

Q

Back

Visualizing the Gatekeeper: Evan's Blue Dye-Based Assessment of Blood-Brain Barrier Permeability in Adult Zebrafish

Journal of Visualized Experiments • Article • 2025 • DOI: 10.3791/69010

Razali, Khairiah a; Nasir, Mohd Hamzah Mohd b; Kumar, Jaya

□ Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Malaysia

Show all information

□ Citations ↓

Full text ∨ Export ∨ □ Save to list

Document Impact Cited by (0) References (28) Similar documents

Abstract

The Blood-Brain Barrier (BBB) is a semi-permeable interface that maintains central nervous system (CNS) homeostasis by regulating the movement of substances into and out of the brain, thereby protecting neural tissue from potentially harmful agents. Disruption of the BBB is a well-established feature in many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD), where increased permeability contributes to and exacerbates disease progression. Although the adult zebrafish (Danio rerio) is increasingly recognized as a valuable model for studying neurodegenerative diseases, standardized methods for evaluating BBB integrity in this species remain limited. This protocol describes a simple, reproducible, and cost-effective approach to assess BBB permeability in adult zebrafish by analysing Evan's Blue (EB) dye extravasation from the neurovasculature into brain tissue. The method combines qualitative visualization with quantitative image analysis of EB distribution to detect BBB disruption. Key steps include proper intraperitoneal

injection of EB dye, confirmation of systemic dye circulation, careful brain dissection, and consistent imaging and greyscale intensity measurement. Positive and negative controls are incorporated to validate dye penetration and support accurate interpretation. Representative results demonstrate greater EB extravasation in Parkinsonian zebrafish brains compared to saline-injected controls, indicating increased BBB permeability. This technique requires minimal specialized equipment and is suitable for laboratories with limited resources. Overall, this protocol offers a practical tool for investigating BBB integrity in adult zebrafish models and can be adapted for diverse applications, including studies of disease mechanisms and the evaluation of therapeutic interventions targeting neurovascular function. © 2025 JoVE Journal of Visualized Experiments.

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Universiti Kebangsaan Malaysia		UKM
See opportunities by UKM 🗾		
Ministry of Higher Education, Malaysia See opportunities by MOHE	FRGS19-125-0734	МОНЕ
Ministry of Higher Education, Malaysia See opportunities by MOHE		МОНЕ

Funding text

This research was funded by the Malaysian Ministry of Higher Education (MoHE) under the Fundamental Research Grant Scheme (FRGS), grant number FRGS19-125-0734. The publication aid for this study was supported by the Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM).

Corresponding authors

Corresponding	J. Kumar
author	

Affiliation

Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia

Email address	jayakumar@ukm.edu.my
Corresponding author	W. Mohamed
Affiliation	Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Malaysia
Email address	waelmohamed@iium.edu.my

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Funding details

Corresponding authors

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

ELSEVIER

Terms and conditions → Privacy policy → Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. ⊅, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies \supset .

