

Back

A Review on the Mechanisms, Applications, and Clinical Trials of Advanced Technologies in the Transdermal Drug Delivery System

Current Pharmaceutical Biotechnology • Review • 2025 • DOI: 10.2174/0113892010318519240813053106 Abdul Aziz, Afina Faqkira^a; Beh, Yun Qing^a; Farahiyah, Iffah Izzati^a; Azmir, Soraya Syahrul^a; Kee, Phei Er b; +2 authors ^a Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Selangor, Cyberjaya, 63000, Malaysia Show all information 1 70th percentile Citation 🔼 0.51 Full text ∨ Export \vee Save to list Document Cited by (1) References (144) Similar documents

Abstract

Impact

Transdermal Drug Delivery Systems (TDDS) have emerged as a promising method for administering therapeutic agents due to their non-invasive nature and patient-friendly approach. However, the effectiveness of this system is limited to drugs with specific physicochemical properties that allow for transdermal delivery as the skin acts as a barrier. To address this limitation, researchers have been exploring alternative approaches to improve drug delivery through the stratum corneum, ensuring consistent drug distribution at controlled rates. Third-generation delivery systems have

been developed to facilitate the delivery of various drugs across the skin barrier by disrupting the stratum corneum while protecting deeper skin tissues from injury. This review has explored various approaches that have gained popularity in enhancing drug delivery through TDDS, including microneedle-mediated, nanoparticle-enabled, thermal ablation-enhanced, and electroporation-driven delivery systems. It has discussed the mechanisms of drug delivery and potential applications for different types of drugs and detailed the clinical studies. This review has also highlighted the significant advancements in TDDS, offering valuable insights into both the pharmaceutical field and biomedical applications. The continued exploration and refinement of these delivery systems, particularly with the incorporation of Internet-of-Things (IoT) technology, Artificial Intelligence (AI), and machine learning, hold promise for expanding the scope of therapeutic interventions. Bentham Science Publishers

Author keywords

electroporation; microneedles; nanoparticles; thermal ablation; third-generation delivery systems; Transdermal drug delivery system

Indexed keywords

EMTREE drug terms

nanoparticle

EMTREE medical terms

artificial intelligence; drug administration; drug delivery system; drug distribution; electric potential; electroporation; human; internet of things; machine learning; microneedle; nonhuman; pharmaceutics; physical chemistry; review; stratum corneum; thermal ablation; transdermal drug delivery system

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Ministry of Higher Education, Malaysia See opportunities by MOHE ✓	FRGS/1/2021/SKK0/ UOC/02/2	МОНЕ

Funding sponsor Funding number Acronym

See opportunities by MOHE **↗**

Funding text

The work was supported by the Ministry of Higher Education Malaysia (MOHE) under the Fundamental Research Grant Scheme (FRGS) (grant no.: FRGS/1/2021/SKK0/ UOC/02/2).

Corresponding authors

Corresponding K.B. Liew

author

Affiliation Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Selangor,

Cyberjaya, 63000, Malaysia

Email address liewkaibin@cyberjaya.edu.my

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Funding details

Corresponding authors

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions
☐ Privacy policy ☐ Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. ⊅, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies \supset .

