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Abstract
Organic solar cells (OSCs) have many potential applications due to attributes such as high mechanical flexibility, relatively 
low production cost, good transparency, and lightweight. Since the power conversion efficiency (PCE) of OSCs is relatively 
low currently, their PCE must be further improved to better exploit their potential in the future. The use of carrier transport 
layers (CTLs) is essential to maximize the PCE of OSCs. Therefore, a model that can accurately and reliably describe the 
current voltage (J-V) characteristics of OSCs with CTLs is also essential. Such a model is proposed in this paper. The pro-
posed model is based on the semiconductor drift–diffusion transport model, which is the standard physics-based approach 
for modeling semiconductor devices including solar cells. In obtaining the proposed model, the approximate electric fields 
and the approximate boundary conditions in OSCs with CTLs are derived and then applied to the carrier continuity equa-
tions, which are then solved using a recently proposed combined analytical and regression method. The use of the recently 
proposed method makes the proposed model to be more accurate than analytical drift–diffusion-based J-V models and more 
reliable than numerical drift–diffusion-based J-V models. We verify that the proposed model works well and show that it can 
provide insights into how to optimize the design and improve the PCE of OSCs with CTLs. Therefore, owing to its unique 
quality, the proposed model can be a valuable tool for predicting and analyzing the J-V characteristics, and ultimately for 
improving the design and the PCE of OSCs with CTLs.

Keywords  Blocking layer · Device physics · Metal oxides · Organic semiconductors · Photovoltaic cells · Semiconductor 
device modeling

1  Introduction

Organic solar cells (OSCs) have many potential applica-
tions due to attributes such as high mechanical flexibility, 
relatively low production cost, good transparency, and light-
weight [1–5]. For example, OSCs are ideal candidates as 
power sources for low-power indoor devices (e.g., devices 
for the Internet of Things [4]) and for the next generation 
biomedical devices [5]. However, there are hurdles that need 
to be overcome before OSCs can be fully exploited and com-
mercialized. Two main hurdles for OSCs are their relatively 
poor efficiency [6] and performance degradation, particu-
larly under harsh operating conditions [1].

A well-known way to improve the power conversion effi-
ciency (PCE) of OSCs is to incorporate a hole transport layer 
(HTL) between the active layer and the anode, and an elec-
tron transport layer (ETL) between the active layer and the 
cathode [7]. An HTL must be able to efficiently extract holes 
from the active layer to the anode and block the extractions 
of electrons and excitons from the active layer to the anode 
[7]. Similarly, an ETL must be able to efficiently extract 
electrons from the active layer to the cathode and block the 
extractions of holes and excitons from the active layer to 
the cathode [7]. Since the use of these carrier transport lay-
ers (CTLs), i.e., HTL and ETL, is vital in maximizing the 
PCE of OSCs [7], a model that can accurately and reliably 
describe the current–voltage (J-V) characteristics of OSCs 
with CTLs is needed to better understand and predict, and 
ultimately to further enhance the performance of OSCs.

The semiconductor drift–diffusion model is regarded 
as the standard physics-based approach for modeling 
semiconductor devices including solar cells. Recently, a 
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drift–diffusion based J-V model for OSCs was proposed 
where a combined analytical and regression method was 
used in deriving the model [8]. It was shown that the use of 
the method in Ref. [8] makes the resulting drift–diffusion-
based J-V model in Ref. [8] to be more accurate than ana-
lytical drift–diffusion-based J-V models (because the model 
in Ref. [8] allows us to consider realistic carrier generation 
profiles and recombination mechanisms, which cannot be 
considered in purely analytical J-V models) and more reli-
able than numerical drift–diffusion-based J-V models (such 
as models based on the finite difference method) [8]. How-
ever, the J-V model proposed in Ref. [8] is based on the 
basic OSC structure without CTLs. The motivation of this 
paper is to create a J-V model for OSCs that is more accurate 
than analytical drift–diffusion-based J-V models and more 
reliable than numerical drift–diffusion-based J-V models, 
like the J-V model proposed in Ref. [8], but with the inclu-
sion of the all-important CTLs. To achieve the objective 
of this paper, we derive the approximate electric fields and 
the approximate boundary conditions in OSCs with CTLs, 
which are then applied to the carrier continuity equations, 
which are then solved using the method proposed in Ref. 
[8] in order to obtain the J-V model. As mentioned earlier, 
the use of the method proposed in Ref. [8] makes the J-V 
model proposed in this paper to be more accurate than ana-
lytical drift–diffusion-based J-V models and more reliable 
than numerical drift–diffusion-based J-V models, and hence, 
the model proposed in this paper can be a valuable tool for 
understanding the operation, improving the PCE, and opti-
mizing the design (to reduce the cost for example) of OSCs 
with CTLs.

2 � Model for OSCs with CTLs

In this section, we present a new J-V model for OSCs with 
CTLs. Section 2.1 describes the working operation and basic 
equations for OSCs. In Sect. 2.2, we derive the approximate 
electric fields inside the HTL, active layer, and ETL for vari-
ous device settings. In Sect. 2.3, we derive the approximate 
boundary conditions for OSCs with and without CTLs. 
Finally, in Sect. 2.4, we describe how the carrier recombi-
nation rates are calculated, and then how the current densi-
ties are calculated in order to obtain the J-V characteristics.

2.1 � Working principle and basic equations

Figure 1 illustrates the device structures and the energy 
levels for an OSC without and with CTLs, while Table 1 
shows a list of mathematical symbols used in this paper. The 
organic active layer is made of a blend of an electron donat-
ing material (called donor) and an electron accepting mate-
rial (called acceptor), giving rise to what is called the bulk 

heterojunction structure. When light is absorbed by the 
active layer, strongly bound electron–hole pairs called exci-
tons are created. When the excitons reach the donor–accep-
tor interface, they generally transform into charge-transfer 
(CT) states [9]. A CT state consists of an electron in the 
acceptor that still binds with a hole in the donor [9]. A CT 
state may decay to the ground state (which is a geminate 
recombination) or separate into a free electron and a free 
hole [9]. Free or mobile electrons (holes) can move inside 
the acceptor (donor) network and can be collected by the 
cathode (anode) to generate an electric current. When a 
free electron and a free hole encounter each other near the 
donor–acceptor interface, they can undergo what is called 
nongeminate recombination [9]. There are three possible 
types of nongeminate recombination: nongeminate bimolec-
ular recombination in which the recombination reproduces 
CT states [9, 10], trap-assisted (or Shockley–Read–Hall) 
recombination [9, 10], and Auger recombination (but 
uncommon in OSCs) [10]. 

In order for the free holes in the active layer to be effi-
ciently collected by the anode, we need to ensure that 
there are no hole energy barriers at the active layer-HTL 
interface and at the HTL-anode interface so that the free 
holes can easily move from the active layer to the HTL 
and then from the HTL to the anode. To eliminate the hole 
energy barriers mentioned above, we need to ensure that 
EFa ≥ HOMOH ≥ HOMOdA (or EFa ≥ VBMH ≥ HOMOdA 
if an inorganic semiconductor is used as the HTL). On the 
other hand, to ensure that the HTL blocks the free elec-
trons in the active layer from being collected by the anode, 
there should be a significant electron energy barrier at the 
active layer-HTL interface so that the free electrons in 
the active layer are prevented from moving to the HTL, 
and thus to the anode. To create the electron energy bar-
rier mentioned above, LUMOH (or CBMH if an inorganic 
semiconductor is used as the HTL) should be considerably 
higher than LUMOaA. Similarly, to allow free electrons 
in the active layer to be efficiently collected by the cath-
ode, we need to ensure that LUMOaA ≥ LUMOE ≥ EFc (or 
LUMOaA ≥ CBME ≥ EFc if an inorganic semiconductor is 
used as the ETL), whereas HOMOE (or VBME if an inor-
ganic semiconductor is used as the ETL) should be consider-
ably lower than HOMOdA so that the free holes in the active 
layer are prevented from moving to the ETL, and thus to the 
cathode. Furthermore, as can be seen later in Sect. 2.2, the 
better the alignments between EFa , HOMOH, and HOMOdA 
(or between EFH and HOMOdA if the HTL is made of a semi-
conductor that contains mobile carriers) and between EFc , 
LUMOE, and LUMOaA (or between EFE and LUMOaA if the 
ETL is made of a semiconductor that contains mobile car-
riers, the higher the strength of the electric field inside the 
device. Since the electric field inside the device is important 
in transporting the charge carriers, the mentioned energy 
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Fig. 1   Schematics illustrating an OSC without CTLs [panel (a)] and 
an OSC with CTLs [panel (b)]. LUMOH denotes the lowest unoccu-
pied molecular orbital (LUMO) of the HTL if the HTL is an organic 
semiconductor, whereas CBMH denotes the conduction band mini-
mum (CBM) of the HTL if the HTL is an inorganic semiconductor. 
HOMOH denotes the highest occupied molecular orbital (HOMO) 
of the HTL if the HTL is an organic semiconductor, whereas VBMH 
denotes the valence band maximum (VBM) of the HTL if the HTL is 
an inorganic semiconductor. LUMOE and HOMOE denote the LUMO 
and HOMO of the ETL, respectively, if the ETL is an organic semi-
conductor. CBME and VBME denote the CBM and VBM of the ETL, 
respectively, if the ETL is an inorganic semiconductor. LUMOdA and 

HOMOdA denote the LUMO and HOMO of the donor of the active 
layer, respectively. LUMOaA and HOMOaA denote the LUMO and 
HOMO of the acceptor of the active layer, respectively. Eg denotes 
the effective band gap, which is the difference between LUMOaA and 
HOMOdA. EFa and EFc denote the Fermi levels of the anode and cath-
ode, respectively. EFH and EFE denote the Fermi levels of the HTL 
and ETL, respectively, which are especially important if the HTL 
and ETL are made of semiconductors that contain mobile carriers. 
LA , LH , and LE denote the thicknesses of the active layer, HTL, and 
ETL, respectively. The edges of the active layer are fixed at x = 0 and 
x = LA as shown in the figure
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Table 1   List of symbols Symbol Description

x Position in OSC in one dimensional coordinate system
LUMOH Lowest unoccupied molecular orbital (LUMO) of the HTL
CBMH Conduction band minimum (CBM) of the HTL
HOMOH Highest occupied molecular orbital (HOMO) of the HTL
VBMH Valence band maximum (VBM) of the HTL
LUMOE LUMO of the ETL
HOMOE HOMO of the ETL
CBME CBM of the ETL
VBME VBM of the ETL
LUMOdA LUMO of the donor of the active layer
HOMOdA HOMO of the donor of the active layer
LUMOaA LUMO of the acceptor of the active layer
HOMOaA HOMO of the acceptor of the active layer
Eg Effective band gap
EFa Fermi level of the anode
EFc Fermi level of the cathode
EFH Fermi level of the HTL
EFE Fermi level of the ETL
LA Thickness of the active layer
LH Thickness of the HTL
LE Thickness of the ETL
q Elementary charge
JnA Electron current density in the active layer
JpA Hole current density in the active layer
Gn Electron generation rate per unit volume
Gp Hole generation rate per unit volume
Rn Net nongeminate recombination rate per unit volume for electrons
Rp Net nongeminate recombination rate per unit volume for holes
nA Free electron concentration in the active layer
pA Free hole concentration in the active layer
t Time
�nA Electron mobility in the active layer
�pA Hole mobility in the active layer
FA Electric field in the active layer
DnA Electron diffusion coefficient in the active layer
DpA Hole diffusion coefficient in the active layer
kB Boltzmann constant
T Absolute temperature
Rb Net bimolecular recombination rate per unit volume
Rtrap Net trap-assisted recombination rate per unit volume
RA Net Auger recombination rate per unit volume
Pd Charge-transfer (CT) state dissociation probability
GCT CT state photogeneration rate per unit volume
kd CT state dissociation rate coefficient
kf CT state decay rate coefficient
�nA,act Actual electron mobility in the active layer
�pA,act Actual hole mobility in the active layer
� Donor–acceptor morphology parameter
a Electron–hole separation of the CT state
Δ� Potential difference
� Electric potential
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levels should be as well-aligned as possible, otherwise the 
electric field inside the device, and hence the current output 
and the PCE would not be maximized.

Inside the active layer, the electron and the hole continu-
ity equations at steady state are given by [8, 11]

Table 1   (continued) Symbol Description

Vbi Built-in voltage
FH Electric field in the HTL
FE Electric field in the ETL
Va Applied voltage
NcaA Effective density of states (DoS) in the conduction band of the 

acceptor of the active layer
NvdA Effective DoS in the valence band of the donor of the active layer
JnH Electron current density in the HTL
JpH Hole current density in the HTL
�nH Electron mobility in the HTL
�pH Hole mobility in the HTL
nH Free electron concentration in the HTL
pH Free hole concentration in the HTL
DnH Electron diffusion coefficient in the HTL
DpH Hole diffusion coefficient in the HTL
NcH Effective DoS in the conduction band of the HTL
EnqF Quasi-Fermi level for electrons
NvH Effective DoS in the valence band of the HTL
EpqF Quasi-Fermi level for holes
JnE Electron current density in the ETL
JpE Hole current density in the ETL
�nE Electron mobility in the ETL
�pE Hole mobility in the ETL
nE Free electron concentration in the ETL
pE Free hole concentration in the ETL
DnE Electron diffusion coefficient in the ETL
DpE Hole diffusion coefficient in the ETL
NcE Effective DoS in the conduction band of the ETL
NvE Effective DoS in the valence band of the ETL
nA,max Maximum electron concentration in the active layer
pA,max Maximum hole concentration in the active layer
nA,net Net electron concentration in the active layer
pA,net Net hole concentration in the active layer
J Total current density
� Bimolecular recombination reduction coefficient
kL Langevin recombination coefficient
�A Effective permittivity of the active layer
n0 The solution to �JnA∕�x = 0

p0 The solution to �JpA
/

�x = 0

nint Intrinsic carrier concentration
vth Electron thermal velocity
�n Electron capture cross section
�p Hole capture cross section
Ntrap Trap density
Etrap Trap energy level
kA1 and kA2 Auger recombination coefficients
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where q is the elementary charge, JnA ( JpA ) is the electron 
(hole) current density in the active layer, Gn ( Gp ) is the free 
electron (hole) generation rate per unit volume in the active 
layer, Rn ( Rp ) is the net nongeminate recombination rate per 
unit volume for electrons (holes) in the active layer, and nA 
( pA ) is the free electron (hole) concentration in the active 
layer. We assume the carrier photogeneration (carrier gen-
eration due to light absorption) only occurs in the active 
layer, and hence the subscript A (used to denote processes 
or properties associated with the active layer) is not needed 
for Gn and Gp since Gn and Gp are exclusive for the active 
layer. Furthermore, we apply the result from Ref. [12] which 
states that the net carrier recombination rate inside a semi-
conducting layer is zero if the carrier photogeneration inside 
the layer is zero. This statement means that only the net 
nongeminate recombination rate inside the active layer is 
not zero, whereas the net nongeminate recombination rates 
inside the HTL and ETL are zero (because there are no car-
rier photogenerations inside the HTL and ETL), and hence 
the subscript A is also dropped for Rn and Rp since Rn and 
Rp are exclusive for the active layer.

JnA and JpA , which contain the drift and the diffusion 
components, are given by [8, 11]

where �nA ( �pA ) is the electron (hole) mobility inside the 
active layer, FA is the electric field inside the active layer, 
and DnA ( DpA ) is the electron (hole) diffusion coefficient 
inside the active layer. DnA and DpA are given by

where kB is the Boltzmann constant and T  is the absolute 
temperature.

Rn and Rp are given by [8, 12]

(1)
1

q

�JnA

�x
+ Gn − Rn =

�nA

�t
= 0

(2)−
1

q

�JpA

�x
+ Gp − Rp =

�pA

�t
= 0

(3)JnA = q�nAFAnA + qDnA

�nA

�x

(4)JpA = q�pAFApA − qDpA

�pA

�x

(5)DnA =
�nAkBT

q

(6)DpA =
�pAkBT

q

(7)Rn = Rp = Rb + Rtrap + RA

where Rb is the net bimolecular recombination rate per unit 
volume, Rtrap is the net trap-assisted recombination rate per 
unit volume, and RA is the net Auger recombination rate per 
unit volume.

Free carriers are produced from the dissociation of CT 
states, and hence Gn and Gp are given by [8, 12]

where Pd is the CT state dissociation probability, and GCT 
is the CT state photogeneration rate per unit volume. Note 
that Rb reproduces CT states as explained earlier in this 
section. It is also worth noting that if there is no carrier 
photogeneration in the active layer, then Rb = 0 according 
to Ref. [12] [this result is explained earlier after Eqs. (1) 
and (2)]. Furthermore, due to the bulk heterojunction struc-
ture of the active layer, the photogenerated excitons can be 
assumed to immediately reach the donor–acceptor interface 
and immediately produce CT states. Therefore, it is reason-
able to assume that the GCT profile has the same shape as the 
light absorption profile [8].

The CT state dissociation probability Pd is defined as [8, 
11, 13]

where kd is the CT state dissociation rate coefficient, and kf 
is the CT state decay rate coefficient. As in our previous J-V 
model [8], we use kd as described by Ref. [14], which is an 
improved version of the Onsager-Braun model [13], where 
parameters such as the actual electron mobility in the active 
layer �nA,act , the actual hole mobility in the active layer 
�pA,act , the donor–acceptor morphology parameter � , and 
the electron–hole separation of the CT state a , are required.

It is worth mentioning that the carrier mobilities, temper-
atures, and electric fields inside the active layer, HTL, and 
ETL are taken to be uniform (i.e., independent of the posi-
tion x ) in this paper. This is done to allow us to derive ana-
lytical expressions for the boundary conditions and to allow 
us to use the combined analytical and regression method as 
proposed in Ref. [8].

2.2 � Electric fields in the device

In this section, we formulate the approximate electric fields in 
the active layer, HTL, and ETL for various device settings. As 
is often the case for OSCs, the active layer is made of undoped 
or intrinsic organic semiconductors. The HTL and ETL can be 
made of semiconductors that basically contain no mobile carri-
ers (primarily undoped organic semiconductors [15]) or semi-
conductors that contain mobile carriers (e.g., metal oxides). As 
mentioned earlier, we need to approximate the electric fields 
to be uniform in order to derive analytical expressions for the 

(8)Gn = Gp = Pd

(

GCT + Rb

)

(9)Pd =
kd

kd + kf
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boundary conditions and obtain the intended J-V model. To 
approximate the electric fields, we use the fact that the average 
electric field across any layer of interest is equal to −Δ�∕L 
where Δ� is the difference in the electric potential � across 
the layer and L is the thickness of the layer [11, 16].

2.2.1 � Device with the HTL and ETL made of semiconductors 
without mobile carriers

When a semiconductor that contains no mobile carriers (usu-
ally undoped organic semiconductor) makes contact with a 
material that contains mobile carriers (e.g., a metal), exchanges 
of free of carriers generally do not occur (and thus no depletion 
region exists) at the contact between the two materials even 
if the Fermi levels of the two materials are different. Hence, a 
semiconductor without mobile carriers can be treated like an 
insulator (instead of a semiconductor) when it makes contact 
with another material (whether the material contains mobile 
carriers or not). This fact leads to the well-known metal–insu-
lator-metal model used for describing the basic OSC structure 
which consists of an organic active layer sandwiched between 
two electrodes [17].

For the device with the HTL and ETL made of semicon-
ductors without mobile carriers, the device can therefore be 
viewed as a metal (anode)-insulator (HTL)-insulator (organic 
active layer)-insulator (ETL)-metal (cathode) structure, where 
the positions of the interfaces are as shown in Fig. 1. There are 
no depletion regions at all interfaces including at the anode-
HTL (metal–insulator) and ETL-cathode (insulator–metal) 
interfaces. To formulate the electric fields, we can view the 
HTL, active layer, and ETL as a single insulator sandwiched 
by the anode and cathode. The built-in voltage Vbi across any 
specific layer is given by the potential difference Δ� across the 
layer without applied bias. Hence, Vbi across the HTL, active 
layer, and ETL is given by (refer Fig. 1)

By considering the effect of the applied voltage Va , the 
potential difference Δ� across the HTL, active layer, and 
ETL is now given by Vbi − Va (positive Va means forward 
bias, which opposes Vbi , while negative Va means reverse bias). 
Since we view the HTL, active layer, and ETL as a single insu-
lator layer, we can assume that FH , FA , and FE to be the same 
and are given by the average electric field across that single 
layer, where FH , FA , and FE are the electric fields inside the 
HTL, active layer, and ETL, respectively. Therefore, FH , FA , 
and FE can be approximated to be given by

where Vbi is given by Eq. (10).

(10)Vbi = �|x=LA+LE
− �|x=−LH

=
EFc − EFa

q

(11)FH = FA = FE =
Va − Vbi

LH + LA + LE

2.2.2 � Device with the HTL made of a semiconductor 
without mobile carriers and no ETL

For the device in this case, the anode-HTL, HTL-active 
layer, and active layer-cathode interfaces are located at 
x = −LH , x = 0 , and x = LA , respectively (refer Fig. 1). 
As explained in Sect. 2.2.1, the device in this case can 
be viewed as a metal (anode)-insulator (HTL)-insulator 
(organic active layer)-metal (cathode) structure. There are 
no depletion regions at all interfaces. To formulate FH and 
FA , we can view the HTL and active layer as a single insu-
lator sandwiched by the anode and cathode. The built-in 
voltage across the HTL and active layer is given by

Considering the effect of Va , the potential difference Δ� 
across the HTL and active layer is given by Vbi − Va . Since 
we view the HTL and the active layer as a single insulator 
layer, we can assume that FH and FA to be the same and 
are given by the average electric field across that single 
layer, which can be approximated to be given by

where Vbi is given by Eq. (12).

2.2.3 � Device with the ETL made of a semiconductor 
without mobile carriers and no HTL

For the device in this case, the anode-active layer, active 
layer-ETL, and ETL-cathode interfaces are located at 
x = 0 , x = LA and x = LA + LE , respectively (refer Fig. 1). 
As explained in Sect. 2.2.1, the device in this case can be 
viewed as a metal (anode)-insulator (organic active layer)-
insulator (ETL)-metal (cathode) structure, where there are 
no depletion regions at all of those interfaces. To formu-
late FA and FE , we can view the active layer and ETL as a 
single insulator sandwiched by the anode and cathode. The 
built-in voltage across the active layer and ETL is given by

Considering the effect of Va , the potential difference Δ� 
across the active layer and ETL is given by Vbi − Va . Since 
we view the active layer and ETL as a single layer, we can 
assume that FA and FE to be the same and are given by the 
average electric field across that single layer, which can be 
approximated to be given by

(12)Vbi = �|x=LA
− �|x=−LH

=
EFc − EFa

q

(13)FH = FA =
Va − Vbi

LH + LA

(14)Vbi = �|x=LA+LE
− �|x=0 =

EFc − EFa

q
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where Vbi is given by Eq. (14).

2.2.4 � Device with the HTL and ETL made of semiconductors 
with mobile carriers

As explained in Sect. 2.2.1, the device in this case can be 
viewed as a metal (anode)-semiconductor (HTL)-insulator 
(organic active layer)-semiconductor (ETL)-metal (cath-
ode) structure, where the positions of the interfaces are as 
shown in Fig. 1. Obviously, there are no depletion regions 
at the HTL-active layer (semiconductor-insulator) and 
active layer-ETL (insulator-semiconductor) interfaces. 
However, at the anode-HTL (ETL-cathode) interface, 
a mismatch between EFa ( EFE ) and EFH ( EFc ) leads to a 
depletion region. If EFa > EFH (EFE > EFc), a hole (an 
electron) Schottky barrier forms at the anode-HTL (ETL-
cathode) interface which can disrupt the working opera-
tion  by disrupting the collection of free holes (electrons) 
by the anode (cathode). Therefore, it is essential to ensure 
that any mismatch between EFa ( EFE ) and EFH ( EFc ) does 
not disrupt the device operation.

A CTL must be a semiconductor (in other words, a 
material with a band gap) in order to perform the role of 
blocking the unwanted carrier type. Therefore, to ensure 
that the use of the HTL (ETL) serves its purposes well, 
i.e., to efficiently transport free holes (electrons) and 
block free electrons (holes) and excitons, we only con-
sider the case where the HTL (ETL) is a strong p-type 
(n-type) semiconductor if the HTL (ETL) is made of a 
semiconductor with mobile carriers. This is because a 
strong p-type (n-type) semiconductor to a certain extent 
can be treated similar to a metal [18], which means that 
the depletion layer in a strong p-type (n-type) semicon-
ductor can often be neglected [18] and this can ensure 
that any mismatch between EFa ( EFE ) and EFH ( EFc ) does 
not disrupt the device operation. Of course, technically a 
very thin depletion layer still appears at the anode-HTL 
(ETL-cathode) interface if the HTL (ETL) is a strong 
p-type (n-type) semiconductor and if there is a mismatch 
between EFa ( EFc ) and EFH ( EFE).  However, even if a hole 
(an electron) Schottky barrier exists due to the energy 
level mismatch, the very thin depletion layer still allows 
free holes (electrons) to tunnel easily from the valence 
(conduction) band of the HTL (ETL) to the anode (cath-
ode), and this means that the anode (cathode) can still 
collect free holes (electrons) efficiently. As widely known, 
metals are usually assumed to be ideal conductors in elec-
trical circuit analysis (which is reasonable due to their very 
high conductivity), meaning that the potential difference 

(15)FA = FE =
Va − Vbi

LA + LE

across metals is usually assumed to be zero (in reality, 
metals are of course not ideal conductors). Therefore, 
since the HTL (ETL) is a strong p-type (n-type) semicon-
ductor, we assume that the potential difference Δ� across 
the HTL (ETL) is not influenced by Va and is always zero, 
just like how the potential difference across a metal is usu-
ally assumed to be. Therefore, for the device in this case, 
we can approximate that

For the active layer, the built-in voltage across it (i.e., Δ� 
across it in the absence of Va ) is given by

Since Va only affects Δ� across the active layer (because it 
does not affect Δ� across the HTL and ETL), Δ� across the 
active layer is therefore given by Vbi − Va . Therefore, we can 
approximate FA to be

where Vbi is given by Eq. (17).

2.2.5 � Device with the HTL made of a semiconductor 
with mobile carriers and no ETL

For the device in this case, the anode-HTL, HTL-active layer, 
and active layer-cathode interfaces are located at x = −LH , 
x = 0 , and x = LA , respectively (refer Fig. 1). As explained 
in Sect. 2.2.1, the device in this case can be viewed as a metal 
(anode)-semiconductor (HTL)-insulator (organic active layer)-
metal (cathode) structure. As explained in Sect. 2.2.4, the HTL 
is considered to be a strong p-type semiconductor. There are 
no depletion layers at all interfaces, including at the anode-
HTL interface (negligible depletion layer) as explained in 
Sect. 2.2.4. Using the same argument as in Sect. 2.2.4 above, 
we can assume that Δ� across the HTL made of a strong 
p-type semiconductor is not influenced by Va and is always 
zero, and hence

The built-in voltage (i.e., Δ� without Va ) across the active 
layer is given by

Since Va only affects Δ� across the active layer for the 
device in this case, Δ� across the active layer is Vbi − Va . 
Therefore, we can approximate FA to be given by

(16)FH = FE = 0

(17)Vbi = �|x=LA
− �|x=0 =

EFE − EFH

q

(18)FA =
Va − Vbi

LA

(19)FH = 0

(20)Vbi = �|x=LA
− �|x=0 =

EFc − EFH

q
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where Vbi is given by Eq. (20).

2.2.6 � Device with the ETL made of a semiconductor 
with mobile carriers and no HTL

For the device in this case, the anode-active layer, active layer-
ETL, and ETL-cathode interfaces are located at x = 0 , x = LA , 
and x = LA + LE , respectively (refer Fig. 1). As explained in 
Sect. 2.2.1, the device in this case can be viewed as a metal 
(anode)-insulator (organic active layer)-semiconductor (ETL)-
metal (cathode) structure. As explained in Sect. 2.2.4, the ETL 
is considered to be a strong n-type semiconductor. There are 
no depletion layers at all interfaces, including at the ETL-
cathode interface (negligible depletion layer) as explained in 
Sect. 2.2.4. Using the same argument as in Sect. 2.2.4 above, 
we can assume that Δ� across the ETL made of a strong 
n-type semiconductor is not influenced by Va and is always 
zero, and hence

The built-in voltage (i.e., Δ� without Va ) across the active 
layer is given by

Since Va only affects Δ� across the active layer for the 
device in this case, Δ� across the active layer is Vbi − Va . 
Therefore, we can approximate FA to be given by

where Vbi is given by Eq. (23).

2.2.7 � Device with the HTL made of a semiconductor 
without mobile carriers and the ETL made of a 
semiconductor with mobile carriers

As explained in Sect. 2.2.1, the device in this case can be 
viewed as a metal (anode)-insulator (HTL)-insulator (organic 
active layer)-semiconductor (ETL)-metal (cathode) structure, 
where the positions of the interfaces are as shown in Fig. 1. 
As explained in Sect. 2.2.4, the ETL is considered to be a 
strong n-type semiconductor. There are no depletion layers 
at all interfaces, including at the ETL-cathode interface (neg-
ligible depletion layer) as explained in Sect. 2.2.4. Using the 
same argument as in Sect. 2.2.4 above, we can assume that Δ� 
across the ETL made of a strong n-type semiconductor is not 
influenced by Va and is always zero, and hence

(21)FA =
Va − Vbi

LA

(22)FE = 0

(23)Vbi = �|x=LA
− �|x=0 =

EFE − EFa

q

(24)FA =
Va − Vbi

LA

To formulate FH and FA , we can treat the HTL and active 
layer as a single insulator. The built-in voltage (i.e., Δ� 
without Va ) across the HTL and active layer is given by

Since Va only affects Δ� across the HTL and active layer 
for the device in this case, Δ� across the HTL and active layer 
is Vbi − Va . Since we view the HTL and active layer as a sin-
gle layer, we can assume that FH and FA to be the same and 
are given by the average electric field across that single layer, 
which can be approximated to be given by

where Vbi is given by Eq. (26).

2.2.8 � Device with the HTL made of a semiconductor 
with mobile carriers and the ETL made of a 
semiconductor without mobile carriers

As explained in Sect. 2.2.1, the device in this case can be 
viewed as a metal (anode)-semiconductor (HTL)-insulator 
(organic active layer)-insulator (ETL)-metal (cathode) struc-
ture, where the positions of the interfaces are as shown in 
Fig. 1. As explained in Sect. 2.2.4, the HTL is considered 
to be a strong p-type semiconductor. There are no depletion 
layers at all interfaces, including at the anode-HTL interface 
(negligible depletion layer) as explained in Sect. 2.2.4. Using 
the same argument as in Sect. 2.2.4 above, we can assume that 
Δ� across the HTL made of a strong p-type semiconductor is 
not influenced by Va and is always zero, and hence

To formulate FA and FE , we can treat the active layer and 
ETL as a single insulator. The built-in voltage (i.e., Δ� with-
out Va ) across the active layer and ETL is given by

Since Va only affects Δ� across the active layer and ETL 
for the device in this case, Δ� across the active layer and ETL 
is Vbi − Va . Since we view the active layer and ETL as a sin-
gle layer, we can assume that FA and FE to be the same and 
are given by the average electric field across that single layer, 
which can be approximated to be given by

(25)FE = 0

(26)Vbi = �|x=LA
− �|x=−LH

=
EFE − EFa

q

(27)FH = FA =
Va − Vbi

LH + LA

(28)FH = 0

(29)Vbi = �|x=LA+LE
− �|x=0 =

EFc − EFH

q

(30)FA = FE =
Va − Vbi

LA + LE
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where Vbi is given by Eq. (29).

2.3 � Boundary conditions

The aims of this Sect. 2.3 are to derive the boundary con-
ditions at x = 0 and x = LA for Eqs. (1) and (2) for differ-
ent device settings, where Eqs. (1) and (2) are the continuity 
equations for the electrons and the holes in the active layer, 
respectively. In other words, here we aim to derive the bound-
ary conditions that describe nA and pA at x = 0 and x = LA for 
different device settings.

2.3.1 � Boundary conditions at x = 0 for the device 
without the HTL

For an OSC without the HTL, x = 0 is the position of the 
anode-active layer contact (refer Fig. 1). At x = 0 , there is 
no depletion layer (because it is a metal–insulator contact as 
explained in Sect. 2.2.1), and both the electron and the hole 
quasi-Fermi levels must coincide with EFa . Employing the 
Boltzmann statistics, the boundary conditions at x = 0 are [8, 
11]

where NcaA is the effective density of states (DoS) in the 
conduction band of the acceptor material of the active layer 
and NvdA is effective DoS in the valence band of the donor 
material of the active layer.

2.3.2 � Boundary conditions at x = L
A

 for the device 
without the ETL

For an OSC without the ETL, x = LA is the position of the 
active layer-cathode contact (refer Fig. 1). At x = LA , there 
is no depletion layer (because it is an insulator–metal con-
tact as explained in Sect. 2.2.1), and both the electron and the 
hole quasi-Fermi levels must coincide with EFc . Employing 
the Boltzmann statistics, the boundary conditions at x = LA 
are [8, 11]

(31)nA
|

|x=0
= NcaA exp

[

−
(

LUMOaA − EFa

)

kBT

]

(32)pA
|

|x=0
= NvdA exp

[

−
(

EFa − HOMOdA

)

kBT

]

(33)nA
|

|x=LA
= NcaA exp

[

−
(

LUMOaA − EFc

)

kBT

]

(34)pA
|

|x=LA
= NvdA exp

[

−
(

EFc − HOMOdA

)

kBT

]

2.3.3 � Boundary conditions at x = 0 for the device 
with the HTL made of a semiconductor 
without mobile carriers

An HTL without mobile carriers is made of  an organic 
semiconductor (usually undoped), and hence, LUMOH and 
HOMOH are used in this Sect. 2.3.3 instead of CBMH and 
VBMH. The anode-HTL and the HTL-active layer interfaces 
are located at x = −LH and x = 0 , respectively (see Fig. 1), 
and can be treated like metal–insulator and insulator-insulator 
contacts, respectively (see the explanation in Sect. 2.2.1). The 
electron current density inside the HTL, denoted by JnH , and 
the hole current density inside the HTL, denoted by JpH , are 
given by

where nH ( pH ) is the free electron (hole) concentration inside 
the HTL, �nH ( �pH ) is the electron (hole) mobility inside the 
HTL, FH is the electric field inside the HTL, and DnH ( DpH ) 
is the electron (hole) diffusion coefficient inside the HTL.

The continuity equation for electrons in the HTL has a simi-
lar form to Eq. (1). As mentioned in Sect. 2.1, we assume that 
the carrier mobilities, temperatures, and electric fields (and 
hence the diffusion coefficients too) inside all layers to be uni-
form, and we also assume that the carrier photogeneration rate 
and the net nongeminate recombination rate in the HTL to be 
zero. Therefore, the continuity equation for electrons in the 
HTL at steady state is

The general solution to Eq. (37) is

where A1 and A2 are constants that can be obtained by apply-
ing the boundary conditions, one at x = −LH and the other at 
x = 0 . At x = −LH , the electron quasi-Fermi level must coin-
cide with EFa , and thus by using the Boltzmann statistics, the 
boundary condition for Eq. (37) at x = −LH is

where NcH is the effective DoS in the conduction band of 
the HTL. At x = 0 , the electron concentration in the HTL is

(35)JnH = q�nHFHnH + qDnH

�nH

�x

(36)JpH = q�pHFHpH − qDpH

�pH

�x

(37)1

q

�JnH

�x
= DnH

�2nH

�x2
+ �nHFH

�nH

�x
= 0

(38)nH = A1 exp

(

−�nHFHx

DnH

)

+ A2

(39)nH
|

|x=−LH
= NcH exp

[

−
(

LUMOH − EFa

)

kBT

]
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where EnqF is the electron quasi-Fermi level. Since EnqF must 
be continuous within the device, EnqF

|

|

|x=0
 in the HTL must 

be the same as EnqF
|

|

|x=0
 in the active layer. Therefore, at 

x = 0 , the electron concentration in the active layer is

Combining Eqs. (40) and (41), we get another boundary 
condition for Eq. (37), which is at x = 0 , and is given by

where

Applying the two boundary conditions [i.e., Eqs. (39) and 
(42)] to the solution of Eq. (37) [i.e., Eq. (38)], we get

with

where nH||x=−LH and nH||x=0 are given by Eqs. (39) and (42), 
respectively.

Furthermore, the electron current continuity at x = 0 
means that JnH||x=0 = JnA

|

|x=0
 where JnH and JnA are given 

by Eqs. (35) and (3), respectively. Applying the electron 
current continuity at x = 0 interface, we have

We can replace 
(

�nH∕�x
)

|

|

|x=0
 and nH||x=0 in Eq. (47) with 

the derivative of Eq. (38) at x = 0 and Eq. (42), respectively, 
to obtain the boundary condition at x = 0 for Eq. (1), which 
is given by

(40)nH
�

�x=0
= NcH exp

⎡

⎢

⎢

⎢

⎣

−
�

LUMOH − EnqF
�

�

�x=0

�

kBT

⎤

⎥

⎥

⎥

⎦

(41)nA
�

�x=0
= NcaA exp

⎡

⎢

⎢

⎢

⎣

−
�

LUMOaA − EnqF
�

�

�x=0

�

kBT

⎤

⎥

⎥

⎥

⎦

(42)nH
|

|x=0
= �1 nA

|

|x=0

(43)�1 =
NcH

NcaA

exp

(

LUMOaA − LUMOH

kBT

)

(44)A1 =
nH

|

|x=−LH
− nH

|

|x=0

�1

(45)A2 =
nH

|

|x=0
exp

(

�nHFHLH

DnH

)

− nH
|

|x=−LH

�1

(46)�1 = exp

(

�nHFHLH

DnH

)

− 1

(47)

�nHFH nH
|

|x=0
+ DnH

�nH

�x

|

|

|

|x=0

= �nAFA nA
|

|x=0
+ DnA

�nA

�x

|

|

|

|x=0

where nH||x=−LH is given by Eq. (39).
To obtain the boundary condition at x = 0 for Eq. (2), we 

start with the continuity equation for free holes in the HTL 
at steady state [which has a similar form to Eq. (2), but with 
zero carrier photogeneration rate and zero net nongeminate 
recombination rate as explained in Sect. 2.1, which is

The general solution to Eq. (49) is

where A3 and A4 are constants that can be obtained by apply-
ing the boundary conditions, one at x = −LH and another at 
x = 0 . At x = −LH , the hole quasi-Fermi level must coincide 
with EFa , and thus by using the Boltzmann statistics, the 
boundary condition for Eq. (49) at x = −LH is

where NvH is the effective DoS in the valence band of the 
HTL. At x = 0 , the hole concentration in the HTL is

where EpqF is the hole quasi-Fermi level. Since EpqF must be 
continuous within the device, EpqF

|

|

|x=0
 in the HTL must be 

the same as EpqF
|

|

|x=0
 in the active layer. Therefore, at x = 0 , 

the hole concentration in the active layer is

Combining Eqs. (52) and (53), we get another boundary 
condition for Eq. (49), which is at x = 0 , and is given by

where

(48)

[

�nHFH�1 exp

(

�nHFHLH

DnH

)

− �nAFA�1

]

nA
|

|x=0

− �1DnA

�nA

�x

|

|

|

|x=0

= �nHFH nH
|

|x=−LH

(49)−
1

q

�JpH

�x
= DpH

�2pH

�x2
− �pHFH

�pH

�x
= 0

(50)pH = A3 exp

(

�pHFHx

DpH

)

+ A4

(51)pH
|

|x=−LH
= NvH exp

[

−
(

EFa − HOMOH

)

kBT

]

(52)pH
�

�x=0
= NvH exp

⎡

⎢

⎢

⎢

⎣

−
�

EpqF
�

�

�x=0
− HOMOH

�

kBT

⎤

⎥

⎥

⎥

⎦

(53)pA
�

�x=0
= NvdA exp

⎡

⎢

⎢

⎢

⎣

−
�

EpqF
�

�

�x=0
− HOMOdA

�

kBT

⎤

⎥

⎥

⎥

⎦

(54)pH
|

|x=0
= �2 pA

|

|x=0
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Applying the two boundary conditions [i.e., Eqs. (51) 
and (54)] to the solution of Eq. (49) [i.e., Eq. (50)], we get

with

where pH||x=−LH and pH||x=0 are given by Eqs. (51) and (54), 
respectively.

Furthermore, the hole current continuity at x = 0 
means that JpH

|

|

|x=0
= JpA

|

|

|x=0
 where JpH and JpA are given 

by Eqs. (36) and (4), respectively. Applying the hole cur-
rent continuity at x = 0 interface, we have

We can replace 
(

�pH∕�x
)

|

|

|x=0
 and pH||x=0 in Eq.  (59) 

with the derivative of Eq.  (50) at x = 0 and Eq.  (54), 
respectively, to obtain the boundary condition at x = 0 for 
Eq. (2), which is given by

where pH||x=−LH is given by Eq. (51).
It is worth noting that FH and FA can be zero at a cer-

tain Va (note that FH = FA for the device in this case as 
explained in Sect. 2.2.1 or Sect. 2.2.2 for example). When 
FH and FA are zero, �1 = 0 [see Eq.  (46)] and thus A1 
and A2 are undefined (the same happens with A3 and A4 
because �2 = 0 too). Nevertheless, when FH and FA are 
zero, Eqs. (48) and (60) can still be used for the device 
in this case, but by using values for FH and FA that are 
very close to zero, not exactly zero. Alternatively (and 
more accurately), when FH and FA are zero, the boundary 
conditions at x = 0 for Eqs. (1) and (2) for the device in 
this case are the same as the boundary conditions at x = 0 
for Eqs. (1) and (2) for the device described in Sect. 2.3.5 
(by applying FA = 0 to the boundary conditions obtained 
in Sect. 2.3.5).

(55)�2 =
NvH

NvdA

exp

(

HOMOH − HOMOdA

kBT

)

(56)A3 =
pH

|

|x=−LH
− pH

|

|x=0

�2

(57)A4 =

pH
|

|x=0
exp

(

−�pHFHLH

DpH

)

− pH
|

|x=−LH

�2

(58)�2 = exp

(

−�pHFHLH

DpH

)

− 1

(59)

�pHFH pH
|

|x=0
− DpH

�pH

�x

|

|

|

|x=0

= �pAFA pA
|

|x=0
− DpA

�pA

�x

|

|

|

|x=0

(60)
[

�pHFH�2 exp

(

−�pHFHLH

DpH

)

− �pAFA�2

]

pA
|

|x=0
+ �2DpA

�pA

�x

|

|

|

|x=0

= �pHFH pH
|

|x=−LH

2.3.4 � Boundary conditions at x = L
A

 for the device 
with the ETL made of a semiconductor 
without mobile carriers

An ETL without mobile carriers is made of an organic 
semiconductor  (usually undoped), and hence LUMOE 
and HOMOE are used here instead of CBME and VBME. 
The active layer-ETL and the ETL-cathode interfaces 
are located at x = LA and x = LA + LE , respectively (see 
Fig. 1), and can be treated like insulator-insulator and 
insulator–metal contacts, respectively (see the explana-
tion in Sect. 2.2.1). The electron current density inside the 
ETL, denoted by JnE , and the hole current density inside 
the ETL, denoted by JpE , are given by

where nE ( pE ) is the free electron (hole) concentration inside 
the ETL, �nE ( �pE ) is the electron (hole) mobility inside the 
ETL, FE is the electric field inside the ETL, and DnE ( DpE ) 
is the electron (hole) diffusion coefficient inside the ETL.

The continuity equation for electrons in the ETL has 
a similar form to Eq. (1). As mentioned in Sect. 2.1, we 
assume that the carrier mobilities, temperatures, and elec-
tric fields (and hence the diffusion coefficients too) inside 
all layers to be uniform, and we also assume that the car-
rier photogeneration rate and the net nongeminate recom-
bination rate in the ETL to be zero. Therefore, the conti-
nuity equation for electrons in the ETL at steady state is

The general solution to Eq. (63) is

where A5 and A6 are constants that can be obtained by apply-
ing the boundary conditions, one at x = LA + LE and another 
at x = LA . At x = LA + LE , the electron quasi-Fermi level 
must coincide with EFc , and thus by using the Boltzmann 
statistics, the boundary condition for Eq. (63) at x = LA + LE 
is

(61)JnE = q�nEFEnE + qDnE

�nE

�x

(62)JpE = q�pEFEpE − qDpE

�pE

�x

(63)1

q

�JnE

�x
= DnE

�2nE

�x2
+ �nEFE

�nE

�x
= 0

(64)nE = A5 exp

(

−�nEFEx

DnE

)

+ A6
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where NcE is the effective DoS in the conduction band of the 
ETL. There must be a continuity in the electron quasi-Fermi 
level inside the device including at x = LA , and by using a 
similar approach as in Sect. 2.3.3 [refer Eqs. (40) and (41)], 
it can be shown that the boundary condition for Eq. (63) at 
x = LA is

where

Applying the two boundary conditions [i.e., Eqs. (65) and 
(66)] to the solution of Eq. (63) [i.e., Eq. (64)], we get

with

where nE||x=LA+LE and nE||x=LA are given by Eqs. (65) and (66), 
respectively.

The electron current continuity at x = LA means that 
JnE

|

|x=LA
= JnA

|

|x=LA
 where JnE and JnA are given by Eqs. (61) 

and (3), respectively. Applying the electron current continuity 
at x = LA interface, we have

We can replace 
(

�nE∕�x
)

|

|

|x=LA
 and nE||x=LA in Eq. (71) with 

the derivative of Eq. (64) at x = LA and Eq. (66), respectively, 
to obtain the boundary condition at x = LA for Eq. (1), which 
is given by

(65)nE
|

|x=LA+LE
= NcE exp

[

−
(

LUMOE − EFc

)

kBT

]

(66)nE
|

|x=LA
= �3 nA

|

|x=LA

(67)�3 =
NcE

NcaA

exp

(

LUMOaA − LUMOE

kBT

)

(68)A5 =
nE
|

|x=LA+LE
− nE

|

|x=LA

�3

(69)

A6 =
nE
|

|x=LA
exp

[

−�nEFE(LA+LE)
DnE

]

− nE
|

|x=LA+LE
exp

(

−�nEFELA

DnE

)

�3

(70)�3 = exp

[

−�nEFE

(

LA + LE
)

DnE

]

− exp

(

−�nEFELA

DnE

)

(71)

�nEFE nE
|

|x=LA
+ DnE

�nE

�x

|

|

|

|x=LA

= �nAFA nA
|

|x=LA
+ DnA

�nA

�x

|

|

|

|x=LA

(

�nEFE�3 exp

[

−�nEFE

(

LA + LE

)

DnE

]

− �nAFA�3

)

nA
|

|x=LA

− �3DnA

�nA

�x

|

|

|

|x=LA

where nE||x=LA+LE is given by Eq. (65).
To obtain the boundary condition at x = LA for Eq. (2), we 

start with the continuity equation for free holes in the ETL at 
steady state [which has a similar form to Eq. (2), but with zero 
carrier photogeneration rate and zero net nongeminate recom-
bination rate as explained in Sect. 2.1], which is

The general solution to Eq. (73) is

where A7 and A8 are constants that can be obtained by apply-
ing the boundary conditions, one at x = LA + LE and another 
at x = LA . At x = LA + LE , the hole quasi-Fermi level must 
coincide with EFc , and thus by using the Boltzmann statis-
tics, the boundary condition for Eq. (73) at x = LA + LE is

where NvE is the effective DoS in the valence band of the 
ETL. There must be a continuity in the hole quasi-Fermi 
level inside the device including at x = LA , and by using the 
same approach as in Sect. 2.3.3 [refer Eqs. (52) and (53)], 
it can be shown that the boundary condition for Eq. (73) at 
x = LA is

where

Applying the two boundary conditions [i.e., Eqs. (75) and 
(76)] to the solution of Eq. (73) [i.e., Eq. (74)], we get

with

(72)= �nEFE exp

(

−�nEFELA

DnE

)

nE
|

|x=LA+LE

(73)−
1

q

�JpE

�x
= DpE

�2pE

�x2
− �pEFE

�pE

�x
= 0

(74)pE = A7 exp

(

�pEFEx

DpE

)

+ A8

(75)pE
|

|x=LA+LE
= NvE exp

[

−
(

EFc − HOMOE

)

kBT

]

(76)pE
|

|x=LA
= �4 pA

|

|x=LA

(77)�4 =
NvE

NvdA

exp

(

HOMOE − HOMOdA

kBT

)

(78)A7 =
pE
|

|x=LA+LE
− pE

|

|x=LA

�4

(79)

A8 =

pE
|

|x=LA
exp

[

�pEFE(LA+LE)
DpE

]

− pE
|

|x=LA+LE
exp

(

�pEFELA

DpE

)

�4
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where pE||x=LA+LE and pE||x=LA are given by Eqs. (75) and 
(76), respectively.

Furthermore, the hole current continuity at x = LA means 
that JpE

|

|

|x=LA
= JpA

|

|

|x=LA
 where JpE and JpA are given by Eqs. 

(62) and (4), respectively. Applying the hole current continu-
ity at x = LA interface, we have

We can replace 
(

�pE∕�x
)

|

|

|x=LA
 and pE||x=LA in Eq. (81) 

with the derivative of Eq.  (74) at x = LA and Eq.  (76), 
respectively, to obtain the boundary condition at x = LA for 
Eq. (2), which is given by

where pE||x=LA+LE is given by Eq. (75).
It is worth noting that FA and FE can be zero at a certain 

Va (note that FA = FE for the device in this case as explained 
in Sect. 2.2.1 or Sect. 2.2.3 for example). When FA and FE 
are zero, �3 = 0 [see Eq. (70)] and thus A5 and A6 are unde-
fined (the same happens with A7 and A8 because �4 = 0 too). 
Nevertheless, when FA and FE are zero, Eqs. (72) and (82) 
can still be used for the device in this case, but by using 
values of FA and FE that are very close to zero, not exactly 
zero. Alternatively (and more accurately), when FA and FE 
are zero, the boundary conditions at x = LA for Eqs. (1) and 
(2) for the device in this case are the same as the bound-
ary conditions at x = LA for Eqs. (1) and (2) for the device 
described in Sect. 2.3.6 (by applying FA = 0 to the boundary 
conditions obtained in Sect. 2.3.6).

2.3.5 � Boundary conditions at x = 0 for the device 
with the HTL made of a semiconductor with mobile 
carriers

For the device in this case, we assume the HTL is made 
of an inorganic semiconductor, and hence CBMH and 
VBMH are used here instead of LUMOH and HOMOH. 
It is worth noting that it is possible for an organic sem-
iconductor to have mobile carriers if it is doped [19]. 

(80)�4 = exp

[

�pEFE

(

LA + LE
)

DpE

]

− exp

(

�pEFELA

DpE

)

(81)

�pEFE pE
|

|x=LA
− DpE

�pE

�x

|

|

|

|x=LA

= �pAFA pA
|

|x=LA
− DpA

�pA

�x

|

|

|

|x=LA

(

�pEFE�4 exp

[

�pEFE

(

LA + LE
)

DpE

]

− �pAFA�4

)

pA
|

|x=LA
+ �4DpA

�pA

�x

|

|

|

|x=LA

(82)= �pEFE exp

(

�pEFELA

DpE

)

pE
|

|x=LA+LE

Hence, if a doped organic semiconductor is used instead 
of an inorganic semiconductor, then CBMH and VBMH 
should be replaced with LUMOH and HOMOH, respec-
tively. The anode-HTL and the HTL-active layer inter-
faces are located at x = −LH and x = 0 , respectively (see 
Fig. 1), and can be treated like metal–semiconductor and 
semiconductor-insulator contacts, respectively (see the 
explanation in Sect. 2.2.1). As explained in Sect. 2.2.4, 
we take the HTL to be a strong p-type material.

We can approximate FH = 0 if the HTL is made of a 
semiconductor with mobile carriers because the semi-
conductor is a strong p-type material (see the explanation 
in Sect. 2.2.4). Furthermore, as mentioned in Sect. 2.1, 
we assume that the carrier mobilities, temperatures, and 
electric fields inside all layers to be uniform, and we also 
assume that the carrier photogeneration rate and the net 
nongeminate recombination rate in the HTL to be zero. 
Therefore, the continuity equation for electrons in the HTL 

at steady state is as given by Eq. (37) but with FH = 0 . The 
general solution to Eq. (37) with FH = 0 is

where A9 and A10 are constants that can be obtained by 
applying the boundary conditions, one at x = −LH and the 
other at x = 0.

For the case when EFH = EFa , the Fermi level in the 
HTL at x = −LH is obviously given by EFH (which obvi-
ously equals EFa ). For the case when EFH ≠ EFa , the result-
ing depletion layer is negligibly thin (see the explanation 
in Sect. 2.2.4) such that the position x = −LH on the HTL 
side is approximately the same as the position of the edge 
of that thin depletion layer. Hence, the Fermi level at 
x = −LH on the HTL side for the case when EFH ≠ EFa can 
be taken to be EFH too (however, it is worth noting that the 
Fermi level at x = −LH on the anode side is given by EFa ). 
Using the Boltzmann statistics, this means that whether 
EFH equals EFa or not, the boundary condition at x = −LH 
for Eq. (83) can be taken to be 

There must be a continuity in the electron quasi-Fermi 
level inside the device including at x = 0 , and by using the 
same approach as in Sect. 2.3.3 [refer Eqs. (40) and (41)], 
it can be shown that the boundary condition at x = 0 for 
Eq. (83) is given by

(83)nH = A9x + A10

(84)nH
|

|x=−LH
= NcH exp

[

−
(

CBMH − EFH

)

kBT

]



Journal of Computational Electronics (2025) 24:151	 Page 15 of 21  151

with

Applying the two boundary conditions [i.e., Eqs. (84) and 
(85)] to Eq. (83), we get

where nH||x=−LH and nH||x=0 are given by Eqs. (84) and (85), 
respectively.

Furthermore, the electron current continuity at x = 0 means 
that JnH||x=0 = JnA

|

|x=0
 where JnH and JnA are given by Eq. (35) 

with FH = 0 and Eq. (3), respectively. Applying the electron 
current continuity at x = 0 interface, we have

We can replace 
(

�nH∕�x
)

|

|

|x=0
 in Eq. (89) with the deriva-

tive of Eq.  (83) at x = 0 , and we can replace nH||x=0 that 
appears in 

(

�nH∕�x
)

|

|

|x=0
 with Eq. (85), to obtain the boundary 

condition at x = 0 for Eq. (1), which is given by

where nH||x=−LH is given by Eq. (84).
To obtain the boundary condition at x = 0 for Eq. (2), we 

start with the continuity equation for free holes in the HTL at 
steady state, which is given by Eq. (49) but with FH = 0 for 
the device in this case. The general solution to Eq. (49) with 
FH = 0 is

where A11 and A12 are constants that can be obtained by 
applying the boundary conditions, one at x = −LH and 
another at x = 0.

As discussed above, the Fermi level in the HTL at x = −LH 
can be taken to be EFH whether EFH equals EFa or not. Using 
the Boltzmann statistics, the boundary condition for Eq. (91) 
at x = −LH whether EFH equals EFa or not is given by

(85)nH
|

|x=0
= �5 nA

|

|x=0

(86)�5 =
NcH

NcaA

exp

(

LUMOaA − CBMH

kBT

)

(87)A9 =
nH

|

|x=0
− nH

|

|x=−LH

LH

(88)A10 = nH
|

|x=0

(89)DnH

�nH

�x

|

|

|

|x=0

= �nAFA nA
|

|x=0
+ DnA

�nA

�x

|

|

|

|x=0

(90)

(

DnH�5 − �nAFALH
)

nA
|

|x=0
− DnALH

�nA

�x

|

|

|

|x=0

= DnH nH
|

|x=−LH

(91)pH = A11x + A12

(92)pH
|

|x=−LH
= NvH exp

[

−
(

EFH − VBMH

)

kBT

]

There must be a continuity in the hole quasi-Fermi level 
inside the device including at x = 0 , and by using the same 
approach as in Sect. 2.3.3 [refer Eqs. (52) and (53)], it can 
be shown that the boundary condition at x = 0 for Eq. (91) 
is given by

with

Applying the two boundary conditions [i.e., Eqs. (92) and 
(93)] to Eq. (91), we get

where pH||x=−LH and pH||x=0 are given by Eqs. (92) and (93), 
respectively.

Furthermore, the hole current continuity at x = 0 means 
that JpH

|

|

|x=0
= JpA

|

|

|x=0
 where JpH and JpA are given by 

Eq. (36) with FH = 0 and Eq. (4), respectively. Applying the 
hole current continuity at x = 0 interface, we have

We can replace 
(

�pH∕�x
)

|

|

|x=0
 in Eq. (97) with the deriva-

tive of Eq. (91) at x = 0 , and we can replace pH||x=0 that 
appears in 

(

�pH∕�x
)

|

|

|x=0
 with Eq. (93), to obtain the bound-

ary condition at x = 0 for Eq. (2), which is given by

where pH||x=−LH is given by Eq. (92).

2.3.6 � Boundary conditions at x = L
A

 for the device 
with the ETL made of a semiconductor with mobile 
carriers

For the device in this case, we assume the ETL is made of an 
inorganic semiconductor, and hence CBME and VBME are 
used here instead of LUMOE and HOMOE. The active layer-
ETL and the ETL-cathode interfaces are located at x = LA and 
x = LA + LE , respectively (see Fig. 1), and can be treated like 
insulator-semiconductor and semiconductor–metal contacts, 
respectively (see the explanation in Sect. 2.2.1). As explained 
in Sect. 2.2.4, we take the ETL to be a strong n-type material.

(93)pH
|

|x=0
= �6 pA

|

|x=0

(94)�6 =
NvH

NvdA

exp

(

VBMH − HOMOdA

kBT

)

(95)A11 =
pH

|

|x=0
− pH

|

|x=−LH

LH

(96)A12 = pH
|

|x=0

(97)−DpH

�pH

�x

|

|

|

|x=0

= �pAFA pA
|

|x=0
− DpA

�pA

�x

|

|

|

|x=0

(98)
(

�6DpH + �pAFALH

)

pA
|

|x=0
− DpALH

�pA

�x

|

|

|

|x=0

= DpH pH
|

|x=−LH



	 Journal of Computational Electronics (2025) 24:151151  Page 16 of 21

We can approximate FE = 0 if the ETL is made of a semi-
conductor with mobile carriers because the semiconductor is 
a strong n-type material (see the explanation in Sect. 2.2.4). 
Furthermore, as mentioned in Sect. 2.1, we assume that the 
carrier mobilities, temperatures, and electric fields inside all 
layers to be uniform, and we also assume that the carrier pho-
togeneration rate and the net nongeminate recombination rate 
in the ETL to be zero. Therefore, the continuity equation for 
electrons in the ETL at steady state is as given by Eq. (63) but 
with FE = 0 . The general solution to Eq. (63) with FE = 0 is

where A13 and A14 are constants that can be obtained by 
applying the boundary conditions, one at x = LA + LE and 
the other at x = LA.

For the case when EFE = EFc , the Fermi level in the 
ETL at x = LA + LE is obviously given by EFE (which obvi-
ously equals EFc ). For the case when EFE ≠ EFc , the result-
ing depletion layer is negligibly thin (see the explanation in 
Sect. 2.2.4) such that the position x = LA + LE on the ETL 
side is approximately the same as the position of the edge of 
that thin depletion layer. Hence, the Fermi level at x = LA + LE 
on the ETL side for the case when EFE ≠ EFc can be taken to 
be EFE too (however, it is worth noting that the Fermi level at 
x = LA + LE on the cathode side is given by EFc ). Using the 
Boltzmann statistics, this means that whether EFE equals EFc 
or not, the boundary condition at x = LA + LE for Eq. (99) can 
be taken to be 

There must be a continuity in the electron quasi-Fermi level 
inside the device including at x = LA , and by using the same 
approach as in Sect. 2.3.3 [refer Eqs. (40) and (41)], it can be 
shown that the boundary condition at x = LA for Eq. (99) is 
given by

with

Applying the two boundary conditions [i.e., Eqs. (100) and 
(101)] to Eq. (99), we get

(99)nE = A13x + A14

(100)nE
|

|x=LA+LE
= NcE exp

[

−
(

CBME − EFE

)

kBT

]

(101)nE
|

|x=LA
= �7 nA

|

|x=LA

(102)�7 =
NcE

NcaA

exp

(

LUMOaA − CBME

kBT

)

(103)A13 =
nE
|

|x=LA+LE
− nE

|

|x=LA

LE

where nE||x=LA+LE and nE||x=LA are given by Eqs. (100) and 
(101), respectively.

Moreover, the electron current continuity at x = LA 
means that JnE||x=LA = JnA

|

|x=LA
 where JnE and JnA are given 

by Eq. (61) with FE = 0 and Eq. (3), respectively. Apply-
ing the electron current continuity at x = LA interface, we 
have

We can replace 
(

�nE∕�x
)

|

|

|x=LA
 in Eq.  (105) with the 

derivative of Eq. (99) at x = LA , and we can replace nE||x=LA 
that appears in 

(

�nE∕�x
)

|

|

|x=LA
 with Eq. (101), to obtain the 

boundary condition at x = LA for Eq. (1), which is given 
by

where nE||x=LA+LE is given by Eq. (100).
To obtain the boundary condition at x = LA for Eq. (2), 

we start with the continuity equation for free holes in the 
ETL at steady state, which is given by Eq. (73) but with 
FE = 0 for the device in this case. The general solution to 
Eq. (73) with FE = 0 is

where A15 and A16 are constants that can be obtained by 
applying the boundary conditions, one at x = LA + LE and 
the other at x = LA.

As discussed above, the Fermi level in the ETL at 
x = LA + LE can be  taken to be EFE whether EFE equals 
EFc or not. Using the Boltzmann statistics, the boundary 
condition for Eq. (107) at x = LA + LE whether EFE equals 
EFc or not is given by

There must be a continuity in the hole quasi-Fermi level 
inside the device including at x = LA , and by using the 
same approach as in Sect. 2.3.3 [refer Eqs. (52) and (53)], 
it can be shown that the boundary condition at x = LA for 
Eq. (107) is given by

with

(104)A14 =

(
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)

nE
|

|

|x=LA
− LA nE

|

|x=LA+LE

LE
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|

|

|
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= �nAFA nA
|
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+ DnA
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|

|

|
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|
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+ DnALE

�nA

�x

|

|

|
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= DnE nE
|

|x=LA+LE

(107)pE = A15x + A16

(108)pE
|
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= NvE exp
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−
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)

kBT

]

(109)pE
|
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= �8 pA

|
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Applying the two boundary conditions [i.e., Eqs. (108) 
and (109)] to Eq. (107), we get

where pE||x=LA+LE and pE||x=LA are given by Eqs. (108) and 
(109), respectively.

Furthermore, the hole current continuity at x = LA means 
that JpE

|

|

|x=LA
= JpA

|

|

|x=LA
 where JpE and JpA are given by 

Eq. (62) with FE = 0 and Eq. (4), respectively. Applying the 
hole current continuity at x = LA interface, we have

We can replace 
(

�pE∕�x
)

|

|

|x=LA
 in Eq. (113) with the deriv-

ative of Eq. (107) at x = LA , and we can replace pE||x=LA that 
appears in 

(

�pE∕�x
)

|

|

|x=LA
 with Eq.  (109), to obtain the 

boundary condition at x = LA for Eq. (2), which is given by

where pE||x=LA+LE is given by Eq. (108).

2.4 � Obtaining the J‑V characteristics

In order to calculate the nongeminate recombination rates and 
the current densities, we use the method proposed in Ref. [11], 
which can be described as follows. First, we solve the continuity 
equation for electrons (holes) in the active layer without con-
sidering the nongeminate recombination to obtain what we call 
the maximum electron (hole) concentration in the active layer 
nA,max ( pA,max ). The method in Ref. [11] views nA,max ( pA,max ) 
as the electron (hole) concentration inside the active layer that 
is available to participate in the nongeminate recombination. 
Hence, nA,max and pA,max are used for calculating the nongemi-
nate recombination rates. Then, we solve the continuity equa-
tion for electrons (holes) in the active layer by including the 
nongeminate recombination rates attained earlier to obtain what 
we call the net electron (hole) concentration in the active layer 
nA,net ( pA,net ). The method in Ref. [11] views nA,net ( pA,net ) as 
the electron (hole) concentration inside the active layer that is 

(110)�8 =
NvE

NvdA

exp
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VBME − HOMOdA

kBT

)

(111)A15 =
pE
|

|x=LA+LE
− pE

|

|x=LA

LE

(112)A16 =

(
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)

pE
|

|

|x=LA
− LApE

|
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LE

(113)−DpE
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|

|

|
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= �pAFA pA
|
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− DpA
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|

|

|
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(114)
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�8DpE − �pAFALE
)

pA
|

|x=LA
+ DpALE

�pA

�x

|

|

|

|x=LA

= DpE pE
|

|x=LA+LE

available to generate the electron (hole) current density. There-
fore, the obtained nA,net and pA,net are used for calculating JnA 
and JpA , respectively, which in turn enable us to obtain the total 
current density J , and hence the J-V characteristic.

The continuity equations for electrons and holes in the 
active layer [refer Eqs. (1) and (2)] at steady state without 
considering the nongeminate recombination are given by

where nA,max and pA,max are as defined above. FA and the 
boundary conditions are as given in Sect. 2.2 and Sect. 2.3, 
respectively, depending on the device setting. To obtain ana-
lytical expressions for nA,max and pA,max , we need to analyti-
cally solve Eqs. (115) and (116), respectively. To achieve 
this, the combined analytical and regression method pro-
posed in Ref. [8] is used to solve Eqs. (115) and (116) and 
obtain analytical expressions for nA,max and pA,max.

As mentioned earlier in this section, the obtained nA,max 
and pA,max are used to calculate the nongeminate recombi-
nation rates in the active layer. Therefore, the bimolecular 
recombination rate per unit volume Rb is given by [8, 12]

where � is the bimolecular recombination reduction coeffi-
cient, and kL = q

(

�nA + �pA

)/

�A is the Langevin recombi-
nation coefficient with �A being the effective permittivity of 
the active layer. Here, we use n0 and p0 as proposed in Ref. 
[12] where n0 and p0 are the solutions to �JnA∕�x = 0 and 
�JpA

/

�x = 0 , respectively (note that the applicable bound-
ary conditions as given in Sect. 2.3 must be applied to solve 
�JnA∕�x = 0 and �JpA

/

�x = 0 ). However, the conventional 
n0p0 = n2

int
 where nint is the intrinsic carrier concentration 

can also be used if wished. The trap-assisted recombination 
rate per unit volume Rtrap is given by [8, 12]

where vth is the electron thermal velocity, �n is the electron 
capture cross section, �p is the hole capture cross section, 
Ntrap is the trap density, and n1 and p1 are given by
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�x
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(120)p1 = NvdA exp

(

HOMOdA − Etrap

kBT
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where Etrap is the trap energy level. The Auger recombination 
rate per unit volume RA is given by [812]

where kA1 and kA2 are the Auger recombination coefficients.
The continuity equations for electrons and holes inside the 

active layer at steady state with the nongeminate recombina-
tion included [refer Eqs. (1) and (2)] are given by

where nA,net and pA,net are as defined earlier in this Sect. 2.4 
, while FA (see Sect. 2.2) and the boundary conditions (see 
Sect. 2.3) depend on the device setting. To obtain analytical 
expressions for nA,net and pA,net , Eqs. (122) and (123) need to 
be analytically solved. Again, the same as for Eqs. (115) and 
(116), the method proposed in Ref. [8] is used to solve Eqs. 
(122) and (123) in order to obtain analytical expressions for 
nA,net and pA,net.

As described earlier in this Sect. 2.4, the obtained nA,net 
and pA,net are then used to calculate JnA and JpA , which are 
given by

The total current density J is given by

where J is uniform and can be obtained by adding the values 
of JnA and JpA evaluated at any given position within the 
active layer.

It is worth mentioning again that the use of the combined 
analytical and regression method [8] would make the proposed 
drift–diffusion-based J-V model to be more accurate than ana-
lytical drift–diffusion-based J-V models and more reliable than 
numerical drift–diffusion-based J-V models.

3 � Results and discussion

In practice, the inclusion of CTLs affects (preferably 
improve) the PCE  of OSCs through several ways. For 
example, the inclusion of CTLs can affect the charge carrier 
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)(
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extraction or collection by the electrodes by blocking the 
unwanted carrier types but still allowing the desired carrier 
types to be efficiently extracted (provided that the CTLs are 
not too thick because thick CTLs could make the extraction 
of the desired carrier types to be significantly less efficient). 
The proposed J-V model can evaluate and predict how the 
inclusion of CTLs affects the charge carrier extraction, and 
consequently, how the charge carrier extraction affects the 
J-V characteristic, and thus the PCE.

Furthermore, the inclusion of CTLs should also decrease 
the loss of excitons by blocking the photogenerated excitons, 
particularly near the edges of the active layer, from diffusing 
to the electrodes. This means more excitons can become CT 
states (thus increasing GCT ) and then free charge carriers. 
Therefore, after the inclusion of CTLs, an OSC could have 
a higher GCT , and hence a higher PCE. To take account of 
the decrease in the loss of excitons, all that we can do is to 
use a higher GCT value in the proposed J-V model. How-
ever, how much the value of GCT should increase after the 
inclusion of CTLs cannot be evaluated and predicted by the 
proposed J-V model (since an optical modeling is currently 
not included with the proposed J-V model). Similarly, the 
proposed J-V model also cannot evaluate and predict how 
Ntrap , particularly at the active layer-CTL interfaces, would 
change if CTLs are added to an OSC (of course Ntrap affects 
the carrier recombination and thus the PCE). To validate the 
proposed J-V model, ideally, we should show that the model 
can satisfactorily fit the experimental J-V characteristics of 
OSCs both before (without) and after (with) the inclusion 
of CTLs. However, it would be challenging and could be 
impractical trying to validate the proposed J-V model using 
this approach because as explained above, the proposed 
J-V model cannot evaluate and predict how the inclusion of 
CTLs affects some of the performance influencing factors 
such as GCT and Ntrap (i.e., we cannot predict and know what 
are the correct changes in the values of GCT and Ntrap that 
should be used after the inclusion of CTLs).

To validate any given model, we basically need to dem-
onstrate that the model is able to do what it is designed to 
do. It is widely known that if a CTL with suitable proper-
ties (e.g., suitable energy levels, conductivity, and thick-
ness) is added to an OSC, the PCE should improve because 
of the improvement in the charge carrier extraction (of 
course provided that the other performance influencing 
factors such as GCT and Ntrap are at least unchanged, if not 
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become better, after the CTL is added). Therefore, if we 
can show that the proposed J-V model predicts that the 
inclusion of a suitable CTL improves the PCE of an OSC 
because it improves the charge carrier extraction (with 
the other performance influencing factors assumed to be 
unchanged), then this demonstrates that the model works 
as it is designed to, and this can also serve as an alternative 
validation method.

Hence, to validate the proposed J-V model, we compare 
between the J-V characteristic of an OSC without CTLs 
(device A), the J-V characteristic of an OSC with the ETL 
made of a semiconductor with mobile carriers (device B), 
and the J-V characteristic of an OSC with the ETL made of a 
semiconductor without mobile carriers (device C), where 
the J-V characteristics are calculated using the J-V model 
proposed in this paper. We assume that all device proper-
ties remain unchanged after the ETL is included. We also 
choose EFc = EFE so that the built-in voltages across device 
A, device B, and device C are the same for a fair compari-
son between the devices. Table 2 shows the parameter val-
ues used in all calculations unless otherwise specified. The 
parameter values in Table 2 are typical for OSCs as used 
in our previous works [8, 11], whereas the values for Ntrap , 
�n , and �p are the same as in Ref. [20] (note that Ref. [20] 
combined the electron and the hole capture cross sections 
with the carrier thermal velocity). MATLAB is used for all 
calculations including for solving  Eqs. (115), (116), (122), 
and (123). If the PCEs of device B and device C are better 
than the PCE of device A, then this suggests that the pro-
posed J-V model works well because we employ ETLs with 
the right properties in device B and device C.

Figure 2 shows the J-V characteristics of device A, device 
B, and device C. Assuming that the incident light intensity 
is 1000 Wm−2, the PCEs of device A, device B, and device 
C are 6.86%, 7.38%, and 7.31%, respectively. Therefore, the 
results suggest that the proposed J-V model works well. To 
reveal the reason behind the increase in the PCE when an 
ETL is added, we calculate the electron and the hole current 
densities at x = LA at short circuit ( Va = 0 ) for all devices, 
which are shown in Table 3. As expected, Table 3 shows that 
although the inclusion of an ETL decreases the extraction of 
the desired carrier type (i.e., electrons) toward the cathode, 
but it decreases the extraction of the unwanted carrier type 
(i.e., holes) toward the cathode even more, and this increases 
the PCE overall. This also demonstrates that the proposed 
J-V model can reveal important insights into how and how 
much the performance of OSCs with CTLs can be improved, 
at least via the charge carrier extraction. It is worth mention-
ing that if a suitable HTL is also added (in addition to the 
ETL) to device B and device C, the PCEs of device B and 
device C are expected to be even higher.

To further demonstrate the applicability of the proposed 
model, we repeat the calculations by changing the thickness 

of the ETLs in device B and device C to 100 nm, while the 
other properties remain the same as in Table 2. By changing 
LE from 40 to 100 nm, device B records a very small reduc-
tion in the PCE (a reduction of 0.0015% in the PCE), while 
device C records a significant reduction in the PCE (the PCE 
is reduced from 7.31% to 6.70%, which is now lower than 
the PCE of device A). It should be noted that in reality, there 
are factors that are not considered in the proposed model 

Table 2   Parameter values used in all calculations  unless otherwise 
specified. Refer Table 1 for the description of the symbols

Symbol Value

General device properties
EFa − 4.9 eV
EFc − 4.0 eV
T 300 K
Active layer properties
LUMOaA − 3.8 eV
HOMOdA − 5.1 eV
NcaA 2 × 1026 m−3

NvdA 2 × 1026 m−3

�nA 1.8 × 10−7 m2V−1 s−1

�nA,act 200�n,A

�pA 2.8 × 10−8 m2V−1 s−1

�pA,act 200�p,A

kf 1 × 108 s−1

a 1.8 nm
�A 3 × 10−11 F m−3

� 0.2
LA 150 nm
GCT 6.5 × 1027 m−3 s−1

� 0.1
vth 1 × 105 m‧s−1

�n 2 × 10−23 m2

�p 2 × 10−23 m2

Ntrap 5 × 1022 m−3

Etrap 0.6 eV below LUMOaA

General ETL properties
LE 40 nm
LUMOE or CBME − 3.8 eV
HOMOE or VBME − 6.0 eV
NcE 2 × 1026 m−3

NvE 2 × 1026 m−3

ETL properties (for ETL made of a semiconductor with mobile 
carriers)

�nE 1.0 × 10−4 m2V−1 s−1

�pE 1.0 × 10−5 m2V−1 s−1

EFE − 4.0 eV
ETL properties (for ETL made of a semiconductor without mobile 

carriers)
�nE 1.0 × 10−7 m2V−1 s−1

�pE 1.0 × 10−8 m2V−1 s−1
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that can affect the PCE when the thickness of the CTL is 
changed. For example, a CTL actually absorbs some light 
(although ideally a CTL should not absorb light), and there-
fore, increasing the thickness of the CTL may increase the 
light absorption by the CTL, and hence may reduce the light 
absorption by the active layer, and thus may reduce the PCE 
too. Furthermore, as explained in Sect. 2.2.4, we assume 
that the ETL in device B to be an ideal conductor which 
leads to FE = 0 , but in reality, FE for device B (where the 
ETL is made of a strong n-type semiconductor) is not zero 
(although relatively very small) and its value changes with 
Va and is reduced when LE is increased. Therefore, in reality, 
the PCE of device B should decrease by more than 0.0015% 
when LE is increased from 40 to 100 nm. Nevertheless, the 
calculations here can still provide useful insights, for exam-
ple by suggesting that semiconductors with mobile carriers 
are better candidates than semiconductors without mobile 
carriers in creating thickness-independent CTLs. Another 
conclusion that can be made from these calculations is that 
the thickness of CTLs should be kept as thin as possible 
if feasible, especially when semiconductors without mobile 
carriers are used as the CTLs.

It is worth mentioning that the model proposed here can 
also be extended to perovskite solar cells (PSCs). In PSCs, 
the active layer is typically made of an intrinsic perovskite 
material and both the HTL and ETL are always included 
in the device architecture. Since free carriers are directly 
generated upon light absorption in PSCs, Gn and Gp are not 
given by Eq. (8) anymore, but they are input parameters that 
directly depend on the light absorption by the active layer. 
Furthermore, in PSCs, the band-to-band recombination (the 
recombination between free electrons in the conduction band 
and free holes in the valence band of the perovskite material) 
replaces the bimolecular recombination.

4 � Conclusions

In summary, we propose a model for describing the J-V 
characteristics of OSCs with CTLs. The model is based on 
the drift–diffusion transport model, which is the standard 
physics-based model for describing the transport of carri-
ers in semiconductors. In obtaining the model, we derive 
the approximate electric fields and the approximate bound-
ary conditions in OSCs with CTLs. The derived electric 
fields and boundary conditions are then applied to the carrier 
continuity equations, which are then solved using a recently 
proposed combined analytical and regression method [8] to 
obtain the J-V characteristics. The use of the method of Ref. 
[8] makes the proposed J-V model to be more accurate than 
analytical drift–diffusion-based J-V models (since the result-
ing model allows us to consider realistic carrier generation 
profiles and recombination mechanisms, which cannot be 
considered in analytical J-V models) and more reliable than 
numerical drift–diffusion-based J-V models (e.g., models 
based on finite difference method) [8]. We use the proposed 
model to calculate and compare between the J-V character-
istics of an OSC without CTLs, an OSC with the ETL made 
of a semiconductor with mobile carriers, and an OSC with 
the ETL made of a semiconductor without mobile carriers. 
The results suggest that the proposed J-V model works well 
as it is designed to. We show that if a suitable CTL is used, 
the decrease in the extraction of the unwanted carrier type 
outweighs the decrease in the extraction of the desired car-
rier type, and this increases the PCE overall. Furthermore, 
we show that semiconductors with mobile carriers are bet-
ter candidates than semiconductors without mobile carriers 
in creating thickness-independent CTLs, and the thickness 
of CTLs made of semiconductors without mobile carriers 
should be kept as thin as possible in order to maximize the 
PCE. These basically show that the proposed J-V model can 
be used to give valuable insights into how the PCE and the 
design (to reduce the cost for example) of OSCs with CTLs 
can be improved, particularly by optimizing the charge car-
rier extraction. Therefore, owing to its unique quality, the 

Fig. 2   The J-V characteristics of device A (no HTL and no ETL), 
device B (no HTL but with an ETL made of  a semiconductor with 
mobile carriers), and device C (no HTL but with an ETL made of a 
semiconductor without mobile carriers) calculated using the proposed 
J-V model

Table 3   Electron current density in the active layer JnA and hole cur-
rent density in the active layer JpA at x = LA at short circuit

Device JnA JpA

Device A − 141 A m−2 4.17 A m−2

Device B − 140.9 A m−2 1.2 × 10−13 A m−2

Device C − 139 A m−2 − 8.6 × 10−16 A m−2
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proposed J-V model can be a valuable tool for predicting and 
improving the PCE, and optimizing the design of OSCs with 
CTLs. It is worth reminding that the proposed J-V model 
may not be able to accurately predict the J-V characteristics 
of OSCs with CTLs made of semiconductors with mobile 
carriers if the HTL and ETL are not made of a strong p-type 
and a  strong n-type semiconductor, respectively. In the 
future, an optical modeling that describes the light absorp-
tion in OSCs can be incorporated in conjunction with the 
proposed J-V model in order to better predict how the PCE 
and the design of OSCs can be improved.
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