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Abstract: Nanotechnology is the manipulation of matter on an atomic and molecular scale,
producing a lot of new substances with properties that are not necessarily easily expected
based on present knowledge. Nanotechnology produces substances with unique properties
that can be beneficial or harmful depending on their biocompatibility and distribution. Un-
derstanding nanomaterial toxicity is essential to ensure their safe application in biological
and environmental applications. This review aims to provide a comprehensive overview of
nanoparticle toxicity, focusing on their physicochemical properties, mechanisms of cellular
uptake, and potential health risks. Key factors influencing toxicity include particle size,
shape, concentration, aspect ratio, crystallinity, surface charge, dissolution, and agglomera-
tion. Nanoparticles can induce oxidative stress and inflammation, contributing to adverse
effects when inhaled, ingested, or applied to the skin. However, their toxicity may not
be limited to just these pathways, as they can also exhibit other toxic properties, such
as activation of the apoptotic pathway and mitochondrial damage. By summarizing the
current knowledge on these aspects, this article intends to support the development of
nanoparticles in a safer way for future applications.

Keywords: inflammation; nanoparticles; oxidative stress; physicochemical properties; toxicity

1. Introduction

Nanoparticles are defined as materials with dimensions ranging from 1 to 100 nanome-
ters [1]. They can be categorized into several types, including metal-based, carbon-based,
polymeric, and silica-based nanoparticles [2]. Each type exhibits distinct properties that
make it suitable for specific applications. For instance, metal-based nanoparticles (NPs)
such as gold and silver are widely used in drug delivery and imaging due to their unique
optical and electronic properties [3,4]. However, their small size also leads to increased
reactivity and potential toxicity compared to bulk materials [5,6].

The rapid progression of nanotechnology has led to an increasing presence of NPs in
numerous consumer products and industrial applications, resulting in widespread human
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exposure through inhalation, ingestion, and dermal absorption [7-9]. While nanoparti-
cles offer significant biological and biomedical benefits, such as targeted drug delivery,
enhanced imaging, and antimicrobial properties [10-12], their small size and high reac-
tivity also raise important toxicological concerns [5,13]. Exposure to nanoparticles has
been associated with a range of adverse health effects, including respiratory inflammation,
oxidative stress, and neurotoxicity. This has raised concerns about public health [14]. These
findings underscore the dual nature of NPs as both therapeutic tools and potential health
hazards [13,15,16]. Therefore, a comprehensive understanding of their biological interac-
tions and toxicity pathways is essential for the development of safer nanoparticles and the
establishment of robust regulatory frameworks [17].

One of the most prominent aspects that contributes to nanoparticle toxicity is its
physicochemical characteristics (e.g., size, shape, surface charge, and chemical composi-
tion), which are known to vary considerably in relation to toxicity [18,19]. Due to their
increased surface area-to-volume ratio, smaller nanoparticles better permeate and dis-
rupt cellular pathways [20]. In addition, the interactions of nanoparticles with biological
membranes are greatly influenced by the surface charge. Positively charged nanoparticles
tend to exhibit higher toxicity compared to negatively charged ones due to their stronger
electrostatic interactions with the negatively charged components of cell membranes, such
as phospholipid head groups and membrane proteins [21]. These interactions can lead
to increased cellular uptake through endocytosis, disruption of membrane integrity, and
induction of oxidative stress, ultimately resulting in enhanced cytotoxic effects [22]. There-
fore, surface charge is a critical factor influencing nanoparticle-cell interactions and their
associated biological responses [23].

Nanoparticles can induce toxicity via multiple systems. An important mechanism
involved in this process is the formation of ROS, which can lead to oxidative stress and
therefore cellular damage [24]. Moreover, the direct interactions of nanoparticles with
biological molecules can inhibit mitochondrial functions, trigger inflammatory responses,
and cause DNA damage [25,26]. It is necessary to have a complete understanding of
how NPs influence a wide variety of biological systems due to the intricacy of these
interactions [27-29].

The findings of research indicate that exposure to NP can have a negative impact
on a number of organ systems [30]. The inhalation of nanoparticles based on metals has
been linked to a variety of respiratory problems, including inflammation and fibrosis [31].
Research indicates that neuropeptides may have a role in neurodegenerative illnesses
by promoting neuroinflammation and apoptosis within the nervous system [32]. More-
over, data indicate that NPs might influence reproductive health by altering endocrine
functioning [32,33].

It requires rigorous techniques to assess the toxicity of nanoparticles [34]. Traditional
models, such as cell cultures and animal models, have been used, but new technologies such
as three-dimensional organoid models are being increasingly preferred to better recapitulate
human tissue [34,35]. These advanced models allow scientists to assess the potential toxicity
of nanoparticles in a more physiologically relevant environment. In addition, metabolomics
has emerged as a tool for evaluating NP-induced metabolic changes that occur at the
cellular level [36,37].

As the application of nanoparticles proliferates in various industries, regulatory frame-
works must adapt to mitigate possible health hazards. Existing rules differ markedly
among countries and frequently lack explicit directives for the safety evaluation of nanopar-
ticles [38,39]. Regulatory organizations must provide comprehensive rules that integrate
data from toxicological research to safeguard public safety and promote innovation in
nanotechnology [40].
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Although nanoparticles provide significant promise for technological and medical
advancements, their related health hazards must not be disregarded [41]. Continued study
is crucial to elucidate the intricacies of NP toxicity and devise solutions for risk mitiga-
tion [31]. The researchers are able to promote safer utilization of nanoparticles across a
variety of domains by first gaining an understanding of the physicochemical characteristics
that influence toxicity and then employing advanced assessment methodologies [18]. The
fact that nanoparticles may be both useful instruments and potential dangers highlights
the need to maintain a high level of monitoring throughout the process of these particles’
production and management [42].

The rising use of NPs in a variety of sectors, notably in the realms of biomedicine and
technology, has resulted in major concerns over the possible dangers that these particles may
pose to human physical health [15]. The objective of this research is to provide a comprehensive
overview of the existing information concerning the toxicity of nanoparticles, focusing on
their physicochemical features, mechanisms of action, and consequences for public health.

2. Types of Toxic Nanoparticles

NPs are being employed in a variety of disciplines, such as medicine, electronics,
and environmental applications. Nevertheless, their distinctive characteristics also raise
concerns regarding their potential toxicity. This investigation categorizes nanoparticles
based on their composition and evaluates their associated toxicological effects (Table 1).

Table 1. Overview of nanoparticle types, descriptions, examples, and toxicity effects.

Type of

Nanoparticle Description Examples Toxicity Effects Ref
Compos.ed of metals or Silver (Ag), Gold (Au), Cytotc?x.1c1ty, 0x1dat1vg stress,
Metal-Based metal oxides, known for Y genotoxicity, and potential organ
. ey . Copper (Cu), Titanium ! : [15,43,44]
NPs their antimicrobial o . damage (liver, kidney) due to
) Dioxide (TiO;) M
properties. reactive ions.
Include carbon -
nanotubes, graphene Carbon Nanotubes Neurotoxicity, pulmonary
Carbon-Based ¢ . inflammation, and cytotoxicity;
and fullerenes, which (CNTs), Graphene, . [15,45,46]
NPs . . size-dependent effects observed
are widely used in Carbon Black S .
) I in different studies.
various applications.
Composed of lipids: Potential for immunotoxicity
Lipid-Based P e Liposomes, Solid Lipid and cytotoxicity; may induce
often used in drug X . [47]
NPs - Nanoparticles (SLNs) inflammatory responses
delivery systems. . 2 "
depending on lipid composition.
Made from proteins; Generally biocompatible but can
Protein-Based used in drug delivery Albumin-based NPs, induce immune responses; [45,47]
NPs and vaccine Silk Fibroin NPs toxicity may arise from protein ’
development. denaturation or aggregation.
Composed of synthetic Cytotoxicity is related to
or natural polymers, Poly(lactic-co-glycolic ~ polymer degradation products;
Polymeric NPs they are versatile in acid) (PLGA), there is potential for [15,44]
drug delivery Chitosan NPs inflammatory responses
applications. depending on the polymer type.
Made of silica, and It can .1r1duce 0x1.datlve strgss
commonly used in and inflammation; there is
Silica NPs Y Mesoporous Silica NPs ~ potential for cytotoxic effects [43,46]

biomedical applications
and as drug carriers.

depending on particle size and
surface modification.
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2.1. Metal-Based Nanoparticles

Metal-based nanoparticles comprise metals such as silver, gold, copper, and titanium
dioxide. They are recognized for their antibacterial qualities and are extensively utilized in
medical devices and coatings [48]. These nanoparticles can elicit cytotoxicity by producing
reactive oxygen species (ROS) that result in oxidative stress and DNA damage [49]. Silver
nanoparticles exhibit more toxicity to human lung cells than bigger particles, attributable
to their elevated surface area-to-volume ratio [50].

2.2. Carbon-Based Nanoparticles

Carbon-based nanoparticles include substances like carbon nanotubes and graphene [51].
They are esteemed for their robustness and electrical conductivity [15]. Studies demonstrate
that inhalation of carbon nanotubes can lead to neurotoxicity and lung inflammation. The
dimensions and morphology of these nanoparticles substantially affect their toxicological
characteristics [52].

2.3. Lipid-Based Nanoparticles

Lipid-based nanoparticles (LNPs) have gained substantial attention in recent years,
particularly in the field of drug and vaccine delivery, including mRNA vaccines [53].
These nanoparticles are typically composed of biocompatible lipids such as phospholipids,
cholesterol, and ionizable lipids, which enhance encapsulation and cellular uptake of
active pharmaceutical ingredients [54]. While generally considered safe, their toxicity can
arise from several factors, including lipid composition, particle size, and the presence of
PEGylated lipids or surfactants [55]. Studies have reported potential adverse effects such
as hepatotoxicity, immune stimulation, and complement activation-related pseudoallergy
(CARPA) [56]. The use of ionizable lipids, though beneficial for endosomal escape, can
contribute to dose-dependent cytotoxicity. Therefore, optimization of their physicochemical
properties is essential to improve safety profiles while maintaining therapeutic efficacy [57].

The inclusion of surfactants in lipid-based nanoparticles modifies their cytotoxic pro-
file by influencing surface charge, stability, and biological interactions. Cationic surfactants
like Cetyltrimethylammonium Bromide (CTAB) and Didodecyldimethylammonium Bromide
(DDAB) increase positive charge, enhancing cellular uptake but also raising cytotoxicity [58,59],
while non-ionic surfactants such as Tween 80 and Poloxamers neutralize charge and im-
prove biocompatibility [60,61]. However, certain surfactants like SDS can be inherently
cytotoxic, highlighting the importance of careful selection [62].

2.4. Protein-Based Nanoparticles

Protein-based nanoparticles are synthesized from natural or recombinant proteins
and are utilized in various biological applications [63]. While these nanoparticles typically
exhibit lower toxicity compared to synthetic nanoparticles, they may still elicit immunolog-
ical responses, particularly when subjected to denaturation or aggregation. Such alterations
in their structural integrity can trigger immune activation, potentially leading to adverse
effects [63,64].

2.5. Polymeric Nanoparticles

Polymeric nanoparticles are typically synthesized using biodegradable synthetic poly-
mers such as poly (lactic-co-glycolic acid) (PLGA) or natural polymers like chitosan [65].
Although these carriers are generally considered biocompatible, their degradation products
may exert cytotoxic effects, potentially inducing inflammatory responses or other adverse
biological effects. The extent of these outcomes is largely influenced by the chemical
composition and degradation kinetics of the specific polymer used [65].
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2.6. Silica Nanoparticles

Silica nanoparticles are widely utilized in drug delivery systems owing to their high
surface area and porous architecture, which enable efficient loading and controlled release
of therapeutic agents. However, SiNPs have been reported to induce oxidative stress
and inflammatory responses in biological systems. The degree of their cytotoxicity is
largely dependent on physicochemical properties such as particle size, surface charge, and
functionalization, which influence cellular uptake and bioreactivity [66—70].

Table 2 summarizes examples of toxic effects of NPs along with their toxic effects,
the organisms or cells tested, concentrations used, exposure conditions, and sources of
information. The data highlights the diverse toxicological profiles of these materials based

on existing literature.

Table 2. Toxic Effects of NPs on various organisms and cell types.

Exampl.e Toxic Effects Organism/Cell Concentration Condition Ref
Nanoparticle Tested
Metal-Based
Induces cell death, DNA meiﬁrcr:r;nal Various
Silver (AgNPs)  damage, oxidative stress, and stem cglls 0.5 to 5 ppm exposure [71-73]
inflammation (hMSCs), E. coli times
Cytotoxicity, potential Human lung 1to Short-term
Gold (AuNPs) genotoxic effects, and adenocarcinoma 100 we/mL and long-term  [74,75]
inflammation cells (A-549) He exposure
" Various .
Copper (CuNPs) Indufze.s oxidative stress, mammalian 10 to Varies by [76-78]
cytotoxicity, and genotoxicity cell lines 100 pg/mL study
Titanium . Causes Qx1dat1ve stress, Human lung 0.1to In vitro
. . inflammation, and potential . . [79,80]
Dioxide (TiOy) lung toxicity epithelial cells 10 mg/mL exposure
Carbon-Based
Induces oxidative stress, DNA Human lung .
Carbon N Various
damage, lysosomal damage, epithelial cells 1 to 100
Nanotubes . . ) exposure [81-84]
mitochondrial dysfunction, (A549), pug/mL :
(CNTs) . times
and apoptosis macrophages
Causes oxidative stress, .
. Human bronchial .
Graphene lnﬂagnmat‘}rl}\’nﬂesl’ongefﬂ znd epithelial cells %0 ! t;’ L In vitro [85-87]
induces -oc and IL- m exposure
secretion in macrophages (BEAS-2B) " F
Carbon Black Induces pyroptosis, THP-1 Monocyte In vitro
(CB) inflammation, and cytotoxicity Cells 50-800 pg/mL exposure [88]
Lipid-Based
Generfﬂly low toxicity; Human red blood .
. potential for hemolysis, . 0.1to In vitro
Liposomes cytotoxicity at high cells, various 10 mg/mL studies [89-91]
yconcentr}; tionsg cancer cell lines &
Solid Lipid Low cytotoxicity; potential for Various cell lines, .
Nanoparticles skin irritation, reduced human skin 0.1to In vitro and [89-91]
(SLNs) toxicity from essential fibroblasts 5 mg/mL in vivo studies

fatty acids
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Table 2. Cont.
Exampl.e Toxic Effects Organism/Cell Concentration Condition Ref
Nanoparticle Tested
Protein-Based
Generally low toxicity;
. y . Human cancer cell .
Albumin-based minimal immune response; . ) 0.1to In vitro and
i . x lines, animal .. . [92-95]
Nanoparticles potential for cytotoxicity at 10 mg/mL in vivo studies
. . models
high concentrations
Low toxicity; biocompatible;
Silk Fibroin potential for mild Human fibroblasts, 1to In vitro and
. . . I ) [96-99]
Nanoparticles inflammatory response in mouse models 5mg/mL in vivo studies

some cases

Organoid models offer significant advantages over traditional animal testing for
nanoparticle toxicity assessment [100]. Derived from human stem cells, organoids better
replicate the architecture, cellular diversity, and physiological responses of human tissues,
thus providing more accurate predictions of human-specific toxicity compared to animal
models [100]. They allow for high-throughput screening, can be customized to reflect
patient-specific genetics or disease states, and eliminate many ethical concerns associated
with animal use [101]. However, traditional animal models still provide critical insights
into systemic effects, such as nanoparticle biodistribution, immune system interactions,
metabolism, and long-term toxicity, which current organoid systems cannot fully repli-
cate [102]. Animal studies capture the complex interplay between different organs and
biological systems under physiological conditions, essential for understanding whole-body
responses [103]. Nevertheless, limitations of animal testing include species-specific differ-
ences that may limit the translational relevance to humans, ethical issues, and the high
costs and extended timeframes associated with in vivo experiments [102]. Thus, while
organoid models enhance human relevance and ethical viability in nanoparticle toxicology,
traditional animal models remain indispensable for a complete evaluation of systemic
toxicity [101,102]

3. Mechanisms of NP Toxicity

NPs have attracted considerable interest across several domains owing to their dis-
tinctive features and potential applications. However, their interaction with biological
systems may result in toxicity, necessitating a thorough investigation of the underlying
mechanisms [104]. The toxicity associated with nanoparticles, known as nanotoxicity, arises
from various physiological reactions initiated by their interactions with biological com-
ponents [105]. It is imperative to comprehend the manner in which nanoparticles induce
hazardous effects in order to assess their safety and effectiveness in applications such as
environmental remediation and medication delivery [74]. Figure 1 shows the mechanism
of nanoparticle toxicity.

Several strategies can be employed to minimize the generation of reactive oxygen
species (ROS) and their associated toxic effects during nanoparticle (NP) synthesis. Surface
modification is one effective approach, where nanoparticles are coated with biocompatible
materials like polyethylene glycol (PEG) or antioxidants such as ascorbic acid, which shield
the nanoparticle surface and reduce their reactivity [106]. Optimizing synthesis parameters,
such as temperature, pH, and reaction time, can also help lower ROS production by
creating nanoparticles with lower surface energy [107]. Additionally, selecting non-toxic
precursors and solvents during synthesis can reduce toxicity and ROS generation [108]. The
incorporation of materials with intrinsic antioxidant properties, such as cerium oxide or
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inhalation

dermal
penetration

ingestion

selenium nanoparticles, can neutralize ROS and reduce oxidative stress [108]. Furthermore,
controlling the size and shape of nanoparticles is important, as smaller or sharp-edged
nanoparticles tend to produce more ROS; thus, producing spherical nanoparticles can
minimize ROS generation [109].

MECHANISMS OF NANOPARTICLE TOXICITY

oxidative stress

DNA damage

inflammatory
response

o cellmembrane
- damage

autophagy &
apoptosis
dysregulation

N
Figure 1. Mechanism of nanoparticle toxicity.

Recent studies have highlighted that the unique physicochemical properties of
nanoparticles—particularly size, shape, and surface functionalization—play a crucial role
in modulating their toxicological profiles [110]. These characteristics significantly influence
the behavior of nanoparticle-based drug delivery systems and must be carefully considered
in the development of safe and effective nanopharmaceuticals.

Among these factors, particle size has a particularly significant impact [111]. Smaller
nanoparticles, due to their higher surface area-to-volume ratio, tend to exhibit greater
reactivity and enhanced membrane permeability, resulting in increased cellular absorption
and potential adverse effects [31,74]. Research suggests that nanoparticles with a diam-
eter of approximately 50 nm have the potential to efficiently enter cells and accumulate
in various organelles, thereby disrupting the normal functions of cells [112]. This size-
dependent reaction has brought to light the need to meticulously design and characterize
nanoparticles that are used in biological applications [42]. For instance, the interaction of
silver nanoparticles (AgNPs) with biological cells is greatly influenced by their size [110].
Smaller AgNPs, due to their larger surface area relative to volume, tend to be more ef-
fective as antibacterial agents [113]. However, this same property also facilitates greater
cellular internalization, which can lead to elevated toxicity in mammalian cells through
oxidative stress [114]. The morphology of NPs also influences their biological interactions.
Various shapes—spherical, rod-shaped, or tubular—affect how particles engage with cell
membranes and intracellular structures. Spherical nanoparticles generally exhibit more
efficient cellular uptake through endocytosis compared to rod-shaped particles, which tend
to induce greater mechanical stress on the cell membrane, potentially leading to membrane
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disruption and cytotoxicity [115,116]. On the other hand, rod-shaped nanoparticles may
induce a stronger inflammatory response due to their larger surface area and longer contact
time with cell membranes, which activate immune responses and oxidative stress path-
ways [115,116]. Studies suggest that elongated nanoparticles may cause higher cellular
stress than spherical nanoparticles due to their enhanced surface area and potential for
increased mechanical engagement with cellular components [117,118]. Similarly, the shape
of silver nanoparticles (AgNDPs) significantly affects both their antibacterial efficiency and
cytotoxicity. Rod-shaped or sharply edged AgNPs demonstrate enhanced bactericidal
activity due to stronger membrane interactions and easier cell penetration [114]. How-
ever, these anisotropic shapes also cause higher cytotoxicity in mammalian cells, largely
attributed to membrane disruption, oxidative stress, and inflammatory responses [119].
This underscores the importance of thoroughly evaluating nanoparticle morphology to
better predict and control their biological behavior.

The interaction between biological systems and nanoparticles is significantly influ-
enced by their surface charge. The stability and interaction of charged nanoparticles with
cellular membranes are influenced by their zeta potential, which can result in varying
degrees of cytotoxicity [21,120]. Recent studies have demonstrated that the surface charge
of nanoparticles (NPs) significantly influences their interactions with cellular membranes
and their potential cytotoxicity. Positively charged (cationic) NPs exhibit stronger electro-
static interactions with the negatively charged components of cell membranes, leading to
enhanced cellular uptake and increased cytotoxic effects [121]. This interaction can disrupt
membrane integrity, resulting in increased permeability, potential membrane destabiliza-
tion, and cell death [43]. Cationic NPs are also more likely to induce oxidative stress and
inflammation, further contributing to their higher toxicity profiles compared to neutral
or negatively charged (anionic) NPs [122]. In contrast, anionic NPs tend to have reduced
cellular uptake, causing them to exhibit lower cytotoxicity, which can make them more
biocompatible for certain applications [123]. Additionally, factors such as nanoparticle size,
shape, and surface chemistry also play essential roles in determining the biological interac-
tions and toxicity of NPs [123]. As a result, the surface charge is a crucial factor, but it is not
the sole determinant of nanoparticle behavior and toxicity in biological systems [21,27].

The toxicity characteristics of nanoparticles are significantly influenced by their chemi-
cal composition [18]. Diverse materials exhibit varying degrees of biocompatibility and
reactivity in biological systems [8]. Metal-based nanoparticles, such as silver and gold, have
been demonstrated to provoke oxidative stress and inflammation [31,104]. Comprehending
the precise interactions between nanoparticle materials and biological molecules is crucial
for forecasting toxicological results [74].

The toxic effects of NPs are primarily mediated through mechanisms such as oxidative
stress, inflammation, and genotoxicity. Oxidative stress occurs when ROS generation
exceeds cellular antioxidant defenses, leading to lipid peroxidation, DNA damage, and
apoptosis [25,124]. Concurrently, inflammatory responses triggered by immune activation
can result in tissue damage [125,126], while genotoxic effects threaten genetic stability [127].

Recent research highlights that beyond oxidative stress and inflammation, nanoparti-
cles (NPs) can also disrupt cellular homeostasis through mechanisms such as autophagy
dysregulation and protein corona formation. NPs can impair the autophagic flux by either
blocking autophagosome-lysosome fusion or overwhelming the autophagy machinery,
leading to the accumulation of damaged organelles and proteins, which exacerbate cy-
totoxicity and immune activation [128]. Additionally, when NPs enter biological fluids,
they rapidly adsorb proteins onto their surface, forming a “protein corona” that alters
their biological identity, cellular uptake, and immunogenicity [129]. This protein corona
can modulate NP toxicity by either masking reactive surfaces or, conversely, enhancing
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recognition by immune cells, leading to exaggerated inflammatory responses or altered
biodistribution [130].

In conclusion, comprehending the causes of nanoparticle toxicity is essential for
guaranteeing safe application across diverse areas (Figure 2). Tailoring NP characteristics—
such as size, shape, surface properties, and composition—can mitigate adverse effects and
enhance their utility across biomedical and industrial sectors.

neurological diseases :

parkinson's,
alzheimer's disease
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Brain
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Figure 2. Flowchart mechanism of nanoparticle toxicity in cells.

4. Health Impacts of Nanoparticle Exposure

NPs have attracted considerable interest owing to their extensive use across several
sectors and their possible health implications. This study examines the distinct health
impacts of NP exposure on several organ systems, namely the respiratory, neurological,
and immunological systems.

4.1. Respiratory System

The respiratory system serves as a principal entrance channel for inhaled nanoparticles,
whose diminutive size enables them to infiltrate the lungs and perhaps access the circulation.
Research indicates that exposure to airborne nanoparticles might result in pulmonary
inflammation, oxidative stress, and tissue injury [131,132]. For instance, a study involving
mice exposed to nano-TiO, at doses of 2.5, 5, and 10 mg/kg body weight for 90 consecutive
days showed lung injury, which was associated with alterations in inflammatory-related
cytokines and oxidative stress [133]. Chen et al. observed alveolar septal thickening,
neutrophil infiltration, and thrombosis in the pulmonary vascular system in mice after
an intraperitoneal injection of 324, 648, 972, 1296, 1944 and 2592 mg/kg BW TiO, NPs
(3.6 nm) for 7 days, respectively, which demonstrated the generation of inflammation and
the blockage of blood vessels in mouse lung [134].

Inhaled nanoparticles may induce both acute and chronic respiratory ailments, includ-
ing bronchitis, emphysema, and fibrosis [132]. The deposition of nanoparticles in alveolar
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areas can elicit biological responses from macrophages and dendritic cells, resulting in the
secretion of pro-inflammatory cytokines [131,132]. For example, exposure to nickel oxide
nanoparticles at a dose of 0.2 mg per rat led to persistent increases in chemokines such as
CINC-1 and CINC-2, which are associated with neutrophilic inflammation. [135].

Health Effects:

Acute: Temporary exposure may result in airway irritation, coughing, and respiratory
problems [131,136].

Chronic: Long-term inhalation has been linked to conditions such as chronic obstruc-
tive pulmonary disease (COPD), asthma exacerbations, and even pulmonary fibrosis due
to persistent inflammation and tissue remodeling [131,132].

Example: Titanium dioxide (TiO,) and carbon nanotubes have been reported to cause
lung inflammation and oxidative damage [131,132].

4.2. Nervous System

The nervous system is another critical target for NP toxicity due to the ability of NPs to
cross the blood-brain barrier (BBB) and accumulate in neural tissues [137]. NPs can traverse
the BBB through several mechanisms, including endocytosis and transcytosis. [138]. These
processes allow NPs, such as silver, gold, and silica-based particles, to access sensitive
regions of the brain [139]. In addition, there is emerging evidence suggesting that NP
exposure may impact neurotransmitter function, alter synaptic plasticity, and influence
brain development. The extent of these effects depends on several factors, including NP
composition, surface charge, and the duration of exposure [138].

Experimental studies in rodent models, including mice and rats, have demonstrated
that exposure to various NPs leads to neurotoxic effects such as oxidative stress, neuroin-
flammation, and neuronal apoptosis. For instance, Dhakshinamoorthy et al. (2017) reported
that mice administered with iron oxide nanoparticles exhibited elevated levels of reactive
oxygen species (ROS), increased expression of pro-inflammatory cytokines, and activation
of apoptotic markers in brain tissues. These molecular alterations were accompanied by
significant behavioral changes, including reduced locomotor activity and impaired spatial
memory, as assessed by open field and Morris water maze tests [140].

Similarly, studies on silver nanoparticles have shown that systemic exposure can
impair cognitive and motor functions in rodents. Antsiferova et al. (2018) found that
prolonged oral administration of silver nanoparticles in mice led to anxiety-like behaviors
and deficits in contextual fear conditioning tasks, indicating disruptions in both emotional
and memory-related processes [141].

Health Effects:

Neurodegenerative Disorders: Prolonged exposure has been linked to Alzheimer’s and
Parkinson’s-like neurodegeneration due to oxidative damage and protein aggregation [142-144].

Cognitive Impairments: Studies indicate that some metallic NPs impair learning,
memory, and motor coordination [145-147].

Example: Silver and zinc oxide NPs have demonstrated neurotoxicity in both in vitro
and in vivo models [142,144,147].

4.3. Immune System

The immune system is a critical defense mechanism against environmental and
pathogenic threats, and its response to NP exposure is of significant concern [148]. NPs
have been shown to interact with both innate and adaptive immune cells, resulting in alter-
ations in immune function [149,150]. In the innate immune system, NPs affect cells such as
macrophages and dendritic cells, leading to the production of pro-inflammatory cytokines,
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oxidative stress, and impaired antigen processing [149]. These responses can either enhance
pathogen clearance or contribute to chronic inflammation and tissue damage [149].

In contrast, the adaptive immune system is influenced through NP interactions with T
cells, either directly or indirectly via altered antigen presentation by dendritic cells [151].
This can result in T-cell activation or suppression, which has been associated with im-
mune dysregulation, including increased susceptibility to infections or the development of
autoimmune conditions [21]. Certain nanoparticles, including silica and carbon-based par-
ticles, have been shown to enhance the synthesis of autoantibodies and promote immune
responses associated with autoimmunity [152].

Moreover, the dual ability of NPs to modulate both NPs and adaptive immunity has
made them attractive as vaccine adjuvants [139]. However, understanding the balance
between beneficial immune enhancement and harmful immune perturbation is essential to
ensure the safety of NP-based therapeutic applications [149].

Specifically, exposure to nanoparticles has been linked to a heightened risk of develop-
ing autoimmune disorders [148]. Certain nanoparticles, including silica and carbon-based
particles, can induce autoimmunity by modifying the function of antigen-presenting cells
and enhancing the synthesis of autoantibodies. Furthermore, NPs can regulate the syn-
thesis of pro-inflammatory cytokines, potentially resulting in persistent inflammation and
heightened vulnerability to infections [150].

Health Effects:

Immune Activation: Hyperactivation may lead to persistent inflammation and im-
munological reactions [150].

Immunosuppression: Suppressed immune function increases vulnerability to infec-
tions [153].

Example: Gold NPs have shown immunomodulatory effects, while carbon-based NPs
may suppress or overstimulate immune cells [153].

5. Conclusions

Nanoparticles present promising applications across medical, industrial, and techno-
logical fields; however, their potential health hazards must be carefully considered. As
outlined in this review, the toxicity of nanoparticles, particularly metal-, carbon-, lipid-,
protein-, polymeric, and silica-based, stems from complex mechanisms such as oxidative
stress, inflammation, and cellular damage. These effects can significantly impact the respi-
ratory, neurological, and immune systems. Key physicochemical properties, including size,
shape, and surface chemistry, greatly influence nanoparticle interactions with biological
systems. Moving forward, more in-depth investigations are needed to understand long-
term exposure effects, nanoparticle-biological interactions, and cumulative health impacts.
Future research should also emphasize safer nanoparticle design, standardized toxicity
assessment methods, and effective regulation. A comprehensive risk assessment and man-
agement strategy is essential to minimize health risks and ensure the safe integration of
nanotechnology into diverse sectors.
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