

Q

Computer Methods and Programs in Biomedicine • Article • 2025 • DOI: 10.1016/j.cmpb.2025.108680 ☐

Sauki, Nur Sa'adah Muhamad a; Damanhuri, Nor Salwa S; Othman, Nor Azlan ; Chiew, Yeong Shiong B; Meng, Belinda Chong Chiew ; +2 authors

Belectrical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, Pulau Pinang, 13500, Malaysia

Show all information

O
Citations Д

Full text ∨ Export ∨ Д Save to list

Document Impact Cited by (0) References (44) Similar documents

Abstract

Background and objective: Asynchronous breathing (AB) occurs when a mechanically ventilated patient's breathing does not align with the mechanical ventilator (MV). Asynchrony can negatively impact recovery and outcome, and/or hinder MV management. A model-based method to accurately classify different AB types could automate detection and have a measurable clinical impact. Methods: This study presents an approach using a 1-dimensional (1D) of airway pressure data as an input to the convolutional long short-term memory neural network (CNN-LSTM) with a classifier method to classify AB types into three categories: 1) reverse Triggering (RT); 2) premature cycling (PC); and 3) normal breathing (NB), which cover normal breathing and 2 primary forms of AB. Three types of classifier are integrated with the CNN-LSTM model which are random forest (RF), support vector machine (SVM) and logistic regression (LR). Clinical data inputs include measured airway pressure from 7 MV patients in IIUM Hospital ICU under informed consent with a total of 4500 breaths. Model performance is first assessed in a k-fold cross-validation assessing accuracy in comparison to the proposed CNN-LSTM integrated with each type of classifier. Then, confusion matrices are used to summarize classification performance for the CNN without classifier, CNN-LSTM without classifier, and CNN-LSTM with each of the 3 classifiers (RF, SVM, LR). Results and discussion: The 1D CNN-LSTM with classifier method achieves 100 % accuracy using 5-fold cross validation. The confusion matrix results showed that the combined CNN-LSTM model with classifier and CNN-LSTM model without classifier displayed comparatively lower performance, with average values of F1 score below 71.8 % for all three breathing categories. Conclusion: The results validate the effectiveness of the CNN-LSTM neural network model with classifier in accurately detecting and classifying the different categories of AB and NB. Overall, this model-based approach has the potential to precisely classify the t

Author keywords

Asynchrony breathing; Classifier; Convolutional neural network (CNN); Long short-term memory neural network (LSTM); Mechanical ventilation; Respiratory mechanics

Indexed keywords

MeSH

Algorithms; Humans; Logistic Models; Memory, Short-Term; Neural Networks, Computer; Reproducibility of Results; Respiration; Respiration, Artificial; Support Vector Machine

Engineering controlled terms

Electrotherapeutics; Logistic regression; Respiratory mechanics; Support vector regression

Engineering uncontrolled terms

Asynchrony; Asynchrony breathing; Convolutional neural network; Long short-term memory neural network; Mechanical; Mechanical ventilation; Neural network model; Neural-networks; Short term memory

EMTREE medical terms

adult; aged; airway pressure; Article; artificial neural network; artificial ventilation; classification; classifier; clinical article; confusion matrix; controlled study; convolutional neural network; diagnostic test accuracy study; feature extraction; female; human; intensive care unit; intermethod comparison; logistic regression analysis; long short term memory network; male; measurement accuracy; middle aged; patient-ventilator asynchrony; random forest; sensitivity and specificity; support vector machine; ventilated patient; algorithm; artificial neural network; breathing; reproducibility; short term memory; statistical model

Engineering main heading

Long short-term memory

Device trade names

Commercial names given to devices, used for branding and differentiation in the market, commonly referenced in scientific and clinical research.

Puritan Bennett PB980

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Universiti Teknologi MARA		UiTM
See apportunities by UiTM 7		

Funding text

Authors would like to thank Universiti Teknologi MARA, Cawangan Pulau Pinang and IIUM Hospital for providing research facilities to run this study.

Corresponding authors

Corresponding author	N.S. Damanhuri
Affiliation	Electrical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, Pulau Pinang, 13500, Malaysia
Email address	norsalwa071@uitm.edu.my

 \bigcirc Copyright 2025 Elsevier B.V., All rights reserved.

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us