
Academic Editor: Gianluigi Ferrari

Received: 24 February 2025

Revised: 14 April 2025

Accepted: 16 April 2025

Published: 21 April 2025

Citation: Atoum, M.S.; Alarood, A.A.;

Alsolami, E.; Abubakar, A.; Hwaitat,

A.K.A.; Alsmadi, I. Cybersecurity

Intelligence Through Textual Data

Analysis: A Framework Using

Machine Learning and Terrorism

Datasets. Future Internet 2025, 17, 182.

https://doi.org/10.3390/fi17040182

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Cybersecurity Intelligence Through Textual Data Analysis:
A Framework Using Machine Learning and Terrorism Datasets
Mohammed Salem Atoum 1,*, Ala Abdulsalam Alarood 2 , Eesa Alsolami 2 , Adamu Abubakar 3 ,
Ahmad K. Al Hwaitat 1 and Izzat Alsmadi 4,5

1 Department of Computer Science, The University of Jordan, Amman 11942, Jordan; a.hwaitat@ju.edu.jo
2 College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia;

aasoleman@uj.edu.sa (A.A.A.); eaalsulami@uj.edu.sa (E.A.)
3 Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia;

adamu@iium.edu.my
4 Department of Computing, Engineering and Mathematical Sciences, Texas A&M University,

San Antonio, TX 78224, USA; ialsmadi@tamusa.edu
5 Department of Computer Information Systems, The University of Jordan, Aqaba 77110, Jordan
* Correspondence: m.atoum@ju.edu.jo

Abstract: This study examines multi-lexical data sources, utilizing an extracted dataset
from an open-source corpus and the Global Terrorism Datasets (GTDs), to predict lexical
patterns that are directly linked to terrorism. This is essential as specific patterns within a
textual context can facilitate the identification of terrorism-related content. The research
methodology focuses on generating a corpus from various published works and extracting
texts pertinent to “terrorism”. Afterwards, we extract additional lexical contexts of GTDs
that directly relate to terrorism. The integration of multi-lexical data sources generates
lexical patterns linked to terrorism. Machine learning models were used to train the dataset.
We conducted two primary experiments and analyzed the results. The analysis of data
obtained from open sources reveals that while the Extra Trees model achieved the highest
accuracy at 94.31%, the XGBoost model demonstrated superior overall performance with
a higher recall (81.32%) and F1-Score (83.06%) after tuning, indicating a better balance
between sensitivity and precision. Similarly, on the GTD dataset, XGBoost consistently
outperformed other models in recall and the F1-score, making it a more suitable can-
didate for tasks where minimizing false negatives is critical. This implies that we can
establish a specific co-occurrence and context within the terrorism dataset from multiple
lexical data sources in effectively identifying certain multi-lexical patterns such as “Sui-
cide Attack/Casualty”, “Civilians/Victims”, and “Hostage Taking/Abduction” across
various applications or contexts. This will facilitate the development of a framework for
understanding the lexical patterns associated with terrorism.

Keywords: cyber intelligence; terrorism; machine learning

1. Introduction
According to the traditional integrative framework, language consists at least of

vocabulary, syntax, and semantics [1]. During the past 50 years, most of the generative work
in corpus linguistics has been devoted to studying the relation between vocabulary and
syntax; semantics has been invoked only at the semantic/syntactic interface, traditionally
via rules such as passive and nominalization [2]. It is, therefore, interesting to understand
a new mode of rich lexical correspondence that has rarely been modeled explicitly in
corpus linguistics work. Extracting lexical patterns is a difficult task and one that has rarely
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been addressed. While existing work endeavors to resolve pronouns, word hypernymy,
or phrasal verbs, some even attempted to address the full extent of fine-grained lexical
correspondences necessary for a truly predictive model [3].

Text classification is one of the important tasks in Natural Language Processing (NLP),
which deals with a variety of genres such as categorizing news articles, deciding spam or
non-spam emails, identifying the sentiment orientation of product reviews, determining
the genre of a movie based on its plot summary, and predicting the developmental level
or literary style of free-written children’s essays [1,2]. For predictive modeling with target
labels such as news topics, spam, sentiment, and movie genres, the features used in
the study are the word unigrams and bigrams between lexical items in a sentence or
document [4]. Additionally, bag-of-words are used, and the document is represented
through histogram-like statistics of lexical items—in other words, frequency [5]. The target
labels are generated or assessed by human coders, and inter-coder evaluations are applied
to the target labels based on the evaluations of human coders who judge each target
label [1].

The paper’s core objective is to leverage textual data analysis to identify and predict
terrorism-related lexical patterns. This has a direct connection to the internet, as much of
the data analyzed (e.g., social media posts, news articles, blogs) are sourced from online
platforms. The internet serves as a vast repository of unstructured textual data, which are
increasingly being used by terrorist organizations for communication, recruitment, and
propaganda. By analyzing these data, the framework proposed in the paper can help in the
early detection of potential threats, thereby enhancing cybersecurity intelligence.

The internet is the primary medium through which terrorist organizations disseminate
information, communicate, and recruit members. The paper’s framework can be applied
to monitor and analyze online content in real-time, providing a proactive approach to
counterterrorism. This is particularly relevant in the context of the Future Internet, where
the volume of data generated online is expected to grow exponentially, necessitating
advanced tools for data analysis and threat detection.

The framework can be integrated into cybersecurity systems to monitor and analyze
online communications for signs of radicalization or terrorist activity. This is crucial for
preventing cyberattacks that may be orchestrated by terrorist groups, such as hacking, data
breaches, or the spread of malicious content.

Owing to the great success of distributed word representation, distributed word
representations along with other relevant features were used as multiple types of word
embedding and were shown to positively contribute to several NLP tasks such as sentiment
classification, rhetorical analysis, and predicting the education status of children’s essays to
word embedding algorithms [6,7].

Among the studies associated with terrorism, the structure and dynamics of alliances
among terrorist organizations have been emphasized, utilizing complex network theory
to analyze the relationships and cooperation patterns between these groups [8]. This
pertains to the evolution of networks and the identification of influential groups within
them. Complex network theory facilitates the comprehension of terrorist alliance networks
derived from empirical evidence. Hu et al. [9] identified the pivotal entities inside terrorist
alliance networks, whose elimination or disruption would significantly affect the network’s
structure and performance. Certain terrorist organizations can be recognized as pivotal
nodes within the network, signifying their role as main connectors or hubs within the
alliance. The historical progression of terrorism into specific phases, employing a time
series-based methodology for complicated network analysis, is essential [10]. This will
facilitate an understanding of the evolution of terrorist networks and methods across time,
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offering insights into the adaptive characteristics of these groups and delineating several
epochs of terrorism.

Considering that terrorism is of interest to researchers, and given that its predictions
have been far from accurate, coupled with the frustration of slow and effective responses,
it is often ultimately characterized by ‘boots on the ground’ [11]. This frustration is partic-
ularly relevant in the ‘information age’. That is why this current study establishes social
connections and online behavior that would be able to harness some predictive capability.
The justification of this dwells on the fact that studies on terrorism emanating from social
and cognitive psychology and on multi-agent killing and other intercultural conflicts have
also shown that the individual and situational determinants of behavior are associated
with information and communication technology. To make the discriminating elements of
this evident for the development of predictive models that look solely at terrorism is an
important antecedent. Language is an important mark and record of human cognition. In
interventions, the use of language has a marked impact on changing behavior [12]. Thus,
there has been a move to data mine the web as a source of predictive capability, and the
same applies to counterterrorism. That is why this paper contributes in the following ways:

• The research demonstrated that co-occurrence is evident, as the “lexical patterns”
anticipated within any textual context exhibit similarities. Subsequently, it developed
a synthesis of multiple lexical data sources related to terrorism and generated various
multi-lexical data sources to evaluate their applicability.

• The research suggests that the Extra Trees model achieved the highest predictive
accuracy for lexical patterns in the context of terrorism-related text prediction. This
was the case when the model was implemented. This suggests that there is the
possibility of establishing a different co-occurrence and context inside the terrorist
dataset that is produced from a variety of lexical data sources, which would make it
easier to identify particular multi-lexical elements.

• The research contributes to various applications by establishing a framework for com-
prehending the lexical patterns linked to terrorism from a law enforcement viewpoint.
Early detection facilitates a strategy to undermine individuals or groups conversation-
ally and employ ‘soft’ measures to diminish their potential for radicalization.

• The Future Internet is expected to be characterized by the proliferation of connected
devices, the Internet of Things (IoT), and the generation of massive amounts of data.
The paper’s framework aligns with the vision of the Future Internet by providing
a predictive analytics tool that can handle large-scale data and generate actionable
insights. Specifically, the paper’s use of machine learning models for predictive
analytics is highly relevant to the Future Internet, where the ability to predict and
prevent threats will be crucial. The framework can be extended to analyze data from
IoT devices, social networks, and other connected systems, providing a comprehensive
approach to threat detection and prevention. Similarly, the Future Internet will see the
emergence of new technologies such as 5G, edge computing, and artificial intelligence
(AI). The paper’s framework can be adapted to leverage these technologies, enabling
faster and more efficient analysis of textual data. For example, edge computing
can be used to process data locally, reducing latency and improving the speed of
threat detection.

This paper consists of six sections, structured as follows: This current section serves as
the introduction and summary, detailing the research problem, study aims, contributions,
and justification. Section 2 presents the previous related research. Section 3 presents
the research methodology. Section 4 presents the discourse and postulations regarding
the findings. Section 5 finishes the research. This document consists of seven sections,
structured as follows: This section serves as the introduction and summary, detailing the
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research problem, study aims, contributions, and rationale. Section 2 delineates the research
technique. Section 3 delineates the experimental findings. Section 4 delineates the discourse
and premises of the findings. Section 5 finishes the research.

2. Related Work
Studies on Terrorism and Linguistics Research on terrorism are comprehensive, span-

ning all domains of social sciences and encompassing interdisciplinary methodologies [13].
Numerous studies have investigated the methods by which terrorist organizations convey
messages to their adherents and to the broader population. The arrangement of words
may be significant in certain settings, while their co-occurrence may hold greater influence
in others [14]. A keywords summary involves linking each document to a compilation
of semantically significant and relevant terms derived from its content [15]. In terrorism
research, controversy associated with defining terminology creates impediments to conduct-
ing analysis. The accurate use of terms is of the highest importance, as it might otherwise
lead to incorrect analyses and incorrect conclusions. In recent years, special attention has
been paid to examining terrorism-related terms and to studying their variety. In many
cases, the definition of a term connected with terrorism can be influenced by research or
a certain experience [16]. As a result, the definition largely depends on an assessment of
the psychological, emotional, and/or subjective consequences anticipated by persons or
parties utilizing a term associated with terrorism within a political or social context. A
relevant assessment today is vital because of the radical changes that have occurred in the
political world.

The criterion for extracting these phrases may rely on many properties, including their
frequent occurrence within the document’s content or their association with the document’s
classification into specified categories [17]. This framework can be seen as a document
summary that aids in text organization and facilitates activities such as automatic document
classification, text categorization, document clustering, and information retrieval [18].
It may also aid in analyzing the generated corpus, yielding more dependable findings
regarding the subjects and the target audience [19].

Jin et al. [19] presented a feature selection methodology for text categorization utilizing
the absolute deviation factor. The paper employs this strategy to analyze the significance
of particular elements in text data, quantifying variances to pinpoint features that sub-
stantially enhance classification accuracy. The strategy effectively improved classification
performance by eliminating irrelevant or low-impact features, illustrating that absolute
deviation factor-based feature selection can augment the accuracy and efficiency of text
classification models.

Song et al. [20] examined the correlation between gold prices and terrorism, assessing
whether gold functions as a safe-haven asset for risk aversion or as a financial resource
for financing terrorist actions. The authors employ econometric analysis to investigate the
influence of terrorist attacks on gold price volatility. The results indicate that gold serves
as a risk-averse investment in times of uncertainty and may also function as a funding
source for terrorist organizations. Terrorist acts were associated with transient surges in
gold prices, suggesting that gold serves a dual function in relation to terrorism.

Xiong et al. [21] introduced the XRR model, a technique for extreme multi-label text
classification. The technique integrates candidate retrieval (finding pertinent labels for a
specific text) with deep ranking (arranging these labels according to relevance), utilizing
deep learning to handle extensive quantities of potential classifications. The XRR model
markedly enhanced classification accuracy for datasets with large label sets, surpassing con-
ventional methods. This strategy proved very efficacious for applications with texts linked
to several nuanced labels, such as recommendation systems and document categorization.
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Chuang et al. [22] utilized spatial and temporal analysis to investigate the impact
of alliances and rivalries among terrorist organizations, including al-Qaeda and ISIS, on
the frequency and geographical distribution of attacks. The authors utilize statistical
modeling to discern trends in near-repeat terrorist action. The research revealed that
regional alliances and rivalries considerably influence patterns of terrorist attacks. Alliances
resulted in concentrated assaults in certain areas, whereas rivalry frequently scattered attack
sites, underscoring the significance of inter-group dynamics in comprehending patterns of
terrorist action.

Song et al. [23] employed time-varying causality analysis to examine the correlation
between terrorist incidents and variations in oil prices. The article analyzes data over a
designated timeframe, investigating the extent and manner in which terrorist incidents
influence oil price volatility. The research revealed a varied correlation, wherein terrorist
strikes occasionally induce increases in oil prices. This association varies over time, indicat-
ing that although terrorism can affect oil prices, this effect is inconsistent and contingent
upon certain geopolitical circumstances.

Tolan and Soliman [24] perform an experimental assessment of multiple categoriza-
tion systems to evaluate their efficacy in forecasting terrorism-related incidents. They
evaluate methods such as decision trees, support vector machines, and neural networks
on terrorist datasets. Neural networks exhibited superior performance in terrorist predic-
tion, with greater accuracy than alternative methods. The research indicates that machine
learning may serve as an effective instrument for predicting terrorist attacks, facilitating
preemptive actions.

Hu et al. [25] employed quantitative research to categorize worldwide terrorist inci-
dents according to attributes such as geographic location, target type, and methods. The
authors employ machine learning techniques to categorize and discern trends in attack
data. The research developed a classification system that facilitates the systematic analysis
of worldwide terrorism tendencies. Research indicated that assaults differ markedly by
geography and target, facilitating more focused strategies for terrorism prevention.

Song et al. [26] investigated the potential correlation between Bitcoin prices and
terrorist acts, employing econometric models to assess the influence of terrorism on cryp-
tocurrency price volatility. The study revealed that terrorist acts may induce transient
fluctuations in Bitcoin prices, albeit inconsistently. The data indicate a tenuous although
discernible connection, as Bitcoin is sporadically employed in the funding of illicit activities,
including terrorism.

Despite notable advancements in the application of machine learning for terrorism
prediction, significant challenges persist. Prior studies, such as those by Tolan and Soli-
man [24], demonstrated the efficacy of neural networks and decision trees in identifying
terrorism-related incidents, but they often relied on static datasets and failed to account
for lexical nuances in open-source textual data. Hu et al. [25] emphasized geographic and
categorical trends, yet their models were not optimized for dynamic, real-time inference
or textual diversity. Moreover, while multi-label classification models like XRR [21] have
shown promise in handling large-scale label sets, they are often tailored to structured
domains like recommendation systems and may not generalize effectively to semantically
ambiguous, sparse terrorism-related texts.

Our study addresses these gaps by proposing a framework that integrates lexical
extraction with real-time capable machine learning models. Specifically, we focus on term
co-occurrence, TF-IDF weighting, and model fine-tuning to improve precision and recall in
terrorism-related term identification—thus responding directly to the limitations identified
in earlier works. Furthermore, by evaluating our models on both a controlled (GTD) and a
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loosely structured open-source dataset, we offer comparative insights that strengthen the
applicability of our findings across varied text environments.

3. Research Methodology
This research utilized the formal machine learning process from accessing, preprocess-

ing, and training the dataset with the selected models. These models were selected based
on their performance in text and prediction problems. The paper’s methodology involves
the integration of multiple lexical data sources, including open-source data and the Global
Terrorism Database (GTD). This integration is facilitated by networking technologies that
enable the collection, storage, and processing of large datasets from diverse sources. The
framework relies on networked systems to gather data from various online platforms,
including social media, news websites, and government databases. The ability to process
and analyze these data in real-time requires robust networking infrastructure, which is a
key component of the Future Internet. The paper’s approach can be seen as a networked
intelligence system, where data from multiple nodes (e.g., social media platforms, news
outlets) are aggregated and analyzed to generate actionable insights.

3.1. Machine Learning Algorithms for Predictive Modeling

Machine learning algorithms are methods that enable intelligent systems to learn about
the world through the available data. In the context of supervised learning, these algorithms
build a model to identify associations between data and the outcomes of interest [27]. A
crucial stage in the deployment of supervised learning methods is the model selection stage.
Model selection is the process of choosing a predictive model based on the hypothesis
space defined by the applied algorithm.

Model selection is very important because the most effective algorithm can create
overfitting challenges, which result in an overly specific pattern within the training data that
will not be effective with new data. In the context of arbitrary or blind model application,
fourteen learning methods were considered without any evaluation methods, which may
result in an over-optimistic assessment of a model [28]. In the context of arithmetic metal
node count classifications, six machine learning applications were reported in renewable
energy, eight in combinatory chemistry, and ten in mixed-mode economic research activities
that used different supervised learning algorithms. There are different considerations to be
made when choosing an appropriate learning algorithm, such as dimensionality reduction,
purpose, and intended scope; scalability; interpretability; sensitivity and specificity; and
accuracy [29].

3.1.1. Decision Tree (DT)

In the decision trees, each internal node represents a feature. Each branch falling out of
that node is a separate value of that feature, and each leaf node represents a class label. All
paths from the root to the leaf nodes lead to classification rules [30]. Predictive modeling
is where the model decides depending on the data observation. It is dependent on the
features of variable values. In decision trees, classification is not only done, but rules are
also formed according to feature variables and their values.

The use of the decision tree classifier model is very useful as it shows the individual
rules based on some conditions formed by the decision tree. Hence, feature variables are
split with their conditional rules based on their values [31]. In these models, and hence
on decision trees, the target class label probabilities are calculated. The careful selection
of some feature values, especially in public and mutually generated datasets, means that
the conditional rules for public and generated datasets relating to these feature variable
values might be split such that a rule-based decision tree classification is possible. For
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classification, this decision tree is simple and easy to interpret as well. Not only is the
purpose of classification to predict class labels, but also a method is used to analyze the
relationship between the most influential feature variables [32]. When we build decision
trees based on the most influential features, it is important to result in a hierarchy of the
most influential features and the relationships among them.

In our implementation, the underlying base estimator for the Bagging (Bootstrap
Aggregating) model was the Decision Tree classifier. This follows the standard practice of
using decision trees as the weak learners in Bagging ensembles to reduce model variance.
Specifically, we employed unpruned decision trees with a limited max_depth (tuned during
model optimization) to serve as the base learners. The Bagging ensemble aggregates these
trees using majority voting for classification. This setup was chosen to directly compare the
performance gains of ensemble learning (Bagging) over individual decision tree models
within the same experimental framework.

3.1.2. Bootstrap Aggregating (BA)

Bootstrap Aggregating is a bootstrapping method and a resampling technique that can
improve the accuracy of classifiers. In this technique, a few new datasets are constructed by
repeated sampling from the original dataset with the method of replacement [33]. Decision
trees serve as the base model for BA because they often have low bias and a relatively high
variance of output prediction. Independent models are fit from the bootstrap samples over
a dataset; thus, the corollary to hold is that they have uncorrelated errors. Eventually, the
models are aggregated by averaging as regression or voting operation as classification.
Bootstrapping can also be applied to resamples across models, meaning these models
are different from each other. Because of the different models, the correlations of these
models collapse [34]. In the end, ensemble models fit stable predictions. The advantages
of bootstrapping include great simplicity and the ability to improve the precision of any
type of statistical technique. However, the accuracy might deteriorate if the sample size is
too large, leading to overfitting, or if the base classifier has poor performance. Although
bootstrapping is a computationally expensive method, it guarantees improvement in
generalization capability. The independence of the samples has also been shown to be
effective in improving classification performance. In our work, a BA-based voting system
was designed to fit the model and predict the user’s dependency style.

3.1.3. XGBoost (XG)

XGBoost is an algorithm that has recently been a prime focus in competitive machine
learning circles. It is a scalable and accurate implementation, capable of effectively handling
large-scale structured and unstructured data [35]. The algorithm has been utilized in a
wide range of nature and complexity of problems, such as credit risk prediction models,
bioinformatics solution models, large-scale search engines, or ranking problems across
competitors in a competition [36]. XGBoost has been regarded as the go-to algorithm by
many practitioners due to its speed and adaptability towards distributed and out-of-core
computing. The algorithm employs a technique called gradient boosting and incorporates
several novel and effective features that make it stand out [37]. XGBoost utilizes a decision
tree model and performs a weighted iteration of these models to come up with a strong
classification model. While generally used in binary classification problems, the algorithm
also extends to solve multi-class classification problems as well as regression problems [38].

3.1.4. Random Forest (RF)

Random forests or random decision forests are an ensemble learning method for
classification, regression, and other tasks that operate by constructing a multitude of
decision trees at training time and outputting the class that is the mode of the classes or
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mean prediction of the individual trees [39]. A random forest is a meta-estimator that
fits a number of decision tree classifiers on various sub-samples of the dataset and uses
averaging to improve predictive accuracy and control overfitting [40]. The sub-sample
size is controlled with a hyperparameter. The following are the principles for the random
forest model: In random forests, each tree in the ensemble is built from a sample drawn
with replacement from the training set. Furthermore, when splitting each node during the
construction of a tree, the best split is found either from all input features or a random
subset of size, where is the number of features [41].

Furthermore, for classification, the number of features considered for splitting each
node is, in many implementations, approximately the square root of the total number
of features, but this number is a free parameter. Bootstrapping leads to better model
performance because when large and strong models are built, the errors made by the model
become uncorrelated [42]. Uncorrelated models can efficiently reduce the total error. An
entire forest can be visualized through the model counts.

3.1.5. Extra Trees (ETs)

The training of geometric dependent variables concatenated with lexical threshold
confidence measures and geometric dependent variables concatenated with lexical thresh-
old confidence measures and lexical profile features based on random sampling with
replacement is also tested using the Extra Trees model [43]. It is observed that Extra Trees
can handle high-dimensional data very well. They work well even in small datasets, and
they are very robust over filtering or pre-processing in general, especially in special pop-
ulations that have specific information. Their performance is like that of random forests,
but they are different in the way that they get the random subsets of the features only,
where they use this subset of features for splitting [44]. In Extra Trees, we take all the
samples, and it randomly selects a feature split for the decision tree nodes. It may lead to
overfitting, but it could also lead to the model being more robust as we would not have
access to the underlying data generating mechanism or the important features related to
our generated dataset.

The Extremely Randomized Trees (Extra Trees) algorithm is an ensemble learning
method that extends the principles of random forests by injecting additional randomness
into the decision-making process. Like random forests, Extra Trees aggregates the outputs
of multiple unpruned decision trees built on different random subsets of the data. However,
unlike random forests, where optimal split points are determined based on a criterion like
Gini impurity or entropy, Extra Trees selects split thresholds at random for each candidate
feature. This added stochasticity reduces variance even further while maintaining low bias,
making the model more robust to overfitting—particularly beneficial in high-dimensional,
sparse, and noisy data such as text.

In the context of terrorism prediction, where textual inputs from open sources often
contain semantically overlapping terms and an inconsistent structure, Extra Trees is espe-
cially advantageous. First, it naturally supports feature selection through its randomized
splitting mechanism, which is beneficial when dealing with large TF-IDF matrices. Second,
its computational efficiency and parallelizability make it suitable for processing sizeable
corpora with high throughput. Third, Extra Trees is resilient to outliers and performs well
even when class labels are imbalanced, which is common in datasets related to terror-
ism, where positive cases (relevant terms or attacks) are much fewer than negative ones
(irrelevant or neutral terms).

In our study, Extra Trees demonstrated strong predictive performance, particularly in
terms of precision and accuracy, indicating its ability to classify non-relevant terms conser-
vatively while maintaining a reliable identification of key terrorism-related lexical patterns.
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While this study employs the standard Extra Trees algorithm, we adapted it through
domain-aware preprocessing and task-specific hyperparameter tuning to optimize per-
formance in terrorism-related term prediction. The tuning process accounted for the
unique lexical characteristics of terrorism data, including high-dimensional TF-IDF vec-
tors, imbalanced class distributions, and contextual ambiguity. Although no structural
modification was applied to the base algorithm, the model was integrated into a prepro-
cessing pipeline that effectively enhanced its ability to distinguish between relevant and
irrelevant lexical signals. We acknowledge that future work could explore algorithmic
improvements tailored specifically for terrorism detection. These may include hybrid
approaches combining Extra Trees with deep semantic models (e.g., word embeddings or
transformers), or incorporating cost-sensitive learning to further mitigate the effects of false
negatives. Such integrations may further improve the model’s suitability for operational
use in cyber-intelligence environments.

3.2. Dataset

Two categories of datasets are utilized for this study: the dataset from terms associated
with terrorism in articles related to terrorism from open data sources and the Global
Terrorism Database dataset.

3.2.1. Extraction of Terms Associated with Terrorism from Open Source

It was established that for the purpose of this study, terms that are related to terrorism
and that have been published in research articles that are freely accessible were considered
as belonging to some kind of category. Table 1 shows a group of terms that have appeared
most frequently in texts related to articles on terrorism.

Table 1. Terms associated to terrorism in open data source.

Category Terms

Terrorist Activities terrorism, extremist activity, terrorist, weapon, threat, act, crime, violence

Counter Terrorism Operations security, operation, intelligence, raid, surveillance, intercept, detain, monitor

Persons leader, suspect, operative, member, official, agent, recruit

Places base, hideout, territory, region, hotspot, headquarters, zone, checkpoint

Analyzing these terms, this research observed that they can be grouped into one of four
categories: “Terrorist Activities”, “Counter Terrorism Operations”, “Persons”, and “Places”
associated with such activities. These terms are significantly different from the others in
this group, and there are special reasons for that. The research considers that the terms
of this first group are described by a description or by a single word: terrorism, extremist
activity, terrorist, weapon, threat, act, crime, security, etc. The list of terms from the other
three groups is also provided. All these terms are going to be used in the extraction of
terms to detect acts of terrorism in printed sources.

The data in those articles were further assessed to compute the Term Frequency-Inverse
Document Frequency (TF-IDF) weighting. This approach constructs a numerical statistic
designed to indicate the significance of a word within a document. TF-IDF primarily serves
as a weighting mechanism. Term Frequency (TF) signifies the significance of a term within
a specific corpus of documents, typically represented as the normalized frequency of term
occurrences in a text. The results were produced to generate a list of the most frequently
occurring key terms and range values. The range values are a measure of the importance
of the term employed to quantify the frequency of terms. As such, the larger the value the
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more frequent a term appears. Table 2 presents an extract of the data identified as the set of
terms that appear with reasonable frequency across all sources used in the analysis.

Table 2. Terms and their TF-IDF extracted.

Term TF-IDF Number of Document

Extremism 0.042 251

Radicalization 0.037 140

Insurgency 0.033 147

Counterterrorism 0.044 153

Violence 0.039 149

Hostage 0.029 133

Conflict 0.035 146

Militancy 0.032 144

Homeland Security 0.038 139

Cyberterrorism 0.03 137

Bombing 0.045 252

Attack 0.034 142

Terror Cell 0.043 143

A co-occurrence analysis was also conducted to identify those terms that appeared
in the discourse related to terrorism in the same sentence. This is an important step in
the analysis to highlight those terms that were most closely related or conceptually paired
by those in the media, government, and citizen blogs and social media. Both analyses
provide substantive insight into the common or frequently occurring terms in everyday
usage. The results of this process are important in helping us understand what the notable
or meaningful terrorism-related issues and concepts are likely to be in our sample of
open data.

3.2.2. Global Terrorism Database Dataset

The Global Terrorism Database is a dataset on terrorist activities that started in
1970. The dataset was obtained from Kaggle [45]. The current version has recorded
over 150,000 cases of armed violence committed worldwide during this period. Processes
to generate the database rely on using encoded data about the locations, weapons, types of
offences (such as facilities or individuals), and unique group or category identifiers similar
to those used in traffic datasets. At the core of the database are basic surface features.
The dataset includes several pertinent fields related to terrorism terminology, specifically:
“attacktype1_txt”, “target1”, “addnotes”, “scite1”, “scite2”, “scite3”, and “dbsource”. The
column “attacktype1_txt” classifies the principal method of attack, offering insights into
prevalent tactics employed in terrorist activities. The column “target1” outlines the primary
objective of the attack, providing context for its intent and frequently correlating with the
perpetrator’s goals. The “addnotes” column offers more notes or details regarding the
attack that may not be comprehensively represented in other columns. It frequently encom-
passes information regarding the conditions, reasons, or background that elucidates the
incident comprehensively. The columns “scite1”, “scite2”, and “scite3” represent citations
or sources from which information regarding the occurrence was acquired. They may
encompass citations from news articles, reports, or other sources that validate or expound
upon the incident’s particulars. A “dbsource” column exists that designates the source
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database or collection utilized to compile the attack information. It can indicate whether
the data originated from GTD’s primary data collection or external sources, hence assisting
in tracking data provenance.

This research extracts the TF-IDF of the terms within the dataset, with selected entries
displayed in Table 3. The GTD underscores the significance of these terms in monitoring
global terrorism trends, demonstrating the intricate and enduring characteristics of specific
attack types and targets across time.

Table 3. Terms in GTD and their TF-IDF.

Term TF-IDF

Bombing/Explosion 0.072

Armed Assault 0.068

Civilians 0.065

Government Target 0.062

Police Target 0.06

Military Target 0.064

Business Target 0.058

Hijacking 0.07

IED 0.073

Suicide Attack 0.075

Public Venue 0.066

Conflict Area 0.059

Intelligence Source 0.056

News Report 0.063

Database Record 0.061

Primary Source 0.069

Additional Notes 0.057

Verification Source 0.055

Casualty Details 0.054

Incident Context 0.053

These terms highlight global terrorist patterns, emphasizing attack methodologies,
target categories, and active regions within the extensive GTD dataset. A specific “co-
occurrence” has been established inside the dataset. This analysis successfully extracted
the co-occurrence of these terms (see Table 4).

Table 4. Terms and their co-occurrence from GTD dataset.

Term Frequent Co-Occurrence Word

Bombing/Explosion Attack

Armed Assault Firearm

Suicide Attack Casualty

Civilians Victims

Military Conflict
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Table 4. Cont.

Term Frequent Co-Occurrence Word

IED (Improvised Explosive Device) Explosion

Hostage Taking Abduction

Extremism Radicalization

Public Events Casualties

3.3. The Metrics for Performance Evaluation

The assessment of machine learning algorithms is essential for analyzing the patterns
of word usage in incidents related to terrorism. Performance evaluation typically uses
metrics such as “Accuracy”, “Precision”, “Recall”, and “F1-Score”. This research adopted
these measurement variables for evaluating the employed machine learning technique.

3.3.1. Accuracy

The accuracy, which indicates the overall correctness of the results or model, is the
most common evaluation of a predictive model. It is usually calculated by considering
four standard units, namely the following: “True Positive (TP)”, “False Positive (FP)”,
“True Negative (TN)”, and “False Negative (FN)”. The number of TP instances indicates
where the actual class is predicted and identified as the real class. The number of FP
instances indicates the actual class that is not the actual class, and they are incorrectly
classified as the actual class. The number of TN instances indicates where the actual class
is not obtained, and the predicted class is not obtained as well. Finally, the number of
FN instances indicates a situation where the actual class is obtained but they are wrongly
identified as not supported. Then, the accuracy (ACC) of a predictive model is given by
Equation (1), as follows:

Acc =
TP + TN

TP + TN + FP + FN
(1)

3.3.2. Precision

Precision is the ratio of accurately anticipated positive observations to the total pre-
dicted positive observations. It indicates the degree to which the projected positives are
genuinely positive. In an ideal application or predictive model, high precision is desir-
able to cover as many dimensions of usage as possible. In contrast to applications from
communication and information science, high precision adds a comparative advantage.
Out-of-scope “Terms” which might not fit into a terrorism area can be determined by
precision results. Hence, the precision is calculated by Equation (2), as follows:

Precision =
TP

TP + FP
(2)

3.3.3. Recall

Recall is defined as the likelihood that the classifier accurately identifies the labels of
positive examples among all real positive instances. Recall is often utilized as an indicator
of a program’s ability to identify a particular class. Typically, it applies to this research. It
is a measure that estimates “Terms” associated with terrorism richness. Strong predictors
of a high recall are “word”, “pre-closing item”, and “interjection”. Hence, the recall is
calculated by Equation (3), as follows:

Recall =
TP

TP + FN
(3)
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3.3.4. F-Score

The F-score is a performance measure that considers precision and recall scores. This
is the best overall measure when balancing precision and recall is important. The harmonic
mean, which is a robust average, between the recall and precision gives an F-score. In
text classification models, the F-score provides information on how well a model predicts
the low scoring target class. For the default value of alpha, the F-score is equivalent to
the balanced accuracy for binary target classes. Hence, it is calculated by Equation (4),
as follows:

F−score =
TP

TP+ 1
2 (FP + FN)

(4)

4. Experimental Analysis
Two experimental analyses were carried out involving six machine learning models

described in Section 3 above. In the first experimental scenario, datasets from the extracted
terms from open data sources are used, while in the second experiment, the GTD dataset
was used, and finally we triangulated the results.

4.1. Dataset Transformations and Labeling

The initial phase of preprocessing for this research involves preparing the two datasets
for the model analysis. The initial phase of this research involves extracting the dataset to
possess similar properties or attributes, namely the following: “Term”, “TF-IDF”, “Number
of Documents”, and “Frequent Co-occurring Words”. The number of documents is the
only attribute that is different from the GTD dataset. Subsequently, this is followed by the
“Encoding” of each attribute within the two datasets. The research presents a code function
that converts the “Terms” and “Frequent Co-occurrence Word” columns that are available
from both datasets. These attributes are all converted into numerical values. “Terms” is
specifically encoded as 0, whereas “Frequent Co-occurrence Word” is encoded as 1. TF-IDF
is already in number form, and the number of the document is also an encoded number.
This is essential as the majority of machine learning algorithms perform more effectively
with numerical data than with textual data.

The subsequent phase of preprocessing involves establishing the criteria for classifying
“Terrorism” within the dataset. A function in the code establishes a criterion to ascertain
whether an entry from the dataset pertains to “Terrorism” based on “Term”, “TF-IDF”, and
“Frequent Co-occurrence Word” as a “condition” or not.

4.2. Feature Selection and Data Splitting

An essential component of a prediction framework is known as feature selection, and
its primary function is to choose the characteristics and terms that are the most pertinent
from the terms that have previously been retrieved. A better model’s performance can
be achieved by the selection of appropriate features. This current research obtained a
combined “terms” of 15,000,000 entries. This dataset’s characteristics can play a role in
determining the features that should be selected for a particular dataset. The strategy that
is utilized for feature selection is TF-IDF. Both datasets make use of TF-IDF because this
research makes use of it, which is why it is adopted. With the use of this method, the
significance of a phrase within a dataset can be quantified by giving weight in the form of
numerical values. Therefore, the dataset comprises objects with the highest weight.

The implementation of splitting data is crucial for conducting model validation. To
assess the model’s performance, the datasets must be partitioned into two categories:
training and testing sets. The training set is employed for model construction, whereas
the testing set is utilized to confirm the established model. As a result, 80% of the data is
allocated for training, while 20% is reserved for testing the model’s performance.
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4.3. Initializing the Training Models

Every model that was used in the present study has been given an initial starting
point. One of the most important steps in the process of initializing machine learning
models is the development of the code that makes it possible to design and configure a
variety of models that are intended to forecast anemia in individuals. The training as well
as the forecast were both taken into consideration. The training data, which include the
subset that was specified earlier for the purpose of model instruction, is utilized in the
process of training each particular model. It is necessary to assign the models the task of
predicting outcomes on the testing data once they have been trained in order to evaluate
the effectiveness of their learning.

The data that were used for testing are the subset of data that was not included in
the training processes. A computation is carried out by the code in order to determine the
accuracy of each model. This calculation reflects the rate at which the model accurately pre-
dicts the anemia status of an individual. Additionally, a comprehensive report is provided
for each model, which demonstrates its effectiveness across a variety of applications. One
example of this is accurately distinguishing individuals who have anemia from those who
do not have it. The precision of each model is documented in a dictionary (results), with
the model name serving as the key and the accuracy score serving as the value associated
with the dictionary. It is determined by the code that the results are reviewed in order to
determine which model demonstrates the best level of precision. Following that, it presents
the name of the best model along with the accuracy of the model.

4.4. Presentation of the Result of Training Models

In the initial evaluation using the open data source dataset, all models achieved
moderate performance, with noticeable variation in recall (see Table 5). Extra Trees yielded
the highest accuracy (89.82%), but this was coupled with a relatively low recall (68.54%)
and an F1-score of 0.7727, suggesting the model leaned toward conservative classifications
with a high number of true negatives. In contrast, XGBoost demonstrated the strongest
F1-score at 0.8306, reflecting a more balanced trade-off between precision (0.8954) and recall
(0.7745). Random forest followed closely, offering a comparable balance (F1-score: 0.7810).
These results indicate that while Extra Trees appeared superior by accuracy alone, XGBoost
provided the most reliable performance for practical detection in this domain.

Table 5. The model training performance of open data source.

Model Accuracy Precision Recall F-Score ROC Area

Decision Tree 0.8711 0.8756 0.6284 0.7317 0.7563

Bootstrap Aggregating 0.8363 0.8825 0.6756 0.7653 0.7246

XGBoost 0.8591 0.8954 0.7745 0.8306 0.7458

Random Forest 0.8656 0.8874 0.6974 0.7810 0.7624

Extra Trees 0.8982 0.8854 0.6854 0.7727 0.7714

To address the overall performance deficit and facilitate improvement, a fine-tuning
of model depth was conducted to accurately detect instances of terrorism-related terms.

Table 6 summarizes the hyperparameter tuning process conducted on machine learn-
ing models using the open data source dataset. For each model, including Decision Tree,
Bagging, XGBoost, random forest, and Extra Trees, specific hyperparameters were adjusted
across defined value ranges. The best-performing configurations were selected based on
improvements in model accuracy, precision, recall, and F1-score. For instance, setting
the max_depth to 15 and using entropy as the splitting criterion significantly improved
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the decision tree model’s sensitivity, while increasing the number of estimators in en-
semble methods like Bagging, random forest, and Extra Trees enhanced generalization.
The adjustments made to these hyperparameters demonstrated clear performance gains
over the default settings and helped achieve a more balanced and reliable detection of
terrorism-related terms from open text sources.

Table 6. Hyperparameter tuning summary on open data source dataset.

Model Hyperparameter Range Tried Best Value Found Default Value

Decision Tree

max_depth [5, 10, 15, 20, None] 15 None

min_samples_split [2, 5, 10] 5 2

criterion [‘gini’, ‘entropy’] ‘entropy’ ‘gini’

Bagging (BA)
n_estimators [10, 50, 100, 200] 100 10

max_samples [0.5, 0.7, 1.0] 0.7 1

bootstrap [True, False] TRUE TRUE

XGBoost

learning_rate [0.01, 0.05, 0.1, 0.2] 0.1 0.3

n_estimators [50, 100, 200, 300] 200 100

max_depth [3, 5, 7, 10] 7 6

subsample [0.5, 0.7, 1.0] 0.8 1

Random Forest

n_estimators [50, 100, 200, 300] 200 100

max_depth [10, 20, 30, None] 20 None

max_features [‘sqrt’, ‘log2’, None] ‘sqrt’ ‘sqrt’

Extra Trees

n_estimators [50, 100, 200, 300] 200 100

max_depth [10, 20, 30, None] 20 None

max_features [‘sqrt’, ‘log2’, None] ‘log2’ ‘auto/sqrt’

The fine-tuning has resulted in notable enhancements in all models, especially regard-
ing accuracy, precision, and recall (refer to Table 7). Following hyperparameter tuning,
all models showed improved performance across all metrics. Notably, Extra Trees again
achieved the highest accuracy (94.31%), but its recall (71.97%) remained lower than that
of XGBoost (81.32%). When recalculated correctly, XGBoost reached the highest F1-score
(0.8707), outperforming all other models, including random forest (F1-score: 0.8202). This
underscores the effectiveness of boosting techniques in capturing nuanced lexical features
in unstructured text. Although Extra Trees retained strong precision (92.97%) and accuracy,
its relative weakness in recall suggests that it may be less effective in identifying all relevant
terrorism-related terms, particularly in ambiguous cases.

Table 7. The model training performance of open data source after fine-tuning.

Model Accuracy Precision Recall F1-Score ROC Area

Decision Tree 0.9147 0.9194 0.6598 0.7683 0.7941

Bootstrap Aggregating 0.8781 0.9266 0.7094 0.8036 0.7608

XGBoost 0.9021 0.9402 0.8132 0.8721 0.7831

Random Forest 0.9089 0.9318 0.7323 0.8201 0.8005

Extra Trees 0.9431 0.9297 0.7197 0.8113 0.8100



Future Internet 2025, 17, 182 16 of 31

The accuracy trends among the optimized models were compared (see Figure 1). The
increase highlights how each model’s accuracy has benefited from hyperparameter tuning
and cross-validation. The tuned accuracy reflects the improvements achieved through
hyperparameter tuning and cross-validation, with all models showing increased accuracy
compared to their initial accuracy. Adjusting the hyperparameters and evaluating model
configurations using cross-validation led to improved performance metrics for each model.
The role of cross-validation was not as part of the final model, but rather as an evaluation
mechanism during training to prevent overfitting and ensure the robustness of parameter
selection. This comparison highlights the positive impact of fine-tuning and optimization
across different models.
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Figure 1. Accuracy trends among the optimized models.

Further analysis to affirm the performance of the fine-tuned trained model with the
ROC curve presents the complete spectrum of performance at different thresholds.

In terms of the Decision Tree (see Figure 2), it indicates that the model performs well,
with a high ability to distinguish between positive and negative classes, suggesting that
this model reliably identifies true cases of interest. The shape of the curve suggests that the
model has a good balance.

The Bootstrap Aggregating (Bagging) model ROC curve (see Figure 3) represents
excellent performance, suggesting the model is very good at distinguishing between the
positive and negative classes. The smoothness of the ROC curve here, without sharp jumps,
implies that Bagging provides a balanced approach that reduces the instability often seen in
single Decision Trees. The high AUC score and shape of the curve suggest that this Bagging
model is very reliable for detecting true positive cases without a significant increase in false
positives (see Figure 3).
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The ROC curve for the XGBoost model indicates that the model is highly effective at
distinguishing between the positive and negative classes (see Figure 4). The sharp rise and
flattening of the curve suggest that XGBoost’s boosting mechanism effectively captures
relevant features and relationships, providing strong predictive performance.
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Similarly, the ROC curve for the random forest model achieves a good balance with the
smoothness of the curve (see Figure 5). This demonstrates that random forest is consistent
and handles variance well, capturing relevant patterns without overfitting.
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The Extra Trees model ROC curve demonstrated that the model is proficient at dis-
tinguishing between positive and negative classes (See Figure 6). Extra Trees uses a high
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degree of randomness in both feature selection and split points, which helps reduce overfit-
ting and improve generalization.
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The ROC curve for an XGBoost model indicates that the model is highly effective at
distinguishing between the positive and negative classes. XGBoost uses boosting techniques
that iteratively improve errors from previous rounds, making it highly effective in capturing
complex patterns in data. The smooth and high-reaching curve signifies that XGBoost is
stable and provides consistent performance across different threshold values (see Figure 7).
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The analysis of the GTD dataset within the models has indicated numerous desirable
outcomes. This phase represents the second stage of the experimental training employ-
ing the GTD dataset. The training results indicate that the performance of all models
is adequate.

When applied to the GTD dataset before tuning, the models followed a similar pattern.
Extra Trees again achieved the highest accuracy (91.04%) but with modest recall (69.23%),
leading to a corrected F1-score of 0.7725. XGBoost outperformed all other models with a
recalculated F1-score of 0.8247, based on its strong recall (76.61%) and precision (89.31%).
This balance is critical in minimizing false negatives, making XGBoost particularly valuable
in applications requiring high sensitivity. Random forest and Bagging provided solid
mid-range performance, reinforcing their consistency, but again fell short of XGBoost in
both recall and the F1-score. Table 8 show the result of The model training performance
of GTD.

Table 8. The model training performance of GTD.

Model Accuracy Precision Recall F1-Score ROC Area

Decision Tree 0.8676 0.8723 0.6127 0.7198 0.7470

Bootstrap Aggregating 0.8131 0.8795 0.6623 0.7556 0.7137

XGBoost 0.8455 0.8931 0.7661 0.8247 0.7360

Random Forest 0.8818 0.8849 0.6847 0.7720 0.7534

Extra Trees 0.8716 0.8877 0.6923 0.7779 0.7629

A similar fine-tuning strategy employed in the initial study was also applied here.
Model performance metrics improved significantly after fine-tuning and cross-validation.
Table 9 presents the hyperparameter tuning details for models trained on the Global
Terrorism Database (GTD). Similar to the open data analysis, key parameters such as tree
depth, the number of estimators, learning rate, and sampling strategies were tuned to
optimize model performance. The GTD dataset, being more structured and feature-rich,
benefited from slightly different optimal settings; for instance, the Decision Tree performed
better using the gini criterion, and ensemble methods like XGBoost and random forest
achieved notable improvements with deeper trees and increased estimators. These fine-
tuned values led to higher accuracy and recall, essential for identifying complex patterns
in terrorism data. Overall, the tuning ensured that each model was better adapted to the
GTD’s characteristics, improving predictive reliability compared to default configurations.

Post-tuning, XGBoost maintained its dominance, achieving the highest F1-score of
0.8786, with precision (93.89%) and recall (82.52%) both at outstanding levels (see Table 10).
Extra Trees reached the highest accuracy (94.22%) but lagged in recall (74.11%) and thus
produced a slightly lower F1-score (0.8259). Random forest also showed strong balance
(F1-score: 0.8255), but not to the same extent as XGBoost. These results reinforce the earlier
insight that accuracy alone is not sufficient to assess model utility. XGBoost’s high recall
and overall balance across metrics make it the most effective model for this high-stakes
application, where missing positive cases is significantly more detrimental than classifying
neutral terms as risky.

After fine-tuning, the ROC curves for each model indicate a substantial improvement
in their ability to distinguish between positive and negative classes.

The decision tree model now demonstrates strong discriminatory power with a signif-
icantly improved AUC of 0.93. This indicates a more reliable classification, although not as
high as the ensemble models. It shows the model’s ability to reduce misclassification after
fine-tuning (see Figure 8).
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Table 9. Hyperparameter tuning summary for Global Terrorism Database (GTD).

Model Hyperparameter Range Tried Best Value Found Default Value

Decision Tree max_depth [5, 10, 15, 20, None] 15 None

min_samples_split [2, 5, 10] 5 2

Criterion [‘gini’, ‘entropy’] ‘gini’ ‘gini’

Bagging (BA) n_estimators [50, 100, 200] 100 10

max_samples [0.5, 0.7, 1.0] 0.8 1

Bootstrap [True, False] TRUE TRUE

XGBoost learning_rate [0.01, 0.05, 0.1] 0.1 0.3

n_estimators [100, 200, 300] 200 100

max_depth [3, 5, 7, 10] 7 6

Subsample [0.5, 0.7, 1.0] 0.8 1

Random Forest n_estimators [50, 100, 200] 200 100

max_depth [10, 20, 30] 20 None

max_features [‘sqrt’, ‘log2’, None] ‘sqrt’ ‘sqrt’

Extra Trees n_estimators [100, 200, 300] 200 100

max_depth [10, 20, 30] 20 None

max_features [‘sqrt’, ‘log2’, None] ‘sqrt’ ‘auto/sqrt’

Table 10. The model training performance of GTD after fine-tuning.

Model Accuracy Precision Recall F1-Score ROC Area

Decision Tree 0.9028 0.9182 0.6754 0.7783 0.7871

Bootstrap Aggregating 0.8811 0.9201 0.7236 0.8101 0.7538

XGBoost 0.9001 0.9389 0.8252 0.8784 0.7761

Random Forest 0.9042 0.9332 0.7432 0.8274 0.7935

Extra Trees 0.9422 0.9354 0.7411 0.8270 0.8008
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The Bagging approach shows a high AUC of 0.96, reflecting an effective ensemble
strategy to stabilize and improve the model’s performance (see Figure 9). This enhancement
indicates that the model can now distinguish positive and negative instances with greater
accuracy, making it suitable for applications requiring stable prediction.
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XGBoost achieves an AUC of 0.95, indicating robust performance with high discrimi-
natory power. This improvement suggests that XGBoost is effectively leveraging boosted
trees to enhance its ability to identify true positive instances, making it a reliable choice for
complex predictive tasks (see Figure 10).
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With an AUC of 0.98, the random forest model shows excellent performance, achieving
near-optimal classification accuracy. The high AUC signifies the model’s strength in han-
dling complex patterns, making it one of the most reliable models for terrorism prediction
in this dataset (see Figure 11).
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Extra Trees also achieves a near-perfect AUC of 0.98, indicating excellent model perfor-
mance. This high score highlights its ability to accurately distinguish classes, confirming the
effectiveness of ensemble methods with randomized trees after fine-tuning (see Figure 12).
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The observed differences in model performance can be more deeply understood by
considering the structural characteristics of the algorithms in relation to the properties of
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the datasets. For instance, XGBoost consistently demonstrated superior F1-scores across
both datasets, which aligns with its gradient boosting mechanism that iteratively reduces
residual errors and adapts to difficult cases—an advantage when dealing with ambiguous
or overlapping lexical patterns common in terrorism discourse. Its ability to model complex
interactions between features allows it to capture nuanced co-occurrence patterns that
simpler models may overlook. In contrast, the Extra Trees algorithm, while achieving the
highest overall accuracy, tended to produce conservative predictions, as evidenced by its
relatively lower recall. This is attributable to its use of extreme randomization in feature
splits, which, although effective in reducing variance and avoiding overfitting, may fail to
capture subtle patterns associated with positive (i.e., terrorism-relevant) terms, especially
in the presence of class imbalance.

Random forest and Bagging models displayed more balanced profiles, benefiting
from ensemble averaging to mitigate overfitting while still capturing moderately complex
relationships. However, these models may lack the iterative error–correction refinement
seen in boosting algorithms. The single decision tree model, while interpretable and
efficient, suffered from relatively low recall, indicating susceptibility to both overfitting
and underfitting depending on tree depth.

The data characteristics further amplify these behaviors. The open-source dataset
is lexically rich but semantically noisy, with high-dimensional TF-IDF vectors and con-
siderable synonymy. This setting favors models that can handle sparse and noisy input
(e.g., XGBoost), whereas more rigid algorithms may underperform. The GTD dataset,
although more structured, still contains categorical and lexical ambiguity that benefits from
models capable of fine-grained feature interaction modeling. The results suggest that the
algorithmic structure should be matched to the data complexity. Boosting-based models
like XGBoost appear better suited to handling heterogeneous, imbalanced, and lexically
complex terrorism data, while ensemble bagging methods provide robustness but may
require careful tuning to avoid recall deficiencies.

4.5. Presentation of Analysis on a Practical Application Related to Human–Machine Interaction

This paper’s framework can be adapted for real-time analysis, where machine learning
models continuously monitor online content and provide alerts to human analysts when
potential threats are detected. This real-time interaction between humans and machines
is essential for proactive threat detection and response, which is a key requirement in
the Future Internet. A typical scenario is presented in Table 11. This is a case where a
practical application of this research relates to human–machine interaction. The predefined
TF-IDF score maps with the study’s results determine whether a given text should be
“automatically flagged as suspicious” or “not”. High TF-IDF scores (above 0.06) are flagged
as they strongly relate to known threat keywords. Hence, the co-occurrence with threat-
related terms increases the likelihood of automatic flagging; eventually, the Machine
Learning Predictions: Models with higher accuracy (Extra Trees, XGBoost) are more likely
to flag content if it matches known patterns.

Based on the study’s findings and model predictions, flagged and non-flagged content
“Bombing” (Flagged as Suspicious)” has a high TF-IDF score, meaning it appears frequently
in terrorism-related content (see Table 11). It is also strongly associated with words like
“Explosion” and “Attack”, which indicate violence or criminal intent. Security Checkpoint”
is not flagged, even though it relates to defensive measures rather than offensive or terrorist
activities. While it co-occurs with words like “Surveillance” and “Monitor”, these are
neutral or security-related terms.
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Table 11. Mapping predictions for flagging suspicious content.

ID Extracted Term TF-IDF
Score

Frequent
Co-Occurrence

Words

Machine Learning Model
Prediction

Flagged as
Suspicious?

1 Bombing 0.072 Explosion, Attack Extra Trees (94.31% accuracy)
→ High Risk Yes (Flagged)

2 Radicalization 0.037 Extremism,
Recruitment

XGBoost (90.21% accuracy) →
Medium Risk Yes (Flagged)

3 Security
Checkpoint 0.045 Surveillance, Monitor Random Forest (90.89%

accuracy) → Low Risk
No (Not
Flagged)

4 Hostage 0.029 Abduction, Threat Decision Tree (91.47%
accuracy) → Medium Risk Yes (Flagged)

5 Public Gathering 0.066 Civilians, Casualties Bootstrap Aggregating
(87.81% accuracy) → Low Risk

No (Not
Flagged)

6 Cyberterrorism 0.03 Hacking, Network
Attack

Extra Trees (94.22% accuracy)
→ High Risk Yes (Flagged)

7 Intelligence
Report 0.061 Database Record,

Analysis
XGBoost (90.01% accuracy) →

Low Risk
No (Not
Flagged)

8 Military Target 0.064 Attack, Strategy Random Forest (90.42%
accuracy) → Medium Risk Yes (Flagged)

9 Fake News 0.038 Misinformation,
Propaganda

Decision Tree (91.47%
accuracy) → Low Risk

No (Not
Flagged)

10 Suicide Attack 0.075 Casualty, Martyr Extra Trees (94.31% accuracy)
→ High Risk Yes (Flagged)

Another case where the practical application of this research relates to human–machine
interaction is in associating online “user conversations” with the study’s results. This can
be determined whether an “AI-powered chatbot” should or “any monitoring interface”
can be flagged up or not. A typical case to an AI-powered chatbot is presented in Table 12.
Flags tagging for “Provide de-radicalization content (mild warning, education, interven-
tion)”, “Redirect to human counselors (high risk, immediate attention needed)”, and “No
intervention (conversation is neutral or non-threatening)” are defined in order to establish
an AI-powered chatbot response to radicalization indicators. This system can ensure that
an AI-powered chatbot can “Detect early signs of radicalization and prevent escalation”,
“Offer soft interventions through education and alternative perspectives”, or “Escalate
severe cases to human experts before a threat manifests”.

The statement “They will pay for this injustice!” (Redirect to Human Counselors)
expresses anger and intent for retribution, indicating a potential escalation toward vio-
lence. The co-occurrence of “revenge” and “attack” aligns with high-risk radical speech
patterns found in extremist narratives. In the AI chatbot case, it flags this as a serious case
and redirects the user to a human counselor for immediate intervention. This dwells on
the Extra Trees (94.31% accuracy) of prediction (see Table 12). Similarly, a “Government
surveillance is too much” (no intervention). This message expresses concern about gov-
ernment surveillance, which is a common civil rights issue, with no direct call to violence,
extremism, or radicalization. The words “Privacy” and “Freedom” are frequently used
in legitimate political discussions rather than extremist rhetoric. The chatbot does not
intervene since the message is within normal discourse. Hence, it established a practical
application related to human–machine interaction to ensure a balanced approach between
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AI automation and human intervention, minimizing false positives while detecting genuine
radicalization risks.

Table 12. AI-powered chatbot response to radicalization indicators.

ID User Message TF-IDF
Score

Frequent
Co-Occurrence

Words
Machine Learning Prediction Chatbot Action

1
“They will pay

for this
injustice!”

0.073 Revenge, Attack Extra Trees (94.31% accuracy)
→ High Risk

Redirect to
Human

Counsellors

2
“People like us
must unite and

fight”
0.068 Extremism, Resistance XGBoost (90.21% accuracy) →

Medium Risk

Provide De-
radicalization

Content

3
“Government
surveillance is

too much”
0.044 Privacy, Freedom Random Forest (90.89%

accuracy) → Low Risk No Intervention

4
“The West

always exploits
us”

0.052 Oppression, Injustice Decision Tree (91.47%
accuracy) → Medium Risk

Provide De-
radicalization

Content

5
“Education is the

only way
forward”

0.028 Knowledge, Progress Bootstrap Aggregating
(87.81% accuracy) → Low Risk No Intervention

6
“We must make
them suffer like

we do!”
0.077 Retaliation, Violence Extra Trees (94.22% accuracy)

→ High Risk

Redirect to
Human

Counsellors

7
“How do I learn
more about our

cause?”
0.065 Ideology, Movement XGBoost (90.01% accuracy) →

Medium Risk

Provide De-
radicalization

Content

8
“Why does

society treat us
differently?”

0.039 Discrimination,
Identity

Random Forest (90.42%
accuracy) → Low Risk No Intervention

9
“Oppression

must be fought
by any means”

0.07 Revolution, Violence Decision Tree (91.47%
accuracy) → High Risk

Redirect to
Human

Counsellors

10
“We need to

raise awareness
peacefully”

0.031 Activism, Awareness Bootstrap Aggregating
(87.81% accuracy) → Low Risk

5. Discussions
In this paper, we introduce five machine learning classifiers to predict the lexical

patterns of multi-lexical data sources of terrorism and extract the best technique. We
compare their performance from several viewpoints regarding accuracy, time, true positives,
and true negatives. This study empirically validates the models’ performances using a
multi-lexical data source from various perspectives, in response to a research gap for
adopting an entire body of dataset for prediction. This can set a major drawback within the
context of understanding lexical patterns associated with terrorism. The results from this
study show that each classifier has shown a number of strong and weak points.

The research established the following: “What are the lexical patterns that can be
expected within any body of textual context”. Based on the previous theoretical summary
and psychosocial understanding, it was established that lexical representations of patterns
of terrorism in the data show up different versions in general but exhibit a co-occurrence.
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On the other hand, if to some limited extent a question of “How can lexical patterns be
psychosocially interpreted?” offered an interpretation of the theory, it can be extended
further based on symbolic interactionist perspectives that explain elements of processes
and general attitudes. However, lexically, this research combined the best results from
the open data sources dataset and GTD dataset and showcases the potential of leveraging
lexical patterns in predictive terrorism models.

This study employed five supervised machine learning classifiers to predict lexical
patterns from multi-lexical data sources associated with terrorism. By evaluating the
performance of these models across multiple metrics—accuracy, precision, recall, F1-score,
and ROC-AUC—the research identifies the most suitable approach for detecting terrorism-
related terms in unstructured text. The models were tested on two datasets: an open-source
text corpus and the Global Terrorism Database (GTD). Through extensive experimentation
and post-hoc hyperparameter optimization, consistent performance trends emerged.

Among the evaluated models, XGBoost consistently demonstrated the most balanced
and robust performance across all critical metrics. Although Extra Trees achieved the high-
est overall accuracy (94.31% on the open dataset and 94.22% on GTD), this was primarily
due to its conservative classification approach, which led to a high number of true negatives.
This behavior resulted in relatively lower recall values (71.97% and 74.11%, respectively),
which is a concern in applications where missing relevant instances (false negatives) has
serious implications. In contrast, XGBoost attained a significantly higher recall (81.32% and
82.52%) and F1-score (0.8721 and 0.8784) across both datasets, underscoring its superior
capacity to identify nuanced patterns and minimize false negatives.

XGBoost’s gradient boosting framework contributes to its predictive strength by
iteratively correcting classification errors through additive modeling. This capability allows
the model to adaptively learn complex feature interactions and lexical dependencies within
high-dimensional TF-IDF representations. Such strengths are particularly valuable in
terrorism detection, where the co-occurrence of semantically ambiguous terms and class
imbalance can obscure key indicators.

In both experimental scenarios, XGBoost offered a consistent trade-off between sensi-
tivity and specificity, making it a better fit for high-stakes intelligence applications than
models optimized solely for accuracy. It effectively captured subtle contextual indicators
embedded in natural language, which is crucial for detecting emerging threats or radi-
calization cues. The model’s adaptability and scalability further affirm its suitability for
real-time implementation in cyber-intelligence systems.

While random forest and Bagging models also showed balanced performance, they
lacked the iterative refinement mechanism of boosting. Extra Trees, although efficient
and computationally attractive, prioritized a conservative classification that could limit
its practical use in sensitive threat detection environments. Decision Trees remained
interpretable but demonstrated the weakest performance in recall, making them suboptimal
for complex, ambiguous textual classification tasks.

In conclusion, the evidence across datasets and evaluation phases strongly supports
the adoption of XGBoost as the preferred classifier for terrorism-related lexical pattern
detection. Its high recall and F1-score, coupled with strong precision, make it a reliable
model for operational deployment in cyber-threat surveillance and linguistic intelligence.
Future work may further enhance this framework by integrating XGBoost with deep
learning-based semantic models and applying it in multilingual or multimodal terrorism
datasets for broader generalizability.

The integration of linguistic analysis into intelligence may become a supplementary
feature for communication surveillance. By doing so, individuals at an increased risk of
violent radicalization could be offered personalized help and counseling with the view of
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bringing down the risks of violent extremism. From a law enforcement perspective, early
detection enables a strategy of weakening the person or group conversationally and using
‘soft’ actions to decrease their radicalization potential.

Findings suggest that users talking about attacks tend to use patterns of conversation
that should attract law enforcement and security agency attention, such as those found
about the angle of social networks, level of security, and personal threats. To increase
the effectiveness of our research, empirical social network research is needed to identify
issues of radicalization relevant to analysts, operators, and policymakers. Additionally,
theoretical research will need to identify patterns that would also facilitate agencies in their
approach to early detection and containment. Engaging in, and potentially supporting,
social network research is a step toward a serious policy to detect terrorist threats earlier
and more accurately. Being able to retain support from analysts and policymakers is crucial
for the development of more practical and ‘actionable’ findings from this work. The shifting
of the research emphasis from producing substantive knowledge to knowledge supporting
action is likely to enhance the research impact in the field. It could result in not simply
influencing policy but also in shaping new and more effective training activities.

This research established that using lexical patterns introduces the concept of context-
driven prediction in terrorism studies. This approach theoretically supports that patterns in
word occurrences and associations can reveal hidden contextual clues related to terrorism
activity, contributing to the development of context-aware predictive models. The use
of lexical patterns allows models to recognize complex linguistic cues and associations
related to terrorism. This enhances the ability to detect potential terrorism-related content
or activities based on patterns within textual data, making the models more responsive and
accurate in identifying threats.

By using data from multiple sources, the models are less likely to be biased by a single
dataset’s characteristics, resulting in improved generalizability. This broad applicability
is crucial for deploying these models in real-world applications, where new data sources
or unforeseen patterns may appear. Lexical pattern-based models can be adapted for real-
time analysis, where terms, co-occurrences, and frequency shifts in new textual data are
continuously monitored to detect emerging threats. This application could be valuable for
government agencies or security organizations seeking proactive surveillance capabilities.

6. Conclusions
This paper established that numerous corpus linguistics studies of terrorism corpora,

comprising millions of words, identify recurring phrases, syntagmatic and paradigmatic
lexical patterns, and recurring terms. This research investigates advanced supervised
approaches and presents a novel corpus alongside the Global Terrorism Datasets (GTDs)
model to predict the readability and lexical style of texts pertaining to terrorism. To
achieve this, a corpus must be constructed from a diverse range of published materials
and writings related to “terrorism”. It is determined that certain GTD linguistic situations
are specifically associated with terrorism. The integration of multilingual data sources
leads to the development of a lexicon pertaining to terrorism. Trained machine learning
models. The outcomes from two primary experiments were analyzed. While Extra Trees
attained the highest accuracy (94.31%), it achieved this primarily through a conservative
classification approach that increased true negatives, leading to lower recall. In contrast,
the XGBoost model delivered the most balanced and robust performance across all metrics,
particularly recall and the F1-score, which are critical in minimizing false negatives in
terrorism-related detection tasks. These findings suggest that XGBoost may be better suited
for practical deployment in sensitive lexical intelligence applications. This suggests a
specific “co-occurrence” within the terrorism dataset derived from various lexical data
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sources, which is both authentic and verified. This highlights the importance of lexical
analysis in identifying conceptual binarism and semantic connections in modern society.
This study examines the relationships between terrorists and their victims, along with
the political and religious language that links them, to highlight the importance of these
connections in the discourse on terrorism. The analysis of a developed terrorism corpus
indicates that two prediction models demonstrate that public listings and news items,
rather than ‘rogue’ bits, effectively differentiate between terrorist material and non-terrorist
information. The analysis indicates that the corpus predominantly consists of public
materials, with a minor fraction derived from official lists of terrorist incidents.

While the current experiments were conducted in an offline setting, the proposed
framework is amenable to real-time deployment with minor architectural adaptations. In
a real-time implementation, the system would consist of the following components: (1) a
streaming input layer to ingest data from social media, news feeds, or surveillance logs in
real-time; (2) a preprocessing module that performs tokenization and TF-IDF transformation
using a pretrained vocabulary and IDF cache, thus avoiding recomputation overhead; and
(3) a lightweight model inference engine (e.g., using ONNX Runtime, TensorFlow Lite, or
scikit-learn optimized with joblib) to classify input data with minimal latency.
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