Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Back

A synthetic coumarin—thiosemicarbazone hybrid as a high-efficiency copper corrosion inhibitor: Adsorption mechanisms and molecular-level insights

Journal of Molecular Structure • Article • 2026 • DOI: 10.1016/j.molstruc.2025.143989 ☐ Alwi, Muhammad Ammar Mohamad a, b; Ahmad, Mohammad Norazmi a, c; Piah, Bijarimi Mat d; Pauzi, Hariy e; Normaya, Erna a, c

■

Show all information

Abstract

A coumarin—thiosemicarbazone (CT) hybrid was synthesized and characterized via FTIR, 1 H NMR, and 13 C NMR spectroscopy. The compound was obtained via Schiff base condensation of 3-acetyl coumarin and thiosemicarbazide in refluxing ethanol with glacial acetic acid as catalyst. The corrosion inhibition efficiency of CT on copper in hydrochloric acid was optimized using response surface methodology (RSM), achieving 97.15 % under optimal conditions (40.10 $^{\circ}$ C, 3.10 M HCl, 0.51 mM CT, 15.76 h immersion time). Adsorption studies revealed that CT undergoes spontaneous chemisorption, supported by Langmuir isotherm fitting and a negative Gibbs free energy (Δ G°_ads = -39.95 kJ mol $^{-1}$). SEM and XPS analyses confirmed the formation of a protective CT film as well as Cu $^{-1}$ Cu $^{-1}$ S interactions. Electrochemical impedance spectroscopy (EIS) and polarization studies

^a Experimental and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University of Malaysia, Pahang, Kuantan, 25200, Malaysia

showed increased charge transfer resistance and reduced corrosion current density. Quantum chemical calculations revealed that CT possesses a narrow HOMO–LUMO gap (2.676 eV), high softness (0.748 eV $^{-1}$), and high electrophilicity (ω = 20.70 eV), indicating strong surface reactivity. Fukui function and XPS analysis showed that nitrogen and sulfur atoms were key adsorption sites. Molecular dynamics simulations supported its adsorption stability, with an interaction energy of – 265 kJ/mol. This study demonstrates that CT is a highly efficient, surface-active inhibitor and offers molecular-level insights into its protection mechanism for copper in acidic environments. © 2025

Author keywords

Corrosion resistance; Coumarin; DFT; Electrochemical; RSM optimization; Thiosemicarbazone; XPS

Indexed keywords

Engineering controlled terms

Charge transfer; Chlorine compounds; Copper; Copper compounds; Corrosion inhibitors; Corrosion protection; Electrochemical corrosion; Fourier transform infrared spectroscopy; Gas adsorption; Hydrochloric acid; Molecular dynamics; Nuclear magnetic resonance spectroscopy; Quantum chemistry

Engineering uncontrolled terms

Coumarin; DFT; Electrochemicals; Higher efficiency; Molecular-level insights; Optimisations; Response surface methodology optimization; Response-surface methodology; Thiosemicarbazones; XPS analysis

Engineering main heading

Copper corrosion; Corrosion resistance; Electrochemical impedance spectroscopy

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Ministry of Higher Education, Malaysia See opportunities by MOHE	FRGS/1/2024/STG04/UIAM/02/1	МОНЕ

Funding sponsor	Funding number	Acronym
Ministry of Higher Education, Malaysia See opportunities by MOHE		МОНЕ

Funding text

This paper is a part of a project that was funded by the Ministry of Higher Education, Malaysia (FRGS/1/2024/STG04/UIAM/02/1.).

Corresponding authors

Corresponding author	E. Normaya
Affiliation	Experimental and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University of Malaysia, Pahang, Kuantan, 25200, Malaysia
Email address	ernanormaya@iium.edu.my

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Funding details

Corresponding authors

About Scopus

What is Scopus

Content coverage

Scopus blog