Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Back

Reinforcement Learning-Driven Hybrid Precopy/Postcopy VM Migration for Energy-Efficient Data Centers

```
IEEE Access • Article • Open Access • 2025 • DOI: 10.1109/ACCESS.2025.3613235 ☐


Hidayat, Taufik a; Ramli, Kalamullah a ; Harwahyu, Ruki a; Salman, Muhammad a;

Surya Gunawan, Teddy b

all Diversitas Indonesia, Eaculty of Engineering, Department of Electrical Engineering, 1
```

^a Universitas Indonesia, Faculty of Engineering, Department of Electrical Engineering, Jawa Barat, Depok, 16424, Indonesia

Show all information

Abstract

This study proposes the use of a hybrid precopy/postcopy virtual machine (VM) migration framework to aid an autonomous agent when making migration decisions to continuously optimize the balance among migration time, downtime, and energy consumption. The data center state and the resource load, including the CPU, memory, and network, are represented in the agent's state space using a two-layer graph neural network (GNN), and the asynchronous advantage actor—critic (A3C) algorithm is employed to dynamically determine whether to continue the precopy phase or switch to postcopy and optimize the trade-off among the total migration time, downtime, and energy consumption while adhering to the service-level agreement (SLA) constraints. An adaptive host selection policy ensures that VMs are migrated only to underloaded machines, preventing overload and ensuring system stability. A simulation evaluation that employed the VM workload

from the GWA-Bitbrains dataset revealed that this framework achieved a total migration time of 45.5 s, with 30.1 s spent on the precopy phase and 15.4 s spent on the postcopy phase, resulting in a downtime of 15.4 s. Compared with previous approaches, this result represents an decrease in total migration time of 12.5% from 52 s to 45.5 s; a 23% decrease in downtime from 20 s to 15.4 s; and a 4.4% increase in energy efficiency from 87% to 91.4%. The SLA compliance remained stable at 92.8%, affirming that the service quality was preserved. This study demonstrates the effectiveness of integrating GNN-based embeddings and A3C scheduling in terms of reducing downtime and energy usage while maintaining reliable service delivery in data centers. © 2013 IEEE.

Author keywords

energy efficiency; hybrid migration; Reinforcement learning; VM migration

Indexed keywords

Engineering controlled terms

Autonomous agents; Data centers; Economic and social effects; Energy utilization; Green computing; Network layers; Neural networks; Quality of service; Reinforcement learning; System stability

Engineering uncontrolled terms

Datacenter; Energy; Energy-consumption; Graph neural networks; Hybrid migration; Migration energy; Reinforcement learnings; Time consumption; Total migration time; Virtual machine migrations

Engineering main heading

Energy efficiency

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor Funding number Acronym

Center for Higher Education Funding and Assessment

Funding sponsor	Funding number	Acronym
Pelayanan Pembiayaan dan Asesmen Pendidikan Tinggi		
Beasiswa Pendidikan Indonesia		
Universitas Indonesia	PKS-	UI
See opportunities by UI 🗷	252/UN2.RST/HKP.05.00/2025	
Universitas Indonesia See opportunities by UI		UI

Funding text

This work was supported by the Universitas Indonesia through the Hibah Publikasi Terindeks Internasional (PUTI) Q1 Kolaborasi Internasional Scheme under Contract PKS-252/UN2.RST/HKP.05.00/2025. The work of Taufik Hidayat was supported by Beasiswa Pendidikan Indonesia (Indonesia Education Scholarship), Pusat, through Pelayanan Pembiayaan dan Asesmen Pendidikan Tinggi (Center for Higher Education Funding and Assessment), and the Indonesia Endowment Funds for Education (LPDP).

Corresponding authors

Corresponding author	K. Ramli
Affiliation	Universitas Indonesia, Faculty of Engineering, Department of Electrical Engineering, Jawa Barat, Depok, 16424, Indonesia
Email address	kalamullah.ramli@ui.ac.id

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords