English

Products

Web of Science™

Smart Search

Research • Assistant

Results for THE TOXICOLOG... >

MENU

The Toxicological Profile of Active Pharmaceutical Ingredients-Containing N...

The Toxicological Profile of Active Pharmaceutical Ingredients-Containing Nanoparticles: Classification, Mechanistic Pathways, and Health Implications

By Muhaimin, M (Muhaimin, Muhaimin); Chaerunisaa, AY (Chaerunisaa,

Anis Yohana); Dewi, MK (Dewi, Mayang Kusuma); Khatib, A (Khatib,

Alfi); Hazrina, A (Hazrina, Aghnia)

View Web of Science ResearcherID and ORCID (provided by

Clarivate)

Source PHARMACEUTICALS

Volume: 18 Issue: 5

DOI: 10.3390/ph18050703

Article Number 703

Published MAY 9 2025

Indexed 2025-05-30

Document Type Review

Abstract Nanotechnology is the manipulation of matter on an atomic and

molecular scale, producing a lot of new substances with properties that are not necessarily easily expected based on present knowledge. Nanotechnology produces substances with unique properties that can be beneficial or harmful depending on their biocompatibility and distribution. Understanding nanomaterial toxicity is essential to ensure their safe application in biological and environmental applications. This review aims to provide a comprehensive overview of nanoparticle toxicity, focusing on their physicochemical properties, mechanisms of cellular uptake, and potential health risks. Key factors influencing toxicity include particle size, shape, concentration, aspect ratio, crystallinity, surface charge, dissolution, and agglomeration. Nanoparticles can induce oxidative stress and inflammation, contributing to adverse effects when inhaled, ingested, or applied to the skin. However, their toxicity may not be limited to just these pathways, as they can also exhibit other toxic properties, such as activation of the apoptotic pathway and mitochondrial damage. By summarizing the current knowledge on these aspects, this article intends to support the development of nanoparticles in a safer way for future applications.

Keywords

Author Keywords: inflammation; nanoparticles; oxidative stress; physicochemical properties; toxicity

Keywords Plus: TITANIUM-DIOXIDE NANOPARTICLES; OXIDE NANOPARTICLES; OXIDATIVE STRESS; CLINICAL-TRIALS; TOXICITY; CYTOTOXICITY; EXPOSURE; DELIVERY; IMPACT; CELLS

Addresses

- ¹ Univ Padjadjaran, Fac Pharm, Dept Pharmaceut Biol, Jl Raya Jatinangor Km 21-5, Sumedang 45363, West Java, Indonesia
- ² Univ Padjadjaran, Fac Pharm, Dept Pharmaceut & Pharmaceut Technol, Jl Raya Jatinangor Km 21-5, Sumedang 45363, West Java, Indonesia
- ³ Univ Padjadjaran, Fac Pharm, Jl Raya Jatinangor Km 21-5, Sumedang 45363, West Java, Indonesia
- 4 Int Islamic Univ Malaysia, Fac Pharm, Dept Pharmaceut Chem, Kuantan 25200, Pahang, Malaysia
- ⁵ Univ Padjadjaran, Fac Pharm, Undergraduate Study Program Pharm, Jl Raya Jatinangor Km 21-5, Sumedang 45363, West Java, Indonesia

Categories/ Classification

Research Areas: Pharmacology & Pharmacy

Citation

2 2.67 2.67.231 Chemistry Nanoparticles Nanotoxicology Topics: Sustainable Development Goals: 03 Good Health and Well-being