recommended routine antenatal care (ANC) for pregnant women and adolescent girls
through platforms that promote health and prevent diseases. Among these recommenda-
tions is the consumption of micronutrients required for pregnant women and adolescent
girls, including the use of calcium supplements (1.5–2 g daily) in populations with low
calcium intake to prevent preeclampsia, daily iron (30–60 mg) and folic acid (0.4 mg)
supplementation to prevent anemia in pregnant women, and vitamin A supplementation
(10,000 IU daily or up to 25,000 IU weekly) in populations with a high prevalence of night
blindness [86].

In addition, providing essential micronutrients during pregnancy is necessary to pre-
vent stunting. Supplementation programs may include the provision of essential multiple
micronutrients such as vitamin A, vitamin B12, zinc, iron, and iodine, as well as the en-
hancement of staple foods with key nutrients, such as flour, milk, sugar, and cereals, that
may assist child growth and development. The consumption of iron–folic acid (IFA) supple-
ments during pregnancy has been shown to significantly impact low birth weight, stunting,
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and severe stunting in children under the age of 2 years in South Asia [87]. Micronutrient
supplementation may also include the provision of lipid-based nutritional supplements
(LNS) to provide essential fatty acids and proteins along with micronutrients in quantities
of 20–50 grams per day [88,89].

4.1.2. Infant and Young Child Feeding

Infant and young child feeding practices are divided into two key phases: from 0 to
59 months, where exclusive breastfeeding (EBF) is recommended as it serves as protection
and strengthens the infant’s immune system; after 6 months, when infants are introduced
to complementary foods that are appropriate and rich in essential nutrients, including
vitamins and minerals. A study examining the impact of exclusive breastfeeding on
children under 2 years old in eastern Indonesia found that children who received exclusive
breastfeeding from wealthier households had a 50% lower likelihood of stunting compared
to children who were not exclusively breastfed, particularly in poorer households. To
strengthen complementary feeding practices, programs are needed to educate caregivers
on introducing complementary foods, such as animal-source foods that are rich in nutrients
and affordable within the household budget [90].

4.1.3. Improvement of Sanitation and Hygiene

Preventive behaviors to combat stunting through improved sanitation and clean water,
as well as the promotion of hygiene practices such as handwashing with soap before meals,
are essential in reducing the prevalence of stunting. Campaigns to promote handwashing
can prevent diarrheal diseases and other infectious diseases among children [91,92].

4.2. Intervention Strategies
4.2.1. Nutritional Intervention

Programs using multivitamins and mineral supplements containing essential nutrients
can enhance child growth and development. A study conducted in China revealed that the
provision of a supplemental food containing protein, fats, carbohydrates, vitamins A, B1,
B2, B12, and D3, folic acid, iron, zinc, and calcium, along with an educational program on
complementary feeding, significantly improved the nutritional status of growth-stunted
infants [93].

Through a quasi-experimental design, another study conducted in Afghanistan demon-
strated the effectiveness of providing specific nutritious foods and implementing a Social
and Behavior Change Communication (SBCC) program in preventing growth faltering
during the first 1000 days of life for children under 2 years of age. In this program, pregnant
and breastfeeding mothers received 7.5 kg of super cereal (250 g/day) during pregnancy
and the first 6 months of breastfeeding, while children aged 6–23 months received lipid-
based nutrient supplements (LNS), with 30 sachets (50 g/sachet/day) provided every
month [94]. Additionally, another study reported that the provision of lipid-based nu-
trient supplements (LNS) and micronutrient powder (MNP) once daily to children aged
6–23 months in Pakistan led to a reduction in the prevalence of stunting among these
children [95].

Specific nutritional interventions are crucial to addressing the consequences of stunt-
ing, such as impaired growth and development, dysbiosis or environmental enteric dys-
function (EED), hypothyroidism, and anemia. Specific nutritional strategies that can be
implemented to mitigate these issues include the following:

Impaired Growth and Development

During periods of growth in children and adolescents, adequate nutrition can stimulate
the combined action of growth hormone (GH) and insulin-like growth factor I (IGF-I) to
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promote long-term growth. In promoting IGF-I activity, providing multiple micronutrients
is more effective than single nutrient supplementation in stimulating linear growth. A
study in Indonesia on stunted children (aged 48–60 months) with no other hereditary
conditions found that supplementing multiple micronutrients, including vitamin A and
zinc, significantly increased IGF-1 levels and Z-scores [96].

Gut Dysbiosis or Environmental Enteric Dysfunction (EED)

Efforts to address gut dysbiosis in the context of stunting can be approached through
three key interventions: an application of probiotics, prebiotics, and synbiotics, as illustrated
in Figure 9.
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Probiotics provide advantages to the host when administered in sufficient quantities.
They can stimulate child growth by modulating the gut microbiota and immune system,
inhibiting pathogen growth, preventing infections, and enhancing nutrient absorption.
Meanwhile, prebiotics strengthen the growth of specific bacteria, particularly bifidobacte-
ria and lactobacilli, which modulate short-chain fatty acid (SCFA) production to inhibit
pathogen growth [97]. A study conducted by Barratt et al., 2022 in Bangladesh with in-
fants aged 2–6 months receiving probiotics in the form of B. infantis EVC001 single-strain
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or in combination with human milk oligosaccharide (LNnT) at a dose of 8 billion CFU
per day showed significant increases in weight gain and a reduction in inflammation in
the digestive tract [98]. Synbiotics, a combination of prebiotics and probiotics explicitly
formulated to stimulate the effects of probiotic organisms, have also shown benefits. For
instance, administering synbiotics (B. infantis EVC001 combined with lacto-N-neotetraose
[LNnT]) led to increased weight compared to a placebo group [99]. Children with a history
of exclusive breastfeeding have more Bifidobacterium and Odoribacter splanchnicus bacteria
than those not exclusively breastfed [92]. In addition to preventing and managing diarrhea
in children, improving immunization coverage can offer better protection. To improve
and maintain a balanced gut microbiota composition, children should consume healthy
fermented foods and a proportionate intake of fiber, fats, carbohydrates, and proteins [16].

Hypothyroidism

Adequate iodine intake is necessary to maintain normal thyroid function. The WHO
recommends iodine intake levels for infants and children to be 90–120 µg/L daily. Breast
milk is a key source of iodine for infants in the first six months of life. However, the mother’s
dietary iodine intake directly influences the iodine content. Therefore, ensuring adequate
iodine nutrition in pregnant and lactating women is critical not only for the mother’s
health but also for the growth and development of the infant [100]. In addition to iodine,
other nutrients such as iron, vitamin D, zinc, and other micronutrients also play a role in
thyroid function. Iron deficiency, for instance, can reduce thyroid peroxidase activity, an
enzyme essential for thyroid hormone production. Thus, integrated nutrition interventions
that address multiple micronutrient deficiencies are more effective in preventing thyroid-
related growth delays [101]. A study conducted in China revealed that the provision of a
supplementary food product (hibao) containing protein, fat, carbohydrates, vitamins A, B1,
B2, B12, D3, folic acid, iron, zinc, and calcium, combined with an educational program on
complementary feeding practices, significantly improved the nutritional status of infants
experiencing growth faltering [93].

Anemia

Currently, both national and international programs are available, including guidelines
issued by the WHO to adopt a comprehensive and multisectoral approach to malnutrition
prevention. Micronutrient supplementation has been shown to significantly reduce the
prevalence of anemia, especially in vulnerable groups such as pregnant women, infants,
and young children, thereby contributing to improved health outcomes and nutritional
status [84]. A study conducted in Pakistan in 2023 demonstrated that the provision of
Wawamum LNS-MQ (lipid-based nutrient supplement—medium quantity) could increase
hemoglobin concentration, micronutrient status, and other growth parameters in children
aged 6 to 23 months. This intervention can be enhanced as a form of malnutrition prevention
in Pakistan and other developing countries [102]. Another evidence comes from the
administration of Yingnyangbao, which contains energy, protein, vitamins A, D, B1, B2,
B12, folic acid, calcium, iron, and zinc, has been shown to effectively increase hemoglobin
concentration, reduce the risk of anemia, and improve nutritional status, thereby lowering
the prevalence of stunting [101]. Stewart et al. (2020) conducted a Multiarm Cluster-
Randomized Controlled Trial involving 125 communities, which revealed that the group of
children aged 6 to 18 months and pregnant women through children aged 6 months who
received lipid-based nutrient supplements exhibited a 25% lower prevalence of anemia
and iron deficiency compared to the control group [103].
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4.2.2. Early Childhood Development Programs

These programs include education and family support to stimulate early cognitive and
physical development, which can help mitigate the consequences of stunting. Early child-
hood development programs must also be supported by various initiatives that educate
and promote the nutritional needs of pregnant women, nutrition assessments, immuniza-
tion campaigns, monitoring of child growth, ensuring proper hygiene, providing access
to clean water, and preventing infectious disease [84]. Moreover, the family component
of ECD programs complements health efforts by promoting a nurturing and stimulating
home environment essential for healthy child development. This support may come in the
form of parenting education, nutritional guidance, and access to social services that ensure
families have the resources to provide adequate care [104].

4.2.3. Strengthening the Health System

Strengthening the health system aims to provide optimal and comprehensive health-
care services for mothers and children, including regular check-ups, immunization, and
growth monitoring. The WHO has explained the six building blocks of a health systems,
which are the following: (1) health services that are effective, safe, and efficient [105];
(2) health workforce that are sufficient, well-distributed, skilled, and responsive; (3) health
information systems that produce and use reliable data for decision making; (4) access
to essential medicines and technologies that are of high quality, safe, and cost-effective;
(5) health financing systems that ensure equitable access; (6) leadership and governance
that provide strong policy frameworks, oversight, and accountability As part of Indonesia’s
national strategy to accelerate the prevention of child stunting, several programs have been
introduced to improve access to and the quality of nutrition and healthcare services. These
include the provision of access to the National Health Insurance (JKN), access to family
planning (FP) services, and conditional cash transfer programs for low-income families,
such as the Family Hope Program (PKH) [82].

4.3. Multisectoral Policies and Approaches

Stunting is a complex issue that requires coordinated solutions across multiple sectors.
Effective policies that can be implemented include:

4.3.1. Local and National Policies

Support from local and national policies is crucial, integrating nutrition into broader
policies across education, agriculture, health, and social protection sectors. Several in-
tegrated interventions have been implemented, such as the WASH (Water, Sanitation,
Hygiene) program in Bangladesh and Kenya, the SHINE (Sanitation, Hygiene, Infant
Nutrition Efficacy) trial program in Zimbabwe, and the STRANAS (National Strategy to
Accelerate Stunting Reduction) program in Indonesia. Multisectoral policy interventions
have a significant impact on reducing the prevalence of stunting worldwide [82,90].

4.3.2. Monitoring and Evaluation

Monitoring and evaluation focus on assessing the results achieved, including the
program’s impact and outcomes, identifying any discrepancies during implementation and
monitoring factors that can accelerate the prevention of stunting [82].

5. Limitations and Future Research
There are some limitations to our narrative review. In this study, only four databases

and Mendeley were used as access to find the sources of the articles being reviewed. A
considerable proportion of the reviewed literature, particularly that from the Asian region,
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predominantly comprised studies conducted in Indonesia. To gain a more comprehensive
understanding of the factors and conditions linked to stunting, it would be beneficial to
include more research from a broader range of countries, especially in countries with a
high prevalence of stunting.

As authors, we made every effort to ensure that the studies we collected were as
objective as possible, as may be indicated by, among other things, the large number of
studies cited and the reporting of all study results. However, despite the authors’ efforts,
a narrative review is a form of scientific work that may carry a greater risk of subjective
evaluation than other review works, such as a systematic review or meta-analysis.

In future studies, there is a need for long-term monitoring of both prevention and
intervention programs. Longitudinal studies and implementation research across different
policy and health system contexts will be particularly valuable in informing sustainable,
evidence-based strategies to meet global nutrition targets, including the SDGs.

6. Conclusions
This review has explored the significant global burden of stunting and its short- and

long-term consequences, including impaired physical growth, cognitive delays, dysbiosis,
endocrine dysfunction, and anemia. The evidence suggests that early interventions, par-
ticularly those targeting maternal nutrition and child health in the first 1000 days of life,
are critical to preventing permanent growth failure and developmental setbacks. This also
raises attention to which strategies that may accelerate the reduction of stunting incidence
by strengthening three following aspects: (1) Prevention Strategies, including maternal
health and nutrition, promotion of exclusive breastfeeding and appropriate complementary
feeding, as well as improved sanitation and hygiene practices; (2) Intervention Strategies,
such as micronutrient supplementation, early childhood development programs, and the
strengthening of healthcare systems to ensure continuity and quality of care for mothers
and children; (3) Multisectoral Policies and Approaches emphasizing the integration of
nutrition into broader policy frameworks at both local and national levels, and the impor-
tance of robust monitoring and evaluation systems. Looking forward, further research and
action are needed in several key areas: (1) Future programs should be adapted to local so-
ciocultural and economic realities, especially in high-burden regions, through participatory
approaches involving community members and local stakeholders; (2) more longitudinal
research is needed to evaluate the lasting effects of stunting interventions, particularly
those targeting early development and maternal care; (3) governments and international
partners must sustain political will, policy alignment, and funding to support multisectoral
strategies that aim not only to treat but to prevent stunting at its roots.
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Appendix A

Table A1. Tabulation of impacts and the causes of stunting.

Number Respondent Characteristics Research Objectives Main Findings Ref.

3.1. Growth Failure

1 185 children aged 6 to 59 months

To determine the prevalence of putative
developmental delay and the variables linked to
it in children under five in rural Pakistan
suffering from severe acute malnutrition (SAM)
without comorbidities.

Suspected global developmental delay is much
more common in children with severe acute
malnutrition, particularly in those who were not
nursed exclusively and had a history of contact
with TB-positive adults.

[39]

2 78 children aged 5 to 12 months
To explore the correlation between linear growth,
systemic inflammation, and gut damage in
infants at risk of stunting.

Stunted children show differences in their fecal
microbiota compared to non-stunted children,
which are associated with increased systemic
inflammatory markers.

[52]

3 710 children aged 4 to 6 years

To evaluate the association between linear
growth and hemoglobin concentrations during
growth with motor, cognitive, and
socio-emotional development in Ghana.

Birth length-for-age z-score (LAZ) is significantly
associated with cognitive development and
hemoglobin levels at 18 months; however, no
significant correlation was found with motor or
socio-emotional development.

[106]

3.2. Impaired Cognition

1 51 children aged 1 month to 3 years
To assess cognitive development in children
experiencing stunting and malnutrition
compared to their well-nourished peers.

The tendency for cognitive, motor, and adaptive
skills is significantly lower in stunted children
compared to those with malnutrition and those
with normal development.

[40]

2 300 children aged 1 to 3 years
To investigate the cognitive development of
stunted children and malnutrition compared to
children with normal nutrition.

Children experiencing stunting are at a higher
risk of cognitive developmental delays compared
to children who are not stunted.

[107]

3 4379 children aged 0 to 5 years

To analyze the correlation between stunted
children and its impact on educational outcomes
and cognitive performance in adulthood
in Indonesia

Stunted children and those of relatively small
stature are significantly associated with cognitive
development, leading to poorer
educational outcomes.

[45]
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Number Respondent Characteristics Research Objectives Main Findings Ref.

3.3. Dysbiosis (Infection, Enteric Erectical Dysfunction)

1 224 children aged 24 to 59 months

To investigate the relationship between stunting,
sanitation, intestinal infections, and
environmental enteric dysfunction (EED)
in Ethiopia.

Stunted children are significantly associated with
hygiene, poor dietary patterns, inadequate
sanitation, intestinal infections, and
environmental enteric dysfunction (EED).

[108]

2 42 children aged 24 to 59 months

To determine the association between intestinal
infections, growth biomarkers (IGF-1), and gut
microbiota composition in children with stunting
in Indonesia

The gut microbiota profile of stunted children
exhibits dysbiosis, characterized by an
overabundance of taxa that induces
inflammation, metabolic abnormalities, and
unhealthy dietary patterns.

[16]

3 82 children aged 6 to 59 months
To examine the relationship between intestinal
inflammation and stunted children under 5 years
old in Ethiopia.

A strong correlation exists between stunting and
gastrointestinal inflammation, diarrhea,
breastfeeding duration, environmental factors,
and family size.

[109]

4 131 children aged 3 to 5 years
To investigate alterations in gut microbiota
composition between stunted children and those
with normal nutritional status.

Prevotella 9 levels are significantly lower in
stunted children, indicating lower fiber intake,
which is supported by nutritional intake data
compared to normal children.

[53]

5 42 children aged 2 to 5 years
To investigate the gut microbiota composition
and related variables that affect stunted and
non-stunted children in Jakarta’s slums.

Stunted children exhibit a gut microbiota
composition significantly different from
non-stunted children. This composition is
characterized by an increased prevalence of
pathogenic bacteria and a reduced abundance of
beneficial bacteria.

[99]

3.4. Metabolic System Disorder

1 3046 school-aged children, 8 to
10 years old

To examine the prevalence of stunting and how
iodine deficiency disorders (IDDs) might predict
stunting in Aseer region primary school students.

IDDs may predict stunting, with students
exhibiting clinical goiter and those with urinary
iodine concentration (UIC) levels < 17 µg/L
showing a significant association with stunting.

[63]



Nutrients 2025, 17, 1493 19 of 29

Table A1. Cont.

Number Respondent Characteristics Research Objectives Main Findings Ref.

2 1135 adults aged 30 to 89 years
To examine the correlation between birth weight
and type 2 diabetes mellitus in the general
population of Japan.

Low birth weight in the Japanese population is
associated with an increased risk of acquiring
type 2 diabetes mellitus, particularly among
those who are overweight or obese.

[70]

3 1682 adults aged 18 to 68 years
To explore the relationship between low stature
and increased sitting height ratio (SHR) as
indications of stunting and obesity in adults.

Short stature is identified as a risk factor for
obesity in both adult men and women
in Portugal.

[110]

4 3534 adult men and women aged
30 years and above

Testing the association between childhood
stunting and a higher risk of cardiometabolic
disorders in adulthood.

Adults who experienced stunting during
childhood tend to have less muscle mass and
subcutaneous fat and may exhibit a higher
tendency for visceral fat accumulation.

[111]

5 3844 children and adolescents aged
7 to 18 years

To investigate the correlation between short
stature, obesity, and cardiometabolic risk factors
in children and adolescents in Iran.

Children and adolescents with short height are at
an elevated risk of acquiring metabolic
syndrome, abdominal obesity, and hypertension
relative to their counterparts of normal size.

[81]

3.5. Anemia

1 21,172 children aged 6–59 months

Investigating the prevalence of anemia and
stunting and identifying the factors influencing
these conditions in children aged 6–59 months
in Ethiopia.

The prevalence of anemia and stunting is 24.4%,
with a 95% Confidence Interval (CI) of
(23.8–24.9%). Key risk factors contributing to this
prevalence include the following:
anemia in mothers, very short stature of mothers,
low maternal education, poor hygiene practices,
and living in rural areas.

[75]

2 750 children aged 12–59 months
Assessing the status of micronutrients and the
correlation with hemoglobin levels in children
aged 12–59 months with stunting.

Two out of three children with stunting also
experience anemia. Malaria and other infections,
in addition to micronutrient deficiencies,
significantly contribute to anemia in
these children.

[112]

3 21,918 children aged 6–59 months

Examining the relationship between malnutrition
(stunting, wasting, underweight) and open
defecation and how these relate to anemia in
children aged 6–59 months in Ethiopia.

In Ethiopia, childhood malnutrition partially
mediates the relationship between open
defecation and anemia, highlighting thes
importance of sanitation in addressing
both issues.

[76]



Nutrients 2025, 17, 1493 20 of 29

Table A1. Cont.

Number Respondent Characteristics Research Objectives Main Findings Ref.

Environment, Social, and Economy

1 750 children aged 1–5 years

Evaluating the socioeconomic factors, household
conditions, anthropometric values, and clinical
changes based on early childhood development
(ECD) outcomes for stunted children aged
1–5 years.

Stunting is closely related to developmental
outcomes. Children with severe stunting tend to
have lower early childhood development (ECD)
scores, and this gap persists or even worsens
over time.

[113]

Appendix B

Table A2. Tabulation of strategies both intervention and prevention studies.

No. Respondent Characteristics Intervention Main Findings Ref

A. Prevention Strategies

1 85 mothers with children aged
0–6 months

Education and simulation classes (principles of
breastfeeding, introduction to complementary feeding),
monthly home visits totalling 15 visits, growth
monitoring, and sanitation monitoring.

Maternal nutritional literacy (MNL) plays a crucial role
in the prevention of stunting, with a focus not only on
stunted children but also on healthy children.
Emphasizing exclusive breastfeeding for stunted
children is central to MNL efforts.

[85]

2 3120 mothers with children aged
0–5 months

Specific nutrition intervention programs will be
implemented over 36 months, divided into 4 phases
with gradual evaluations. These programs will include
monitoring of development and cooking practices
or demonstrations.

The Suchana program has demonstrated positive
outcomes in promoting exclusive breastfeeding
practices among children in Bangladesh, with exclusive
breastfeeding being identified as a key factor in
reducing stunting.

[114]

3 408 children aged 6–24 months

The data collection consists of a quantitative survey
examining breastfeeding practices, demographic and
socioeconomic characteristics, and monthly family
expenditures. The survey utilizes a structured
questionnaire conducted by professional interviewers.

Exclusive breastfeeding can reduce the likelihood of
children experiencing stunting. It provides a
cost-effective and efficient solution for low-income
households to address stunting.

[115]
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4 8451 caregivers with children aged
6–23 months

Supplementary feeding provision (including protein,
fat, carbohydrates, vitamin A, B1, B2, B12, D3, folic acid,
iron, zinc, and calcium) and complementary feeding
counseling for caregivers.

Community-based complementary food supplements
and dietary guidance can enhance feeding patterns and
reduce the incidence of anemia.

[92]

B. Intervention Strategies

1 2928 and 3205 households with
children under 2 years of age

Pregnant and breastfeeding women received Super
Cereal 7.5 kg (250 g/day) during pregnancy and for six
months of breastfeeding. Children aged 6–23 months
were given 30 sachets of lipid-based nutritional
supplements (50 g/sachet/day) each month.

The use of small-quantity nutrient supplements (SQNS)
alongside social and behavioral change communication
(SBCC) during the first 1000 days of life is linked to a
decrease in stunting and malnutrition and
improvements in infant and young child feeding
practices for children under 2 years old.

[93]

2 6674 children under 5 years of age

Female healthcare workers distributed a soy–wheat
blend to pregnant and breastfeeding women, as well as
micronutrient powder to children aged 6–23 months
and 24–59 months.

Short-term nutritional absorption through the
Wawamum intervention is not effective in reducing
stunting. Proven communication about behavior
change must be supported to enhance complementary
feeding behaviors.

[116]

3 110 children aged 6–23 months Daily consumption of Wawamum, consisting of one
sachet of 50 g, was given to children over 12 months.

Wawamum (LNS-MQ) has proven its efficacy in
enhancing micronutrient status, hemoglobin levels, and
growth metrics in children aged 6 to 23 months.

[102]

4
4011 women in early pregnancy
(under 20 weeks) and
1552 adolescents

• Mothers and children received small-quantity
lipid-based nutrient supplements (SQ-LNS).

• Mothers received iron–folic acid (IFA), and
children received lipid-based nutrients (LNS).

• Mothers received IFA, and children received
micronutrient powder (MNP).

The duration of supplementation for pregnant mothers
is until the child reaches 6 months, while for children,
supplementation continues until they are 24 months old.

Providing LNS before birth may reduce newborn
stunting and low birth weight, significantly reducing
wasting compared to IFA supplementation.

[88]
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5 971 children aged 6–72 months

‘Chispuditos®’, a hot beverage enriched with
micronutrients (atole + MN), providing 9 mg of zinc
and 12.5 mg of iron, or lactose-free milk, was provided
for 18 months.

Long-term micronutrient supplementation in beverages
does not significantly impact growth or
nutritional status.

[117]

6 1059 children aged 15 months to
7 years,

Food supplements (NEWSUP), which contain plants
rich in polyphenols and omega-3 fatty acids, along with
various micronutrients and high-protein content, or
fortified blended foods (FBFs) or traditional rice-based
breakfast as a control food, were administered every
morning for 23 weeks.

NEWSUP has been shown to improve working memory
and reduce BMI compared to the normal group.
Additionally, NEWSUP increases hemoglobin
concentration in children with anemia.
Supplementation over 23 weeks enhances executive
function, brain health, and nutritional status in children.

[118]

7 67 children aged 2 to 6 months,

Severely malnourished infants were provided with
probiotics (Bifidobacterium infantis EVC001) or
synbiotics (B. infantis EVC001 + Lacto-N-neotetraose
[LNnT]) or a placebo (lactose) for four weeks, followed
by a four-week follow-up after supplementation.

Severely malnourished infants exhibit higher weight
gain when given probiotics. [99]

8 151 children aged 3 to 24 months

The intervention involving the commercial strain of B.
infantis from a U.S. donor (EVC001) was administered
daily for 28 days to the control group with or without
human milk oligosaccharides (HMOs),
lacto-N-neotetraose, or the placebo SYNERGIE.

The abundance of Bifidobacterium infantis increased in
the feces of infants with severe acute malnutrition
(SAM). However, the increase was 10 to 100 times lower
than the abundance observed in healthy controls.

[98]

9 304 children aged 29 to 49 months

Preschool children were given a dual-micronutrient
powder or placebo fortification in their food six days
per week (excluding Sundays and public holidays) for 8
months.

Providing micronutrients during the first 1000 days of
life can reduce developmental delays and decrease
anemia and iron deficiency.

[119]

10 387 mothers with children under
2 years of age.

The intensive nutrition counseling intervention,
including information on maternal nutrition, exclusive
breastfeeding, and complementary feeding
demonstration, was provided along with LNS for
children aged 6 to 18 months as well as pregnant or
breastfeeding women until the infant reached 6 months.

Children who received intensive nutrition counseling
and lipid-based nutrient supplementation (LNS) for
pregnant women until the child reached 18 months of
age had a lower prevalence of anemia and
iron-deficiency anemia than children in the
control group.

[103]
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11 5920 preschool children aged 3 to
6 years

The questionnaire filled out by the child’s caregiver
encompassed demographic attributes of the child,
including age, gender, ethnicity, source of drinking
water, geographic location, degree of urbanization, and
exposure to secondhand smoking.

Iodine nutrition in preschool children and their physical
growth is linked to the child’s age and height. [120]

12 834 mothers with children aged 6 to
59 months

Health educators conducted a behavioral intervention
on iodine intake through food over 17 months. The
program included education to increase the utilization
of iodized salt, reduce the prevalence of iodine
deficiency, and improve children’s linear growth.

The prevalence of stunting among children in the
intervention group at the start of the study (40.5%)
decreased by the end of the study (15.1%). Additionally,
urinary iodine concentrations in the intervention group
increased compared to the normal group.

[121]

13 96,512 mothers with children under
2 years of age.

The study utilized a nationally representative survey on
socio-demographic, health, and nutrition indicators.
Exposure to antenatal iron–folic acid (IFA)
supplementation was gathered retrospectively through
maternal recall.

Antenatal iron–folic acid (IFA) supplementation was
significantly linked to a reduced risk of below-average
birth size, stunting, and severe stunting in children
under 2 years of age in South Asia.

[87]

C. Policy and Multisectoral Approaches

1 253 preschool children aged 3 to
5 years,

The 12-month health education program included
education on nutrition deficiencies, demonstrations,
and explanations on preparing nutritious meals and
various healthy recipes that provide protein, energy,
calcium, and iron to mothers.

Children who received the intervention showed
improved cognitive development compared to the
control group. Home-based, nutrition-focused foods
contributed to this enhancement.

[122]

2 2222 mothers with children aged 6
to 24 months.

Community health volunteers conducted 16 nutrition
education and stimulation sessions (every two weeks)
under a program named Msingi Bora. The Msingi Bora
curriculum emphasized five key practices: responsive
play, responsive communication, hygiene, nutrition,
and fostering love and respect within the family.

Parenting interventions conducted by trained
community health volunteers in the mother–child
group effectively improved child development within
the community.

[123]
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