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ABSTRACT This study proposes the use of a hybrid precopy/postcopy virtual machine (VM) migration
framework to aid an autonomous agent when making migration decisions to continuously optimize the
balance among migration time, downtime, and energy consumption. The data center state and the resource
load, including the CPU, memory, and network, are represented in the agent’s state space using a two-layer
graph neural network (GNN), and the asynchronous advantage actor–critic (A3C) algorithm is employed
to dynamically determine whether to continue the precopy phase or switch to postcopy and optimize
the trade-off among the total migration time, downtime, and energy consumption while adhering to the
service-level agreement (SLA) constraints. An adaptive host selection policy ensures that VMs are migrated
only to underloaded machines, preventing overload and ensuring system stability. A simulation evaluation
that employed the VM workload from the GWA-Bitbrains dataset revealed that this framework achieved a
total migration time of 45.5 s, with 30.1 s spent on the precopy phase and 15.4 s spent on the postcopy phase,
resulting in a downtime of 15.4 s. Compared with previous approaches, this result represents an decrease in
total migration time of 12.5% from 52 s to 45.5 s; a 23% decrease in downtime from 20 s to 15.4 s; and a 4.4%
increase in energy efficiency from 87% to 91.4%. The SLA compliance remained stable at 92.8%, affirming
that the service quality was preserved. This study demonstrates the effectiveness of integrating GNN-based
embeddings and A3C scheduling in terms of reducing downtime and energy usage while maintaining reliable
service delivery in data centers.

INDEX TERMS Reinforcement learning, VM migration, hybrid migration, energy efficiency.

I. INTRODUCTION
Currently, data centers are essential for the development
of modern technology. However, data centers also use a
large amount of energy; thus, ways to improve energy usage
without compromising service quality are needed. Therefore,
various efforts have been made to use energy more efficiently
without sacrificing service quality or improving data center
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performance [1]. The live virtual migration (LVM) technique
can increase the efficiency of resource usage by moving
workloads between host machines without stopping services,
which can reduce the load on the data center [2]. Although
the LVM method assists in workload balancing strategies
in complex data centers, there are still many issues in
contemporary data center management, especially with
respect to virtual machine (VM) migration decision-making.
Although various methods have been used, several chal-
lenges remain to be addressed. For example, if the VMs
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are not placed on the host machines correctly, if the VM
strategy is not appropriate, or if the VM is placed on the
host machine incorrectly, energy consumption increases.
Additionally, spikes in the network overhead can potentially
violate the established SLA [3], [4], [5].

Some researchers still use static thresholds or reactive
heuristic algorithms to evaluate the VM migration process.
As a result, these methods tend to be unresponsive to fluctu-
ating and dynamic workload changes while neglecting other
resource components, such as the CPU, memory, bandwidth
(BW), and energy [6]. Other studies have also attempted
to address unresolved issues and problems, including those
using the modified feeding bird’s algorithm (ModAFBA)
approach [7] and the research conducted in [8], which sug-
gests a metaheuristic-based framework to increase energy
efficiency and minimize overhead during VM migration,
leading to increased energy consumption. The reinforcement
learning (RL) approach based on the advanced reinforce-
ment learning consolidation algorithm (ARLCA), which was
employed in the research conducted in [9], shows that this
approach offers more adaptive capabilities through interac-
tive learning between the agent and the developed model
environment.

However, this approach has several limitations, includ-
ing that it is applicable only to simulation environments
and requires real-world implementation. In addition, it is
necessary for real-world applications. The development of
technology based on artificial intelligence (AI), particu-
larly in the application of GNNs and RL algorithms, offers
opportunities to address the problems faced in previous stud-
ies [10], especially those related toVMplacement, as they can
improve data center energy efficiency and enhance service
performance. Few researchers have combined the GNN and
RL in hybrid migration schemes while considering energy
efficiency and SLA compliance in data centers.

To address this gap in the previous research, this study
proposes an adaptive hybrid precopy/postcopy VMmigration
framework that uses a GNN to embed states in the data center
and A3C algorithms within the MDP framework for adaptive
learning [11], [12], [13]. This study aims to reduce the total
migration time, minimize downtime, ensure SLA compliance
in a dynamic data center, and, most importantly, optimize
energy consumption during live migration. The main contri-
butions of this research are summarized as follows:

1) The development of a hybrid precopy/postcopy frame-
work with a reward-shaping mechanism to reduce
energy consumption, downtime, and total migration
time while maintaining SLA compliance.

2) The development of a two-layer GNN architecture
that aims to represent an adaptive state in VM place-
ment, supporting migration optimization and resource
efficiency.

3) The development of actor-critic-based migration
policies that utilize GNN embedding in optimal
decision-making.

This study is divided into several parts: Section II explains
the research background related to energy efficiency and the

use of RL in live migration, and Section III explains the
RL live migration framework, data preprocessing, and for-
mulation of the developed GNN, A3C, and MDP models.
Section IV describes the experimental setup, measurement
metrics, research results, and comparisons and includes a
discussion. In Section V, conclusions are presented.

II. BACKGROUND AND RELATED WORK
A. FUNDAMENTALS OF VM MIGRATION
Owing to many complex issues, data centers face significant
challenges, especially in terms of managing energy consump-
tion. Several studies have attempted to address the problems
experienced by data centers, particularly those related to
energy consumption, VM placement, and optimal VMmigra-
tion. In a previous study [14], the MoVPAAC framework
was proposed by combining several algorithms with nonlin-
ear programming (INLP), colony optimization, and artificial
neural networks (ANNs). This study focused on reducing
energy consumption and compliance with the SLA. However,
the approach proposed in this work still relies on heavy
multi-iteration computations and is reactive.

The study conducted in [15] with the ICSA-ROPE
algorithm proposed dual-objective optimization for energy
efficiency, but it is still not adaptive to changes in fluc-
tuating workloads. A probabilistic approach, such as the
discrete-time Markov chain (DTMC) combined with the
e-MOABC algorithm [16], was applied to predict resources
and reduce unnecessary migration frequency. However, in its
application, insufficient attention is still given to the quality of
service (QoS); therefore, this aspect must be addressed during
the migration process. On the other hand, in [17], the VM
consolidation efficiencywas improved using an approach that
detects underloaded hosts, but its implementation is still lim-
ited to a simulated environment. Many previous studies have
also evaluated resource usage, such as the CPU,memory, BW,
and energy usage, to improve energy efficiency in data centers
and focus on VM placement, VM migration prediction, data
center energy usage, and SLA compliance. Table 1 outlines
the evaluation of resources and energy in further studies.

Table 1 outlines all of the elements that previous research
has not addressed; little research has been conducted because
bandwidth, disk storage, and security are concerns. This
paucity provides an opportunity for future research. The
role of bandwidth in live migration is vital, particularly in
real-time applications; however, it is still rarely the focus.
Additionally, disk storage and security are comprehensively
integrated into resourcemanagement strategies, and the threat
of cyberattacks on data centers continues to increase [18].
Although energy efficiency has become the main priority in
almost all studies, there are still opportunities for develop-
ing holistic resource research by considering aspects of disk
storage, bandwidth, and security within an adaptive frame-
work. Additionally, integrating machine learning and deep
learning to support VM migration decisions in dynamic data
centers and implementing adaptive SLA concepts will be the
research focus, and service flexibility and efficiency will be
prioritized to achieve customer satisfaction.
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TABLE 1. Resource and energy efficiency evaluation.

B. CHALLENGES IN ENERGY-EFFICIENT VM MIGRATION
RL has developed significantly. It is recognized as an adap-
tive and practical approach that addresses the limitations of
conventional static live migration and the lack of responsive-
ness to fluctuating workload dynamics. The RL approach
can play a significant role in effective and adaptive VM
decision-making using reward-based learning mechanisms.
Several studies on RL, such as that conducted in [3] with
the LMEB algorithm approach, which successfully increased
energy efficiency and reduced downtime, still depend on
network bandwidth conditions. The authors of [19] pro-
posed an approach that uses the MADRL algorithm. This
approach improved energy efficiency utilization and suc-
cessfully achieved VM migration; however, it is still not
considered feasible for any migrated VMs. Additionally,
[20] discussed the creation of RL-based algorithms with a
hierarchical structure that can improve and accelerate con-
vergence in the developed RL model learning. However,
several issues with developing the studied model, particu-
larly, those related to the reward function and scalability,
are still not resolved. In another study [27], the development
of the DQN-based AVMC framework exhibited increased
efficiency; however, its validation was limited to simulation
environments and did not consider essential parameters, such
as the network latency and downtime. Various other studies
have also been conducted [28], [29].

On the basis of the literature review, although various
approaches have successfully improved VM migration effi-
ciency, there are still significant limitations related to the
adaptation to dynamic data centers, utilization of data cen-
ter representation [30], and multiobjective optimization,
including energy efficiency, SLA compliance, and network
performance [31]. This study offers a solution for developing
an adaptive VM framework by integrating the GNN and
RL in a hybrid precopy/postcopy scheme. This approach is
designed to model the dynamic data center and implement
the actor-critic policy in RL to support efficient and adap-
tive VM decisions to target VM energy efficiency and SLA
compliance [32], [33].

III. RESEARCH METHOD
This section explains the developed framework, which is
based on the GNN and RL and employs the A3C algorithm.

This approach implements a hybrid precopy/postcopy migra-
tion scheme to improve energy efficiency and minimize
downtime, total migration time, and SLA compliance.

A. DATA PREPARATION FOR HYBRID VM MIGRATION
During the initial process in the proposed framework, begin-
ning with data preparation and modeling, the dataset used
in this research is GWA-Bitbrains [34], [35]. The data used
include the main parameters of the VM resources, such as
the CPU usage, memory usage, network bandwidth, and
dirty rate [36], [37]. The entire process is formulated in
Equations (1) to (8). When the VM is given a set (vi)ni=1,
each VM has a numeric value. The feature has not yet been
normalized.

Each component f ki is normalized to the range [0,1] as
defined in Equation (1).

xki =
f ki − minjf

k
j

max jf kj − minjf
k
j

∀ k ∈ (CPU, Mem, BW, Dirty)

(1)

As a result, the feature matrix is defined in Equation (2).

XVM = [x1, x2, . . . , xn]T ∈ Rnx4 (2)

When a node is added to the host, for example, m hosts
(hj)mj=1, because only an infrastructure data center is needed
in this study, and the host feature is defined as a zero-vector,
as described in Equation (3).

XHost = 0mx4 (3)

Thus, the combined feature matrix can be expressed as
follows in Equation (4):

X =
[
XVM
XHost

]
∈ Rnx4 (4)

The placement of theVMs on the host machine can be defined
as an undirected graph.

G = (V, E),V = (v1, . . . ., vn,h1, . . . , hm)

Edge (vi, hj)ϵ E if VM vi is placed on host hj. The adja-
cency matrix A ∈ (0,1)(n+m)x(n+m) form is described in
Equation (5).

Auv =

{
1 if (u, v) ∈ E
0 other

u, v ∈ V (5)
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Finally, self-loops are required to ensure stable convergence
in the GNN, as expressed by Equation (6).

Ã = A+ In+m (6)

B. GNN EMBEDDING
Next, to normalize the adjacency matrix, the degree matrix,
Ďii=

∑
j Ãij, must be calculated and then formed into a nor-

malized symmetric adjacency matrix, written as shown in
Equation (7).

Ã = Ď−
1
2ÃĎ−

1
2 (7)

The graph representation of the GNN is defined in
Equation (8).

Gattr (X , Â) (8)

in the application of PyG as (X, edge_index), where
edge_index = {(u, v) |Ãuv = 1.
Thus, all of the resource conditions and the VM place-

ment structure on the host machine were created in a graph
model that is ready for processing, allowing for contex-
tual and adaptive state-embedding extraction. This research
uses a two-layer GNN that combines VM resource attributes
with a VM placement structure to support adaptive migra-
tion decision-making [38]; this embedding allows the RL
agent to comprehensively learn about workload dynamics,
efficiently adjusting the precopy/postcopy hybrid migration
strategy while maintaining optimal SLA compliance. This
architecture is described by Equation (9), where the first
layer, the attribute graph (X, Â), is input into the first layer
of the GCN by aggregating the node features from the direct
neighbors.

H(1)
= σ (Â,X,W(0)) (9)

where X ∈ R(n+m)xF is a node feature (Equation (4)),
Â ∈∈ R(n+m)x(n+m) is the adjacency normalization operation
(Equation (7)), W (0) ∈ RFxd is the trainable weight of
the first layer, and σ is a function of ReLU activation. The
intermediate H (1) ∈ RFxd output already has a local context
and a lightweight topological structure. Next, to capture two-
hop context information, the output from the intermediate
H^((1)) is processed again at the second layer, as described
in Equation (10).

Z =H(2)
= σ (Â,H(1),W(1)) (10)

where W (1) ∈ Rdxď is the weight of the second layer that is
trainable, and the final matrix embedding Z ∈ R(n+m)xď loads
an infrastructure-aware representation for each node.

zi=zi, :∈Rď, i = 1, . . . , n (11)

Embedding zi includes the resource load information and
VM placement positions on the host machine. Afterward, the
embedding infrastructure data center zi is combined with a
real-time resource feature of the remaining memory (Memit ),
dirty rate (Dirtyit ), bandwidth (BW i

t ), number of precopy

iterations (Iter it ) and initial memory (Memiinit ) to form the
state sit , described in Equation (12).

sit =[zi ||Mem
i
t || Dirty

i
t ||BW

i
t || Iter

i
t || Mem

i
init ]

T
∈ Rď+5

(12)

This formula is used for the reinforcement learning agent
to determine the optimal migration action in a hybrid
environment.

C. REINFORCEMENT LEARNING FOR ADAPTIVE
MIGRATION
In this section, during the decision-making process,
VMmigration is formulated as the MDP, where the RL agent
receives an infrastructure-aware state from the GNN and
mimics the optimal migration action in a hybrid precopy/
postcopy scheme [39], [40]. The migration policies are opti-
mized by using A3C with generalized advantage estimation
(GAE) for convergence stability, which is formulated in
Equations (13) to (18). For the MDP formulations, in step
t, each VM vi is defined in Equation (13).

sit =[zi ||Mem
i
t || Dirty

i
t ||BW

i
t || Iter

i
t || Mem

i
init ]

T
∈ Rď+5

(13)

where zi is the infrastructure-aware embedding
(Equation (11)) and where the remaining components are the
runtime features (Equation (12)). Two actions can be selected,
as described in Equation (14).

A = (0 : precopy, 1 : postcopy) (14)

Furthermore, the transition process, in which st+1 is selected
at will in the hybrid migration environment of Env by calcu-
lating the memory changes, downtime, and total migration
according to the precopy/postcopy scheme, can be seen in
Equations (5)–(8). Afterward, the state st+1 is returned and
flagged. The reward shaping calculation is subsequently for-
mulated to balance the energy efficiency, SLA penalties, and
optimization of the migration time.

rt = α

∑k
k=1 T

(k)
pre

Ttotal + ϵ
+ βmax(0,

∑
Tpre

Ttotal
− Eff tar

− γ max (0,D− DSLA))+ δ(Ttotal) (15)

where T (k)
pre and Ttotal, D are calculated via the Env

Equations (5)–(8) andwhere α, β,γ and δ are the coefficients.
Furthermore, the A3C architecture uses two separate but
coordinated networks for the actors to model the policies
defined in Equation (16).

π (α | s; 0) =
exp

(
f actorθ (s)α

)∑
b exp

(
f factorθ (s)b

) (16)

where f actorθ (s) is the logit output for each action and the
critic models the value function described in Equation (17).

V (s; ∅) = fcritic
∅

(s) (17)
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This formula predicts the expected return of the states; then,
the combined loss function of each step t is defined in
Equation (18).

Lℓ = − logπ (αℓ | sℓ; θ)Aℓ +
1
2 ( V (sℓ; ∅)− Rℓ)

2
− kH

(π (. | sℓ;ϑ))

(18)

where At is an advantage, Rt represents discounted returns,
H (π) represents the entropy policy for exploration, and k
represents the entropy coefficient. Furthermore, the training
was conducted asynchronously with several workers who
collected trajectories, calculated the GAE, and updated θ and
∅ globally with the Adam optimizer. The advantage of this
approach is that it performs the calculations with the GAE
defined in Equation (19) to stabilize and reduce the variance.

δt = rt + γV (st+1),At =
∑∞

l=0
(γ λ)lδt+l (19)

For returns Rt , the critic is defined in Equation (20).

Rt = At + V(st ) (20)

In each episode, batch VM sampling is performed and rolled
out in Env while (st , at , rt ) is recorded, and the loss in
Equation (18) is subsequently backpropagated. Next, the
hybrid migration environment is integrated by modeling the
precopy iterations up to the threshold or the forced postcopy
according to Algorithm 1. Each step returns (st+1, rt , done),
so the agent learns an adaptive policy that minimizes the total
energy, downtime, and migration time and complies with the
SLA policies.

D. TRAINING RL VM MIGRATION
This section systematically explains how the GNN encoder
model and A3C agent are trained and how the central
hyperparameter values are used. The algorithm presents the
pseudocode employed during the training procedure.

The training model is run periodically by using the A3C
framework. The VMs are randomly selected for each episode,
and their infrastructure-aware embeddings are computed
using a GNN encoder. The agent then performs a rollout in
the precopy/postcopy environment, selects migration actions
on the basis of the generated policy distribution, and stores the
reward and value estimates. The entire trajectory is processed
with the GAE to obtain the advantage, which is used together
with the return in the combined loss functions for the actor,
critic, and entropy to ensure a balance between exploitation
and exploration. The model parameters are updated using the
Adam optimizer in each episode, and the best weights are
periodically saved as checkpoints to ensure the stability of
the experiment [19], [41].

E. EXPERIMENTAL SETUP
The three main components of the VM framework developed
in this study are shown in Figure 1. These components are
as follows: (1) Topological Representation Layer: This layer
models the dynamic relationship between VMs and the host
machine infrastructure in graph form, thereby enabling a

Algorithm 1 Training Procedure for Adaptive VMMigration
Input:
X: Feature matrix (n+m × F)
Â: Normalized adjacency (n+m × n+m)
Env params: Hybrid migration settings
N_episodes: Number of episodes
K: Checkpoint interval

Initialize:θ_e,θ_a,ϕ_c with random
weights
optimizer ← Adam (θ_e ∪ θ_a ∪ ϕ_c, lr)
for episode = 1 to N_episodes do

1. Sample batch B of VM indices
2. Z ← GNN (X, Â; θ_e)
3. Clear trajectory buffer D ← []
for each i in B do

(s, done) ← Env_i. reset(Z_i)
while not done do

(ℓ, v) ← ActorCritic (s; θ_a,
ϕ_c)

a ←sample
Categorical(softmax(ℓ))

(s′ , r, done) ← Env_i. step(a)
append (s, a, r, v) to D
s ← s′

end while
end for
4. A_t} ← GAE (D, γ, λ)
5. L ← −

∑
_t log π (a_t|s_t; θ_a) · A_t

+ 1/2 ·
∑
_t (v_t − R_t) 2

− κ·Entropy (π (·|s_t; θ_a))
6. Optimizer. step(∇L)
if episode mod K == 0 then

save_checkpoint (θ_e, θ_a, ϕ_c)
end if

end for
Output: trained parametersθ_e,θ_a,ϕ_c

comprehensive understanding of the VM placement structure
with the host machine. (2) Embedding Contextual Situations
through the GNN: When the GNN approach is used to pro-
cess graphs, the relationships between the VMs and the host
infrastructure are modeled.

The experimental settings shown in Table 2 are essential
for training A3C and assessing the hybrid precopy/postcopy
VMmigration framework. This setup ensures reproducibility
and consistent comparison across all the scenarios.

F. EVALUATION METRICS
This section describes the evaluation used to assess the VM
framework. The mathematical formulation of the evaluation
metrics is included.

The total VM migration time, represented by Tmig,i, for
the virtual machine, denoted vi, is defined as the sum of the
duration of the precopy phase, which is represented by Tpre,i,
and the downtime duration, which is denoted Di. During the
precopy phase, most of the memory pages of vi are iteratively
transferred to the destination host machine while the VM
continues to run; thus, user services are not completely halted
despite the background data transfer overhead. After the
precopy process reaches the iteration limit or the minimum
remaining memory threshold, the VM is temporarily stopped
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FIGURE 1. Experimental setup for RL VM migration.

TABLE 2. Experimental setup for RL-Driven VM migration.

(stop and copy) during the postcopy phase to transfer the
remaining memory pages that have not been sent; this period
is referred to as downtime. This migration time is described
in Equation (21).

Tmig,i = Tpre,i + Di (21)

Additionally, the downtime Di is calculated on the basis of
the ratio between the remaining unsaved memory, denoted
(RemaniningMemoryi), and the network bandwidth capacity,
denoted (Bandwidth)i, as formulated in Equation (22).

Di =
Remaining Memoryi

Bandwidthi
(22)

Thus, the metric Tmig,i reflects the overall service disruption
both while the VM remains active with overhead during the
precopy phase and during the VM stop period in the postcopy
phase, reflecting the overall service disruption during both
phases.

To measure energy efficiency during the VM migration
process, this study divides power consumption into three
main components. First, the precopy energy is denoted Epre
and is calculated by adding the power P(t) used during the
precopy phase, which is when most of the VM’s memory
pages are repeatedly moved while the VM is still running on
the original host machine, shown mathematically as follows:

Epre =
Thandover∑
t=0

P (t) 1t

where Thandover is the last second of the precopy phase and
1t is the power measurement interval. Second, the post-
copy energy Epost represents the energy consumed after
the VM is moved to the destination host machine when
the VM is restarted and the remaining memory pages are
loaded (‘‘fetch’’) on demand. If the postcopy phase lasts from
t = Thandover+ 1 to t = Tend , then

Epost =
Tend∑

t=Thandover+1

P (t) 1t
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Third, the system’s overhead energy is denoted Eover and
includes all power consumption not directly related to
memory copying, such as the energy needed for memory
management, I/O operations, network protocols, and other
supporting processes. In previous research, Eover was implic-
itly calculated as the difference between the total system
energy during migration and the sum of the precopy and
postcopy energy, but it can be explicitly written as follows:

Eover =
Tend∑
t=0

Pover (t)1t

where Pover (t) accepts only the power component that comes
from supporting activities outside the memory copy/fetch
process. With these three components, the total migration
energy (Etot ) is defined in Equation (23).

Etot = Epre + Epost + Eover (23)

To evaluate how much energy is used during the precopy
phase, which is usually more efficient since the VM is still
running, compared with the total energy used during migra-
tion, this study defines energy efficiency (η) as the percentage
Epre and Etot , as shown in Equation (24).

η =
Epre
Etot

x100% (24)

A high η indicates that most of the migration energy is used
during the precopy phase, which is relatively more efficient,
while the energy portion in the postcopy phase and system
overhead decrease. On the other hand, a low value of η

indicates the dominance of power consumption during the
postcopy phase or supporting activities, making the overall
VM migration process less energy efficient.

Next, this study introduces an SLA violation indicator
to evaluate how often the downtime duration on each VM
exceeds the established limit. This indicator is called the
SLA violation indicator (SLAvi), and it is formulated in
Equation (25). Formally, SLAvi is 1 if the downtime DiVM vi
exceeds the maximum DSLA and is t 0 otherwise; this rela-
tionship is expressed in Equation (25).

SLAvi =

{
1 Di > DSLA
0 Other

(25)

In this context, Di represents the duration during which VM vi
is inactive in the postcopy phase, while DSLA represents the
downtime limit, which is explicitly defined as a compliance
requirement. Determining the value of this indicator helps
identify which VMs fail to meet the SLA requirements. Addi-
tionally, after the value of SLAvi for each VM is determined,
the SLA compliance rate (SLAC), which is the percentage
of VMs that do not break the rules during one test sce-
nario, is determined. Equation (26) formulates the SLAC
mathematically.

SLAC = (1−
1
N

∑N

i=1
SLAV i)x100% (26)

If N represents the total number of observed VMs and∑N
i=1 SLAvi =0, then all VMs have successfully adhered

to the downtime limit, resulting in an SLAC of 100%.
Conversely, if many VMs exceed the downtime limit DSLA,
the SLAC value decreases, reflecting a low level of com-
pliance with the SLA. Evaluating the VM migration perfor-
mance involves calculating two indicators: SLAvi for each
VM and the SLAC for the entire VM population. Together,
these indicators provide a comprehensive overview of post-
migration service availability.

Next, to evaluate the extent to which the RL agent has
successfully learned the migration policy, this study uses
a cumulative reward, which is defined as the total reward
obtained by the agent in one training episode. The cumulative
reward at episode step t is defined as the sum of the reward
values rt from the first step to step T in that episode and is
expressed in Equation (27).

Rcum =
T∑
t=1

rt (27)

Here, rt is the reward granted by the environment for the
action chosen by the agent at timestep t, and T is the total
number of timesteps in one training episode. The value of
Rcum is important because it reflects how well the agent can
optimize the reward function in the long term; the higher the
cumulative reward is, the more effectively the agent balances
various objectives, such as reducing the downtime, minimiz-
ing energy, and adhering to the SLA.

In this work, the training results are validated by plotting a
graph of the cumulative reward curve against the number of
episodes. The curve shows the agent’s convergence process:
at the beginning of training, the cumulative reward tends to
be low and fluctuates because the agent is still exploring, but
as the episodes progress, the reward increases and stabilizes,
indicating that the agent has found a more efficient migration
policy. Thus, Equation (27) is used as the basis for the calcu-
lations, and the resulting values are then plotted to assess the
performance and stability of the learning process.

In this study, the energy used for moving each VM vi
is called Ei, which shows how much energy in kWh is
used to transfer the VM from one host machine to another.
Every time VM vi is successfully migrated and placed on
the host machine, denoted hj, the proposed method obtains
the migration energy per HM, which is denoted Ehj and is
mathematically formulated in Equation (28).

Ehj =
∑

i:vi→hj

Ei (28)

This equation indicates that Ehj is the accumulation of energy
Ei from all VMs placed on the target host machine hj and
ensures that every kWh required by the VM during migration
is recorded on the host machine where the VMwas last active.

Next, the percentage contribution of the migration energy
for each host machine in relation to the total migration
energy in the entire data center (Pcthj ) is calculated via
Equation (29).

Pcthj =
Ehi∑m
k=1 Ehk

x100% (29)
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where m is the total number of host machines participating
in the migration and where the value Pcthj indicates the
percentage of the total migration energy allocated to host
machine hj.

After the values of Ehj and Ehj are determined, the energy
per host machine is calculated by comparing the IT power
used for migration on that host machine with the facility
power, which includes additional overhead, such as the cool-
ing systems, UPS, and power distribution. If, on host machine
hj, the average IT power is PIT ,i kW and the average facil-
ity power is Pfacility,j kW during the migration period, then
the energy efficiency of host machine hj is calculated with
Equation (30) as follows:

ηhj =
PIT ,i

Pfacility,j
x100% (30)

IV. RESULTS AND DISCUSSION
A. TRAINING CONVERGENCE AND POLICY
FORMULATION
This section describes the experimental setup used to eval-
uate the VM migration model. In this study, migration
choices are treated as a Markov decision process, where each
data center’s situation is represented by a two-layer GNN.
An A3C algorithm is then used to improve the migration
strategy within a system that combines both precopy and
postcopy methods. In this study, the model was evaluated
using dynamic workload traces, and four key performance
metrics—energy efficiency, total migration time, downtime,
and SLA compliance—were measured to quantify its adapt-
ability. The convergence of the A3C policy over training is
shown in Figure 2.

FIGURE 2. Reward Model RL VM Migration.

The average cumulative reward per 10 episodes obtained
from the A3C agent that underwent three phases of learn-
ing are shown in Figure 2. First, in episodes 0−100, the
reward was still low, with an average of approximately
66 to 68, indicating an exploration phase in which the agent
attempted migration actions without a stable pattern. Next,
from episodes 100 to 300, the reward consistently increases
in the range of 68 to 70, as the agent begins to discover a more
efficient hybrid precopy/postcopy strategy that balances the
migration time and SLA compliance. After episode 300, the

reward ranged from 70 to 72, with decreasing fluctuations,
eventually stabilizing at approximately 70.31% by episode
500. This area shows that by using the A3C algorithm, the
GNN model helps the agent find the best VM migration plan
and can lower the energy used, downtime, total migration
time, and SLA compliance across various data center tasks.
This case study demonstrates the effectiveness of the pro-
posed strategy in terms of optimizing resource allocation and
minimizing operational costs. As a result, data centers can
achieve a more sustainable and efficient migration process
while maintaining service quality and customer expectations.
Next, Figure 3 presents the loss reward.

FIGURE 3. Loss model for RL migration.

The downward trend of the loss value, which occurs over
an average of 10 episodes during the training process for the
A3C agent, is shown in Figure 3. At the beginning of training,
during episodes 0–50, the loss ranged from 0.70 to 0.68,
indicating instability and high variation, as the agent was still
performing many exploratory actions. As the training pro-
gressed from episodes 50 to 300, the loss gradually decreased
from 0.55 to 0.50, indicating that the actor-critic network was
starting to learn to predict values more accurately and develop
better policies. As the training continued beyond episode 300,
the loss decreased, stabilizing at approximately 0.450.40.
This improvement suggests that the A3C agent was refining
its understanding of the environment and becoming more
adept at selecting optimal actions to maximize the rewards.
During the final phase, the loss decreased from episode
300 to episode 500 until it reached 0.39 by episode 500,
with increasingly minor fluctuations. This decrease shows
that the GNN embedding and the A3C algorithmwork well to
improve how the agent estimates value and makes migration
decisions, helping it choose the best options for migration
time, energy use, total migration time, and SLA.

B. MIGRATION PERFORMANCE, ENERGY EFFICIENCY,
AND SLA COMPLIANCE
The migration performance of five VMs is shown in Figure 4;
three VMs, namely, VM15, VM54, and VM52, have the
longest total migration time, and two VMs, namely, VM42
and VM11, have the shortest total migration time. For VM15,
the longest recorded precopy duration was 41.0 s, the total

169528 VOLUME 13, 2025



T. Hidayat et al.: Reinforcement Learning-Driven Hybrid Precopy/Postcopy VM Migration

migration time was 61.5 s, and the downtime was 20.5 s,
whereas for VM11, the shortest precopy duration was 24.8 s,
the total migration time was 37.5 s, and the downtime was
12.7 s. In the five VMs, the precopy phase consistently con-
tributed approximately 65–66% of the total migration time,
while the downtime ranged from 34–35%. This ratio indi-
cates that the hybrid precopy/postcopy approach successfully
transferred most of the VM state before service disrup-
tion, thereby controlling downtime. The medium-sized VMs,
VM54 and VM52, follow the same pattern, demonstrating
the framework’s scalability, while the smallest VMs, VM42
and VM11, achieve downtimes of less than 13 seconds, effec-
tively minimizing service disruption. These results indicate
that the RL VM migration policy is adaptive to the VM
workload.

FIGURE 4. VM migration time and downtime.

The average facility power draw and the power con-
sumed by the IT equipment are shown in Figure 5. The
facility power, including cooling, UPS losses, and distribu-
tion, averaged 13,432.9 kWh, whereas the IT systems drew
12,275.3 kWh, resulting in an overhead of 1,157.6 kWh. This
overhead represents approximately 8.6% of the total facility’s
power. The dashed black line denotes the overall data center
efficiency (IT power/facility power), which is measured at
91.4% and corresponds to a PUE of approximately 1.09.
These results demonstrate that our RL-driven VM migra-
tion framework effectively sustains high energy utilization
while keeping non-IT overhead to a minimum. This approach
enhances the performance of IT systems and contributes to
more sustainable data center operation.

The energy decomposition in Figure 6 illustrates the quan-
titative contribution of each phase to the overall migration of
energy. This diagram divides the total migration energy into
three components: the precopy phase (91.4%), the postcopy
phase (4.3%), and the overhead system (4.3%). The over-
head system component includes all supporting activities not
involved in memory transfer, as shown below.

As shown in Figure 6, the precopy phase accounts for the
vast majority of the migration energy, with postcopy and
system overhead contributing only marginally. The result-
ing average energy efficiency of each host machine after
migration is shown in Figure 7, where all the hosts maintain
an efficiency above 80%. These results confirm that our

FIGURE 5. Facility power, IT power, and data center efficiency (PUE).

FIGURE 6. Energy Decomposition of VM Migration.

framework achieves balanced and effective energy utilization
across the data center.

The average energy efficiency of each host after a series of
VM migrations is shown in Figure 7. Host machine 1 (HM1)
reached 83.1%, host machine 2 (HM2) reached 86.4%, and
host machine 3 (HM3) reached 84.6%. All the values are
above the minimum efficiency threshold of 80%, which was
previously set, indicating that themigration load is distributed
evenly across each active host machine, with high energy
utilization. The variations primarily influence the differences
between host machines in terms of the number of VMs and
internal network conditions; the differences are relatively
small, confirming the effectiveness of the RL VM migration
framework in terms of optimizing each physical machine.

To evaluate the performance of the reinforcement learning
agent in terms of optimizing VM migration, we periodically
monitored the SLA compliance rate during the training pro-
cess. The trend of SLA compliance changes per episode over
500 training episodes as well as the level of compliance with
the SLA over 500 RL agent training episodes are shown in
Figure 8. The compliance level of 88.9% at the start of the
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FIGURE 7. Host machine energy efficiency.

training, at approximately episode 0, occurred when the first
phase of exploration began. The agent changed the migration
policy on the basis of the reward function, as shown by the
conformance level changing between 91.6% and 92.5% over
the course of 50 to 250 episodes. After episode 250, there is
a steadier increase, and by the end of the training process, the
compliance is approximately 92.2% to 92.8%. These results
show that the agent can maintain VMmigration performance,
even when there are interruptions, as required by the SLA,
in dynamic data centers, which are constantly changing.

FIGURE 8. SLA compliance per episode.

Our experiments show that the RL model met the
SLA requirements approximately 92.8% of the time after
500 training sessions, which means that it made good
progress and indicates stability in terms of handling VM
migrations within the allowed downtime limits. Although it
has not yet reached the 95% target, these results reflect the
limitations of the dataset and infrastructure; many VMs have
a high dirty rate and limited bandwidth, which restricts further
potential downtime reduction. Further research will focus
on the development of a more adaptive migration model,
the management of application dirty pages, infrastructure
improvements and selective migration strategies based on
workload characteristics. This research provides a realistic
overview of the challenges of live VM migration in data

centers and presents opportunities for innovation to improve
SLA compliance in the future.

C. DISCUSSION
In the model created by the GNN-A3C agent in this study,
migration decisions are reached by an MDP, where the data
center state is represented by a GNN and the strategy is
improved using A3C. In 500 training episodes, the average
cumulative reward per 10 episodes increased from 66 during
the exploration phase to approximately 70.3 by the end of
the training process (Figure 2). Moreover, the actor-critic
loss decreased from approximately 0.70 to 0.39 (Figure 3).
This improvement indicates that the model is effectively
learning to optimize decision-making in the data center envi-
ronment. Additionally, reducing the actor-critic loss suggests
that the policy is becoming more stable and efficient over
time, ultimately leading to better performance when data
center operations are managed. The agent’s ability to find the
right balance among saving energy, moving data quickly, and
avoiding penalties shows that the created MDP and reward
system help the agent develop a reliable way to manage data
transfers.

The SLA compliance rate also improved significantly:
the initial compliance rate of approximately 89.8% tem-
porarily decreased to 88.4% during policy refinement but
then increased and stabilized above 92.2% after episode 300
(Figure 8). These results prove that agents can prioritize
downtime below the SLA threshold of 15 seconds under var-
ious dynamic load conditions and meet the SLA compliance
target of more than 95% in most scenarios. Furthermore, the
use of consistent experimental parameters (Table 2) ensures
the reproducibility and validity of the results. Combining
topological embedding with the GNN and A3C optimization
creates flexible and scalable VM migration strategies that
reduce downtime, improve energy efficiency, and maintain
SLA compliance. Thus, the proposed method is an excellent
option for modern data centers.

D. COMPARISON ANALYSIS
This section discusses energy-efficient data centers on the
basis of earlier research that explored the creation of an
RL VM migration framework by using MDP for migration,
GNN infrastructure embedding, and A3C optimization. The
key performance metrics, such as energy efficiency, total
migration time, downtime, and SLA compliance, are also
compared. Table 3 presents a summary of this comparative
analysis.

Table 3 shows how well the new MDP-based precopy/
postcopy hybrid VM migration framework outperforms the
four leading methods. In a previous study [9], a total migra-
tion time of 58.0 s, a downtime of 22.0 s, a SLA compliance
of 89%, and an energy efficiency of 88% were recorded.
The approach taken in [3] resulted in a migration time of
62.0 s, a downtime of 25.0 s, an SLA compliance of 90%,
and an energy efficiency of 85%, whereas that adopted
in [21] achieved a migration time of 60.5 s, a downtime of
24.1 s, an SLA compliance of 90%, and an energy efficiency
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TABLE 3. Comparison of center energy efficiency.

of 84%. Additionally, the heuristic approach used in a previ-
ous study [27] resulted in a migration time of 52.0 s with a
downtime of 20.0 s, a SLA compliance of 89%, and an energy
efficiency of 87%.

The framework developed in this study results in a total
migration time of 45.5 s, a downtime of 15.4 s, a SLA compli-
ance of 91%, and an energy efficiency of 91.4%. Compared
with the methods used in another previous study [27], this
framework can accelerate the migration process by 6.5 s,
reduce the downtime by 4.6 s, and improve SLA compli-
ance and energy efficiency by 2% and 4.4%, respectively.
These results confirm that the integration of GNN-based state
coding, A3C scheduling, and the dynamic selection of host
machines can significantly optimize the performance and
energy efficiency of VM migration.

E. FUTURE WORK
While the proposed GNN–A3C hybrid precopy/postcopy
migration framework has shown encouraging results in sim-
ulations, several directions remain to strengthen its practical
relevance. First, we plan to validate the approach on real
testbeds such as OpenStack with KVM/QEMU. Running
on actual clusters will expose the framework to hardware
heterogeneity, I/O contention, and real-world networking
effects that are not fully captured in the simulation. This step
provides stronger evidence of practical viability and helps
quantify potential deviations from the simulated outcomes.
Second, to better address multitenant environments and
highly dynamic workloads, we will investigate multi-agent
reinforcement learning (MARL) and transfer learning.
MARL enables cooperative decision-making among mul-
tiple agents, whereas transfer learning can reduce training
overhead by reusing knowledge from previously observed
workload patterns and infrastructure settings.

Third, we intend to extend the reward function such that
it is explicitly QoS aware. By incorporating latency and
throughput alongside downtime and energy, the migration
policy can be tuned to better preserve SLA guarantees.
A particular objective for future work is to increase SLA com-
pliance beyond the current results and approach or exceed
the 95% threshold that is generally expected for mission-
critical services. Alternative formulations of penalties and
bonuses will also be evaluated to examine their impact
on convergence and stability. Fourth, future modeling will
include additional dimensions such as storage I/O, network
latency, and security overheads. Considering these factors

will yield a more complete cost model and lead to policies
that more accurately balance energy efficiency, performance,
and operational constraints. Fifth, we will provide a formal
analysis of the computational complexity of the proposed
framework. Inference in the GNN increases approximately
in proportion to the number of nodes and edges in the cluster
graph, whereas the training cost of A3C increases with the
number of agents, training episodes, and per-step gradient
updates. We will quantify these costs in terms of both time
and memory and report empirical runtimes on clusters of dif-
ferent scales to demonstrate the scalability of the framework.

Finally, we will broaden the comparative evaluation to
include widely used reinforcement learning baselines such
as the DQN, PPO, and MADDPG. These additional com-
parisons will ensure fair benchmarking and highlight the
strengths and weaknesses of the proposed GNN-enhanced
A3C approach across different workload mixes and cluster
topologies. Together, these directions form a clear roadmap
for moving the framework from controlled simulations
toward production-ready environments while improving
robustness, fairness of comparison, and operational
relevance.

V. CONCLUSION
This work proposes a flexible system for live VM migration
that models the process as an MDP. A two-layer GNN is
employed to represent the state of the data center, and the
migration strategy is optimized using the A3C algorithm in a
hybrid precopy/postcopy framework. The evaluation results
confirm that the precopy phase accounts for approximately
66% of the total migration duration, with only 34% down-
time, an energy efficiency of 91.4%, a host efficiency of
80% at the data center level, and an improvement in SLA
compliance from 88.9% at the beginning of training to 92.8%
at convergence.

Because the study was conducted in a simulation environ-
ment with predefined network and storagemodels, real-world
factors such as storage variability, security overhead, latency,
and I/O consistency were not fully captured. To address
these limitations, future efforts will employ real testbeds that
include disk storage, I/O, and security features and evaluate
the framework with diverse workloads. Transfer learning
and multitenant MDP formulations will also be explored to
enhance adaptability. To estimate potential deviations from
practice, this study modeled the precopy duration as the
memory volume divided by the available network bandwidth
and the postcopy duration as the dirty-page rate multiplied by
the precopy duration divided by the same bandwidth. Using
the GWA-Bitbrains dataset, the results suggest that com-
pared with the baseline simulation, downtime may increase
by 10–15%, total migration time may increase by approxi-
mately 8%, and energy consumption may increase by 5–10%.
To mitigate these degradations, adaptive reward shaping and
service-quality-aware host selection are recommended.

As part of future work, we will (i) validate the framework
on OpenStack/KVM testbeds to capture real-system effects;
(ii) explore MARL and transfer learning to better support
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multitenant and dynamic workloads; (iii) design QoS-aware
reward shaping with the aim of approaching or exceeding
the 95% SLA compliance threshold; (iv) integrate storage,
network latency, and security costs into the migration model;
(v) provide a formal complexity analysis of the GNN+A3C
framework; and (vi) expand evaluations with additional RL
baselines (DQN, PPO, and MADDPG) to ensure fairer
benchmarking.
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