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Abstract Understanding spatial and temporal pat-
terns of river water quality over a multi-year period is
crucial for effective basin management and pollution
control. This study applies functional data analysis
(FDA) to evaluate monthly water quality index (WQI)
data from 16 monitoring stations across the Klang
River Basin, Malaysia, covering the period from 2020
to 2023, which spans both pre- and post-pandemic
conditions. By treating water quality index (WQI)
measurements as smooth functions over time, FDA
captures underlying trends and variations that are not
readily detected using classical statistical techniques.
Functional principal component analysis (FPCA)
reveals that the first component accounts for 97% of
the total variation, reflecting the dominant pattern
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in water quality over time, which is characterized
by relatively stable upstream conditions and gradual
deterioration downstream. The second and third com-
ponents capture seasonal fluctuations and short-term
disturbances, potentially linked to monsoonal cycles
and shifts in human activities during the pandemic.
Functional clustering based on FPCA scores groups
stations according to their temporal behavior, distin-
guishing upstream areas with stable conditions from
downstream areas experiencing greater variability.
Spatial interpretation of these clusters offers addi-
tional insight into localized pollution sources and
environmental stressors. Compared to classical PCA,
FDA provides a more detailed, curve-based under-
standing of time-dependent and location-specific
changes in water quality. The result underscore the
value of FDA in environmental monitoring, particu-
larly for detecting pre- and post-pandemic shifts, and
support its application in guiding adaptive and spa-
tially targeted management strategies for river basins.

Keywords Functional principal component
analysis - Spatio-temporal clustering - Water
quality trends - Monsoonal influence - River basin
monitoring

Introduction

River water quality is vital for environmental health
by sustaining biodiversity within aquatic ecosystems.
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However, rivers face significant threats from diverse
pollution sources, including the food and beverage,
chemical, semiconductor, and electronics industries
(Hampel et al., 2015; United Nations Environment
Programme 2008). Effective river system manage-
ment requires continuous monitoring of water qual-
ity parameters to identify trends, assess degradation,
and implement targeted conservation strategies (Azha
et al., 2023). In Malaysia, the number of manual and
automatic water quality monitoring stations increased
from 1064 in 2006 to 1383 in 2024 enabling more
comprehensive monitoring of river health across
various areas (Loi et al., 2022). Continuous river
monitoring is essential for identifying areas of water
quality degradation and understanding their sources
(Vega-Rodriguez et al. 2021).

Variations in river water quality from upstream to
downstream areas are influenced by both natural pro-
cesses and anthropogenic activities (Anh et al., 2023;
Zhao et al., 2020). Upstream areas typically have
cleaner water originating from forested catchments,
while downstream sections often experience declin-
ing water quality due to runoff, industrial discharge,
and wastewater effluents (Hamid et al., 2020). These
spatial differences highlight the interconnectedness
of river ecosystems and underscore the importance
of location-specific monitoring. In rapidly urbaniz-
ing countries like Malaysia, residential, commercial,
and industrial development significantly impacts
water quality (Mokhtar, 2023), while agricultural run-
off introduces pesticides, fertilizers, and sediments.
Understanding spatial patterns helps identify pollu-
tion hotspots and guides tailored mitigation strate-
gies. Meanwhile seasonal dynamics, which are often
influenced by environmental conditions and hydro-
logical cycles, significantly affect variations in water
quality (Ling et al., 2017). In the Klang River basin,
the Northeast Monsoon (November—March) results
in heavy rainfall and increased river flow, while the
Southwest Monsoon (May—September) is marked
by drier conditions, reduced flow, higher pollutant
concentrations, and stagnant conditions that deplete
oxygen levels (Islam et al., 2015; Ismail et al., 2023;
Nienie et al., 2017; Sidek et al., 2016). These mon-
soonal patterns introduce temporal variability that
must be considered in water quality assessment.

The combination of spatial and seasonal varia-
tion highlights the complexity of river water qual-
ity dynamics. Classical methods for assessing water

@ Springer

quality typically rely on statistical analysis of discrete
measurements collected at fixed time points, often
from a limited number of stations. Techniques such
as correlation, regression, and principal component
analysis (PCA) have been widely used to identify pol-
Iution sources and assess spatial variability (Barroso
et al., 2024; Mohamed et al., 2015; Mohammed et al.,
2022; Shan et al., 2021). While these methods pro-
vide valuable insights, they fall short in capturing the
continuous and dynamic nature of water quality pro-
cesses (Schreiber et al., 2022). For example, studies
by Othman et al. (2012) and Nasir et al. (2011) used
regression and cluster analysis to relate water quality
to urban and industrial activities, but were unable to
fully explain how pollutant levels fluctuate over time
due to weather or seasonal shifts.

Functional data analysis (FDA) provides a more
flexible alternative by treating water quality measure-
ments as continuous functions over time. As dem-
onstrated by Ramsay and Silverman (2005), FDA
enables the construction of smooth functional rep-
resentations from discrete observations, offering a
more natural way to model environmental processes
and uncover hidden patterns. FDA also allows for the
comparison of temporal trends across variables and
stations (Di Blasi et al., 2013; Muiiz et al., 2012;
Yan et al., 2015). Most prior studies have applied
classical statistical approaches such as PCA, regres-
sion models, or clustering to water quality data
(Mohammed et al., 2022; Schreiber et al., 2022), but
these approaches treat data points as isolated, often
overlooking temporal dependence, seasonal vari-
ability, or irregular sampling. As a result, important
features such as lag effects, cumulative changes, or
seasonal dynamics may go undetected. In contrast,
FDA accommodates site-specific trends and offers a
more holistic view of water quality dynamics. Func-
tional clustering, for example, groups stations with
similar temporal profiles, revealing shared pollu-
tion patterns and facilitating targeted interventions
(Gong et al., 2021; Mohd Ali et al. 2024). Studies by
Ariza et al. (2023), Haggarty et al. (2015), and Kande
et al. (2024) have shown that functional clustering
improves the interpretation of complex environmental
datasets by identifying consistent site characteristics
over time.

Functional principal component analysis (FPCA) is
a key tool within the FDA framework. FPCA decom-
poses functional data into orthogonal components
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that capture dominant modes of variation (Dona et al.,
2009; Gong et al., 2015; Karuppusami et al., 2022).
Several studies have used FPCA to analyze temporal
patterns in river water quality. For instance, Hender-
son (2006) employed FPCA to process water quality
data from multiple monitoring stations along a river,
revealing spatial patterns and identifying areas with
significant pollution. Similarly, Embling et al. (2012)
applied FPCA to study seasonal water quality man-
agement strategies, highlighting the method’s utility
in environmental contexts. This study presents the
first comprehensive application of FDA to river water
quality data in the Klang River basin, Malaysia. By
combining functional modeling with spatial inter-
pretation, this study contributes a novel approach for
understanding river water quality dynamics and sup-
ports adaptive monitoring and management strate-
gies under changing environmental conditions. This
study focuses on the Klang River basin in Malaysia,
utilizing monthly water quality data collected from
16 monitoring stations between 2020 and 2023. The
main aims are to transform discrete water quality data
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into smooth temporal functions using FDA, to apply
FPCA to identify dominant temporal variation pat-
terns and to cluster stations with similar water quality
behavior and investigate seasonal and spatial influ-
ences on these patterns.

Materials and methods
Study area and dataset

The Klang River basin is located in the central Pen-
insular Malaysia and encompasses the states of Sel-
angor and the Federal Territory of Kuala Lumpur. It
drains from Ulu Gombak to the river mouth in Port
Klang and covers about 1288 square kilometers of
catchment area. The basin consists of the main Klang
River and 11 tributaries, including Sg. Gombak, Sg.
Kerayong, Sg. Penchala, and Sg. Damansara. Water
quality in this basin is influenced by diverse land uses,
ranging from protected upstream forests to densely
urbanized downstream areas. Figure 1 shows the
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Fig. 1 Klang River basin map with water quality stations
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water quality monitoring stations located within the
Klang River basin. Most of the monitoring stations
are located in the middle stream of the river basin.
There are a total of 16 monitoring stations, which are
Stations 1K05, 1K06, 1K07, 1K08, 1K25, 1K45, and
1K46 located along Sg. Klang. Stations 1K17, 1K18
and 1K24 are located along Sg. Gombak while Sta-
tion 1K23 and 1K36 are situated along Sg. Ampang.
Stations 1K41 and 1K50 are located along Sg. Pen-
chala, while Stations 1K47 and 1K51 are located
along Sg. Kerayong and Sg. Damansara respectively.
The data considered consist of the monthly recorded
water quality status along the Klang River basin from
January 2020 to December 2023.

The water quality parameters measured at each
station include dissolved oxygen (DQO), biochemical
oxygen demand (BOD), chemical oxygen demand
(COD), total suspended solids (TSS), ammonia-
cal nitrogen (NH3NL), temperature, and pH. These
parameters are important to assess the quality status
of river water and are combined into the Water Qual-
ity Index (WQI) model developed by the Department
of Environment (DOE), Malaysia. The WQI is deter-
mined by calculating a weighted sum of six sub-indi-
ces for DO, BOD, COD, NH3NL, TSS, and pH, using
the official formulation provided by DOE, as shown
in Eq. 1.

Table 1 Sub-index calculations

Sub-index Value Conditions

parameter

SIDO 0 DO<8
100 DO>92
—0.395+0.030DO? — 8<D0O<92

0.00020DO?

SIBOD  100.4-4.23BOD BOD<5
108e-0:055BOD) _ o 1BOD BOD>5

SICOD  —1.33COD+99.1 COD<20
103e(-001575€0D) _ 9 04COD COD>20

SIAN 100.5-105AN AN<0.3
94e~0373AN _ 5 AN — 2| 03<AN<4
0 AN>4

SISS 97.5¢~0-0067655 4 (,05SS SS<100
71e70001688 _ 9 015SS 100 <SS < 1000
0 SS > 1000

SIpH 17.2-17.2pH +5.02pH? pH<5.5
—242+95.5pH - 6.67pH? 5.5<pH<7
—181+82.4pH — 6.605pH> 7<pH<8.75
536-77.0pH +2.76pH> pH>8.75

livestock drinking. However, water in Class IV is
suitable only for irrigation, and Class V is considered
polluted and cannot be used for any of the purposes

WQI = 0.225IDO + 0.19SIBOD + 0.16SICOD + 0.16S81SS + 0.15SIAN + 0.12SipH (D

Each sub-index is estimated using DOE’s best-fit
equations given in Table 1 and the final WQI ranges
between 0 and 100. The determination of WQI for
each location also allows for categorization based
on the National Water Quality Standard (NWQS)
(Department of Environment (DOE), 2019).

Based on DOE guidelines, WQI scores are
grouped into three categories which are clean
(80 <WQI<100), slightly polluted (60 <WQI<80),
and polluted (0<WQI<60). The WQI is fur-
ther classified into five major classes: Class I
(92.7<WQI<100.0), Class II (76.5<WQI<92.7),
Class HI  (51.9<WQI<76.5), Class IV
(31.0<WQI<51.9), and Class V (0<WQI<31.0).
Practically, no treatments are needed for Class I
as the water is very clean and safe for direct drink-
ing. Water in Class II requires only a conventional
treatment, while Class III water can still be used for

@ Springer

listed in other classes. While widely used, this WQI
has limitations as it does not include other important
pollutants such as nutrients, heavy metals, or micro-
bial indicators, and reducing water quality to a single
index may overlook site-specific pollution issues and
does not fully reflect ecological healths (Wong et al.,
2020). All data used in this study were obtained from
the Department of Environment, Malaysia.

Functional data transformation

The discrete water quality index data can be trans-
formed into smooth functions or curves using
smoothing techniques (Ramsay & Silverman, 2005).
Let the discrete observations of water quality index
data be denoted by x;(7;), where i = 1, ..., n represents
each monitoring station located at spatial coordi-
nates s; and j = 1,...,T represents each observation
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time point. For each station i, the set of observation
X;(t;) is transformed into a smooth function or curve
denoted by X(s;,7), defined on a continuous time
domain ¢ € [1,T1], using a smoothing technique based
on Fourier basis functions. To this end, suppose that
the observations are fitted using the regression model:
x(4) =yi(t;) +ezi=1,....nj=1,...T Q)
where Ejj denotes the random error. The smooth func-
tions y;(¢) are represented as linear combinations of K
independent basis functions ¢, (?):

ORI XORTIING) 3)

k=1

In this study, Fourier basis functions were
employed due to periodic nature of the water qual-
ity data, and the optimal number of basis functions
(smoothing parameter) was determined using the
Generalized Cross-Validation (GCV) criterion (Ram-
say & Silverman, 2005; Ullah & Finch, 2013).The
smoothed functional data X;(¢) for each station i are
thus given by:

A K A~
X0 =50 =, am,rell,T], (4)

where the coefficients ¢, are estimated by minimizing
the sum of squares errors

SSEG) = X (1) = vi(5), ©)

This procedure yields a collection of smooth
curves {X(s;,7)}, each indexed by the spatial loca-
tion s; of the monitoring station. These spatially-ref-
erenced functional data are subsequently analyzed to
investigate both temporal patterns and spatial varia-
tion in water quality across the region. The functional
data processing was performed using the fda package
in R (Ramsay et al., 2009).

Functional principal component analysis and spatial
characterization

To investigate the main modes of variation in the
smoothed water quality functions across stations
and explore spatial patterns, a two-stage approach
was employed. Let X(s;,7) denote the smoothed
water quality function at monitoring station i,
observed over a continuous time domain ¢t € [1,7],

and located at spatial location s;. For notational
simplicity in the FPCA formulation, we denote
this as X;(¢), where each index i corresponds to a
unique station location s;. In the first stage, FPCA
was applied to the set of functions {X;(1)}’_,, where
FPCA decomposes each function into a mean func-
tion and a series of orthogonal functional principal
components (fPCs), capturing dominant temporal

patterns in the data:

X0 = ut)+ Y G0, ©6)

where u(r) is the overall mean function across all
stations, ¢,,(¢) are the orthonormal eigenfunctions
(fPCs), and &;,,, are the fPCs scores for station i, repre-
senting the contribution of the m-th component to the
variation in X;(f). These scores are computed as the
inner product:

Sim = / Xi(Ng,,(ndt @)

The eigenfunctions ¢,,(f) often interpreted as
weighted functions, define how different parts of the
time domain contribute to the principal modes of var-
iation in the data. The first fPC score for station i is
then calculated as:

i = / Xi(©) — ) (ndt ®)

The first fPC is determined by maximizing the var-
iance of these scores under the constraint that the
squared norm of the weighted function ’5]2’ satisfying

f flz(t)dt = 1, and all subsequent components orthog-
onal to the previous ones (Ramsay & Silverman,
2005). All computations were carried out using the
fda package in R.

In the second stage, the leading fPC scores &,
were analyzed across space to explore spatial varia-
tion. Each score represents how strongly a station’s
WQI curve aligns with the temporal pattern captured
by the corresponding fPC. Positive scores indicate
expression of the pattern in the same direction as
the fPC, while negative scores indicate the oppo-
site tendency, and scores near zero suggest behavior
close to the mean WQI profile. The variation of these
scores across monitoring stations highlights regional
similarities and contrasts in WQI dynamics, possibly
reflecting environmental or anthropogenic influences.
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Spatial functional clustering

To identify spatial clustering of monitoring stations
with similar temporal water quality behaviors, spa-
tial functional clustering was performed based on the
functional principal component (fPC) scores derived
in the previous stage. These scores, {&;,}, serve as
low-dimensional representations of the smoothed
water quality functions X (s,-,t), effectively captur-
ing the dominant temporal variation at each station.
By clustering stations using their leading fPC scores
which is the first two components, we aim to group
locations that exhibit similar temporal profiles in
water quality dynamics. K-means clustering method
was applied to the fPC score matrix, and the opti-
mal number of clusters was determined using elbow
method. The resulting clusters were then mapped
spatially to interpret regional patterns and investi-
gate potential environmental or anthropogenic factors
influencing the water quality profiles across stations.

Results and discussion
Functional representation of water quality index data

Monthly river water quality index (WQI) values were
smoothed into continuous functional curves for each
monitoring station using a Fourier basis representa-
tion. Figure 2 displays the resulting functional data,
where each curve represents the temporal water qual-
ity trend of a station from 2020 to 2023. The WQI
values range between 44 and 95, with the overall
mean function fluctuating around a WQI of 72. Sev-
eral stations consistently deviate from the mean
curve, indicating local variability in seasonal trends
or episodic events. Among these, stations 1K24 (Sg.
Gombak), 1K45 (Sg. Klang), 1K50 (Sg. Penchala),
and 1KS51 (Sg. Damansara) recorded WQI values per-
sistently above the mean. These stations specifically,
Station 1K24 (Sg. Gombak) and 1K45 (Sg. Klang)
are located.

near protected upstream catchments, including
water supply dams such as Batu Dam and Klang
Gates Dam, and appear less exposed to anthropo-
genic stressors. This suggests effective manage-
ment in these areas, warranting continued protection
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and monitoring to preserve their good water quality

status. (fPC1-fPC3), with eigenvalues, percentage of variance
Conversely, most downstream stations recorded explained. and cumulative variance
functional curves below the mean. Station 1K47 Station fPCl fPC2 fPC3
Sg.\lx(]er;lyonlg) dlsl;l)laye(li1 the l(l)lwest an mqstdun;t}il— KOS 4158 131 5381
e WQI va ﬁes t.roug out el.stu y p;c:lo - The K06 3567 754 133
repeatec(i1 de(.: meslm .waterlqua ity at. t 1sh st.at;lon K07 7856 140 377
occurref ?t 1r;egl(; ar 1nt§1£)\{a s., suggf‘:stmg t e“m~ u- 1KO08 ~19.06 0.69 797
ence o Tgca 1?16 » possibly mterrrliltte;lt, po uFlon K17 _4976 1033 148
slourc.:es. ese u.ctualtlons warrant furt e.rllnvcilstlga— 1K18 11.40 ~8.79 —430
tlpn into surrounding land use and potential pollutant K23 —49.02 081 500
discharge events. 1K24 94.46 282 —142
. o . 1K25 ~29.03 —0.14 212
Spa.tlal and temporal variation among water quality 1K36 550 1280 3.09
stations 1K41 -55.51 858 1212
F . | ncinal vsi FPCA 1K45 97.67 0.69 —0.21
unctional principal component analysis (FPCA) K46 49.69 380 11.62
was use.d to decompose the smoot.he.d WQI curves K47 11846 12.61 119
1T1t0 major modes of temporal varlathn across .sta— 1K50 76.92 13.48 ~0.75
tlf(l))n. Flgureh3 presen.ts the ﬁr?; three weight fl]fncthns K51 90.99 264 147
(. C§), each capturing a different aspect of varia- Eigenvalues 3%94.50 5348 2042
tion in WQI from January ZOZQ to December 2023.. % Variance 9718 133 0.73
Table 2 reports the correspon.dlng elgenvalues, vari- Cumulative variance 9718 98.52 9925
ance explained, and cumulative variance. The first
functional principal component (fPC1) explains
97.2% of the total variation, indicating it captures
the dominant pattern of temporal differences in
WOQI across all stations. This large proportion arises
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Fig. 3 The first three functional principal component curves of the WQI

Table 2 The fPCs scores for the first three components
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because aggregating across stations emphasizes the
common seasonal hydrological cycle, which strongly
governs water quality fluctuations in the basin. So,
fPC1 mainly reflects the monsoonal signal that under-
pins variation basin-wide, while local differences are
expressed in higher-order components. The shape of
fPC1 highlights that the biggest differences in water
quality between stations occurred around January
2021. This period matches the peak of the North-
east Monsoon, when downstream stations especially
1K47 (Sg. Kerayong) showed strong changes in WQI.
These changes are likely influenced by increased run-
off from urban areas, contributing to episodic pollu-
tion. In contrast, upstream stations displayed more
stable trends, likely due to their relative insulation
from anthropogenic stressors. In addition, a notable
trough in fPCI appears in October 2021, suggest-
ing minimal differences among stations during this
period, possibly due to transitional weather condi-
tions between monsoon phases. This uniformity may
reflect a temporary hydrological balance, where pol-
lution dispersion and dilution effects are more evenly
distributed across the basin.

The second component (fPC2), accounts for
approximately 2% of total variation and reveals sub-
tler temporal dynamics. It shows positive values from
January 2020 to early 2022, followed by negative val-
ues until the end of 2023. This trend suggests a shift

in overall water quality conditions over time. The
positive phase likely reflects improved water qual-
ity during the COVID-19 pandemic, when reduced
industrial and human activity may have contributed
to temporary reductions in pollutant loads. The sub-
sequent decline could be linked to resumed devel-
opment and anthropogenic activities, aligning with
easing pandemic restrictions. The third component,
(fPC3), explains about 0.7% of the variation and dis-
plays a periodic pattern with peaks in May 2020 and
May 2022, and troughs in March 2021 and May 2023.
These fluctuations are likely associated with seasonal
hydrological shifts, including the inter-monsoon
periods. The observed pattern may reflect increased
pollutant concentrations during drier periods and
dilution effects during wetter months. To support
interpretation, perturbation plots in Fig. 4 visualize
how each component alters the mean function. The
perturbation refers to visualizing how the mean WQI
curve changes when a multiple of an fPC is added
(positive direction) or subtracted (negative direction).
This helps illustrate the characteristic temporal pat-
tern captured by each component. The fPC1 pertur-
bation (Fig. 4a) shows a strong, consistent trend in
water quality variation. fPC2 (Fig. 4b) highlights dif-
ferences between pre- and post-2022 periods, while
fPC3 (Fig. 4c) illustrates subtle, cyclic deviations
potentially tied to seasonal rainfall patterns.

Fig. 4 Perturbation plots of the mean WQI curve by the first three functional principal components: (a) fPCI1, (b) fPC2, (c) fPC3.
Mean WQI (__ line), positive perturbation (++ + line), negative perturbation (-—- line)
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Table 2 presents the fPC scores for each station.
These scores quantify how strongly each station’s
water quality profile deviates from the basin-wide
mean curve in the direction of a given fPC. Unlike
the perturbation plots in Fig. 4, which visualize
how the mean curve shifts when adding or subtract-
ing multiples of an fPC, the station scores represent
the actual magnitude and direction of each station’s
deviation from that mean pattern. For fPC1, stations
1K45, 1K24, 1K50, and 1K51 scored highest, align-
ing with overall higher WQI levels and more stable
trends which shows the characteristics of upstream
or well-managed catchments. Conversely, station
1K47 recorded the most negative score (—118.46),
indicating a strong deviation in the opposite direc-
tion of fPC1, thereby reinforcing its status as the most
degraded and variable station.

For fPC2, positive scores at stations 1K50, 1K47,
and 1K41 suggest a pattern of improved water qual-
ity during the early part of the study, followed by
a decline which was consistent with the COVID-
19 timeline. This pattern highlights the temporary
improvement in water quality conditions during
the early lockdown period, followed by a rebound
of degradation as economic and social activities
resumed post-2020. Such findings align with other
studies reporting the short-lived nature of water qual-
ity recovery during the pandemic, underscoring that
reductions in pollution were largely incidental rather
than the result of structural changes in catchment
management (Najah et al., 2021). Negative scores
at 1K36 and 1K17 suggest the inverse trend, poten-
tially due to local differences in land use response or
resilience. Regarding fPC3, stations 1K41 and 1K46
recorded the highest scores, indicating stronger sea-
sonal or cyclical water quality variation, possibly due
to recurring discharges or runoff events. Meanwhile,
stations such as 1K08 and 1KO05 recorded strongly
negative scores, suggesting reduced or inverse sea-
sonal effects.

The biplot in Fig. 5 displays the spatial distribution
of stations based on their fPC1 and fPC2 scores. Sta-
tions located in the first quadrants (positive fPC1 and
positive fPC2) such as 1K45, 1K24, 1K50 have both
better and more stable water quality patterns over
time (high fPC1) and a temporal trajectory of initial
improvement followed by decline (positive fPC2).
In contrast, station 1K47 appears in the third quad-
rant (negative fPC1 and negative fPC2), reflecting

both poorer and unstable water quality and an oppo-
site temporal trend, likely influenced by downstream
urban pollution.

Spatial clustering based on functional scores

To further explore spatial patterns in river water qual-
ity, k-means clustering was applied to the first two
functional principal component (fPC) scores. This
approach grouped stations based on similarities in
their temporal water quality trends, resulting in three
distinct spatial clusters, as shown in Fig. 6. Cluster 1
includes upstream stations such as 1K24 (Sg. Gom-
bak) and 1K45 (Sg. Klang), which had high positive
fPC1 scores. These stations consistently exhibited
higher WQI values and more stable patterns, sug-
gesting minimal disturbance and better catchment
management. Cluster 2 represents midstream stations
with moderate fPC1 and fPC2 scores, indicating more
variable water quality likely influenced by mixed land
uses and transitional catchment conditions. Cluster
3 comprises downstream or urban-influenced sta-
tions such as 1K47 (Sg. Kerayong), which recorded
strongly negative fPC1 scores, reflecting persistently
degraded water quality and greater fluctuation over
time.

Consistent with these patterns, classification of
WQI scores using the National Water Quality Stand-
ards (Department of Environment (DOE), 2019)
shows that most Cluster 1 stations fall into Class II
(Clean), suitable for recreational use and aquatic life
protection. Cluster 2 stations fluctuate between Class
IT and Class IIT (Slightly Polluted), reflecting tran-
sitional conditions shaped by land use and seasonal
effects. Cluster 3 stations are predominantly classified
as Class I (Slightly Polluted to Polluted), underscor-
ing persistent anthropogenic pressures and reduced
suitability for sensitive uses. The spatial distribution
of clusters corresponds closely with known catch-
ment characteristics. Stations in Cluster 3 are located
in densely populated or industrial zones, where sur-
face runoff and point-source pollution are more likely.
In contrast, Cluster 1 stations are found in relatively
undisturbed or forested regions, reinforcing the influ-
ence of land use and human activity on river health.
By integrating FPCA with clustering, this analysis
provides a clearer understanding of how how tempo-
ral water quality dynamics vary spatially across the
Klang River Basin. The distinct grouping of stations
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Fig. 5 The biplot of fPCs scores

emphasizes the importance of localized monitoring
and targeted interventions, particularly in downstream
areas where water quality remains vulnerable to urban
pressures.

In this study, FDA demonstrates strong poten-
tial for capturing continuous temporal dynamics and
identifying dominant modes of variation in river
water quality, which may be less apparent with tra-
ditional statistical techniques (Ramsay & Silverman,
2005). While machine learning approaches such as
random forests and neural networks offer predictive
power for classification and forecasting (Costa et al.,
2024), and remote sensing tools enable large-scale

@ Springer
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monitoring with high spatial coverage (Zhang et al.,
2024), FDA provides a more interpretable framework
for tracing the evolution of water quality curves over
time. Instead of competing with emerging methods,
this analysis complements them and underscores the
FDA'’s role in generating spatio-temporal insights to
aid in sustainable river basin management.

Conclusion

This study applied FDA to examine spatio-temporal
pattern of river water quality in the Klang River basin
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Fig. 6 Cluster Map of Functional WQI Data

from 2020 to 2023. By treating monthly WQI data
as smooth temporal functions, FDA allowed a more
comprehensive assessment of water quality dynamics
compared to traditional methods. The results showed
that upstream stations, particularly those located near
water supply dams, maintained consistently good
water quality. In contrast, downstream stations exhib-
ited greater variability, particularly during monsoon
periods, reflecting stronger anthropogenic and hydro-
logical influences. The first functional principal com-
ponent, fPC1 accounted for 97% of the total variation
and highlighted key periods such as January 2021
when inter-station differences were most pronounced.
The second and third components revealed subtler
patterns, including shifts that aligned with pandemic-
related activity changes, showing improvements dur-
ing the early COVID-19 restrictions, followed by
a decline as economic and social activities resumed

alongside recurring seasonal fluctuations. Using the
scores from the first three fPCs, the 16 stations were
grouped into three spatial clusters based on similar
water quality patterns. Cluster 1 included upstream
stations with stable, good-quality water. Cluster 2
represented midstream stations with moderate but
variable conditions, while Cluster 3 encompassed
downstream stations characterized by poorer and
more unstable water quality, often in urbanized areas.

While this study offers valuable insights into tem-
poral and spatial patterns of river water quality, it is
limited by the relatively small number of monitor-
ing stations and its focus on a single river basin. In
addition, the classification of water quality relied
on the existing WQI criterion, which may not fully
capture context-specific thresholds. Future studies
could refine or validate this framework to enhance its
robustness. Moreover, the clustering relied on scalar

@ Springer



1198 Page 12 of 14

Environ Monit Assess (2025) 197:1198

FPCA scores, which do not fully capture the spatial
structure or flow-connected dynamics of river net-
works. Future work could explore functional spa-
tial clustering techniques, incorporate hydrologi-
cal connectivity, or apply the approach at broader
spatial scales to enhance generalizability and policy
relevance.

Overall, this FDA-based approach provided clearer
insight into both temporal and spatial variation in
river water quality. It also offers a practical tool for
environmental monitoring and management by sup-
porting early detection of emerging pollution trends
and helping prioritize interventions in vulnerable
locations. The findings emphasize the importance of
protecting upstream sources, mitigating downstream
pollution, and incorporating seasonal variability into
long-term river basin management strategies.
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