Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Back

Composition optimization of PLA/PPC/HNT nanocomposites for mandibular fixation plate using single-factor experimental design

Journal of the Mechanical Behavior of Biomedical Materials • Article • 2022 • DOI: 10.1016/j.jmbbm.2022.105423

Haneef, Intan Najwa Humaira Mohamed ^a ⋈; Buys, Yose Fachmi ^b;
Shaffiar, Norhashimah Mohd ^a ⋈; Abdul Hamid, Abdul Malek ^a;
Shaharuddin, Sharifah Imihezri Syed ^a; +1 author

Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Show all information

9 55th percentile
Citations 🗘

0.57
FWCI (i)

Full text V Export V 📮 Save to list

Document Impact Cited by (9) References (38) Similar documents

Abstract

The need to overcome the secondary surgery to remove implanted metal fixation plate leads to the idea of replacing the material with degradable bionanocomposite. In this research, polylactic acid/polypropylene (PLA/PPC) blends incorporated with halloysite nanotubes (HNT) (o–6 wt %) were considered as the candidate material for mandibular fixation plate. A single-factor design using Design Expert software was used to determine 20 different compositions of PLA/PPC/HNT

nanocomposites and their mechanical properties were then measured. The optimization of the PLA/PPC/HNT nanocomposite composition was performed based on the nanocomposite's response to Young's modulus, tensile strength, and elongation at break. Further analysis suggested an optimum composition of 92.5/7.5 PLA/PPC with 6 wt % of HNT. The statistical results predicted that there was a 71.7% possibility that the proposed nanocomposite would have the following mechanical properties: Young's modulus of 2.18 GPa, a tensile strength of 64.16 MPa, and an elongation at break of 106.53%. © 2022 Elsevier Ltd

Author keywords

Design of experiment; DOE; Fixation plate; Nanocomposites; Optimization; PLA/PPC/HNT; Polylactic acid/polypropylene carbonate/halloysite nanotube

Indexed keywords

MeSH

Cellulose; Clay; Nanocomposites; Polyesters; Polypropylenes; Research Design

Engineering controlled terms

Design of experiments; Elastic moduli; Kaolinite; Nanotubes; Plate metal; Polyesters; Tensile strength

EMTREE drug terms

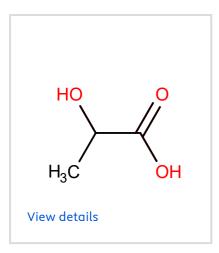
cellulose; nanocomposite; polyester; polypropylene

Engineering uncontrolled terms

DOE; Elongation-at-break; Fixation plate; Halloysite nanotubes; Optimisations; PLA/PPC/halloysite nanotube; Polylactic acid/polypropylene carbonate/halloysite nanotube; Polypropylene carbonate; Young modulus

EMTREE medical terms

clay; methodology


Engineering main heading

Nanocomposites

Reaxys Chemistry database information

Reaxys is designed to support chemistry researchers at every stage with the ability to investigated chemistry related research topics in peer-reviewed literature, patents and substance databases. Reaxys retrieves substances, substance properties, reaction and synthesis data.

Substances

Powered by Reaxys

Chemicals and CAS Registry Numbers

Unique identifiers assigned by the Chemical Abstracts Service (CAS) to ensure accurate identification and tracking of chemicals across scientific literature.

cellulose	61991-22-8, 68073-05-2, 9004-34-6
polypropylene	25085-53-4, 9003-07-0
Cellulose	
Clay	

Corresponding authors

Show more

Email address

Corresponding author	N.M. Shaffiar
Affiliation	Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

shishaff@iium.edu.my