

International Conference on Advanced Functional Materials and Devices (AFMD-2024)

February 26-29, 2024

PROCEEDINGS

Co-sponsored by

Science and Engineering Research Board-Department of Science and Technology (DST-SERB), India International Society of Electrochemistry (ISE), Surfaces and Interfaces (Elsevier) IOP Institute of Physics (UK), Taylor & Francis (UK) and Wiley (Germany)

In association with

- Shizuoka University, Japan
- Université Paris Cité, France
- NAIST, Japan
- · University of Gustave, Eiffel, Paris
- University of Montpellier, France
- Universiti Malava, Malavsia
- Universiti Tun Hussein Onn Malaysia, Malaysia
- Riga Technical University, Latvia
- · National Cheng Kung University, Taiwan
- Universitas Indonesia, Indonesia
- Alexandru Ioan Cuza University Iaşi (UAIC), Romania

- Daegu Gyeongbuk Institute of Science and Technology, South Korea
- · University of Southampton, United Kingdom
- Vilnius University, Lithuanian
- Japan Society of Applied Physics (JSAP), Japan
- The Ceramic Society of Japan, Japan
- · Polish Academy of Science, Poland
- Fuji Electronics Industry Co., Ltd., Japan
- SPD Laboratory, inc. Japan
- Biologic, India
- IPGI instruments, India
- JEOL, India

Organized by

Nanotechnology Research Centre SRMIST

Editors

Dr. M. Navaneethan

Dr. E. Senthil Kumar

International Conference on Advanced Functional Materials and Devices (AFMD-2024)

February 26 – 29, 2024

PROCEEDINGS

Organized by

Nanotechnology Research Center SRM Institute of Science and Technology Kattankulathur, Chennai, Tamilnadu, India.

Edited By

Dr. M. Navaneethan Dr. E. Senthilkumar

Co-Sponsored by

IT 49	Analysis of Performance Degradation in Single-Layer OLEDs Fabricated Using Vacuum-Free Lamination Methods	115
IT 50	Li-ion Capacitors and Recycling Li-ion batteries	116
IT 51	Fabrication of Magnetic Nanoclusters Modified Gold Electrode for the Impedimetric Detection of Serum Albumin	117
IT 52	A visible light wide angle optical divider based on III/nitride for under water application	118
IT 53	Langmuir-Blodgett technique: a versatile method to prepare high quality and ordered ultra-thin films for various applications	119
IT 54	Nanostructured Manganese Oxide based Two-Dimensional Nanocomposites for the Removal of Organic Pollutants	120
IT 55	Growth of $Si_{1-x}Ge_x$ (0 < x < 1) alloy semiconductor under rapid cooling	121
IT 56	Nanomaterial Applications in Ultrafast Photonics	122
IT 57	Growth and Defects challenges of Wide bandgap Electronic Materials: Applications	123
IT 58	Research on the Energy Conversion Devices: Focusing on Solar Cells and Mechanoluminescence	124
IT 59	Spatial Representation of Multi-Energy 3D X-ray CT Using Mixed Reality for Nondestructive Testing	125
IT 60	Upgraded Recycling of Cast-Iron Scrap Chips towards Fe- based Thermoelectric Materials for Waste-heat Energy Harvesting	126
IT 61	Indigenous Materials for Energy Storage Applications: From Lab Innovations to Semi-Pilot Scale Production	127
IT 62	Template assisted sol-gel synthesis of BiFeO ₃ hollow tubes	128
IT 63	Development of Chemical Vapor Deposition Technology for the Synthesis of Carbon Nanotube and Nanofiber Forest	129
IT 64	Synthesis mechanisms of chalcogenide nanostructures via aqueous based reflux method for enhanced room temperature thermoelectric performance	130
IT 65	3D printed Phase Retarders	131

IT 60

Upgraded Recycling of Cast-Iron Scrap Chips towards Fe-based Thermoelectric Materials for Waste-heat Energy Harvesting

Assayidatul Laila Nor Hairin*¹, Makoto Nanko², Masatoshi Takeda³

¹Department of Manufacturing and Materials Engineering, Faculty of Engineering,
International Islamic University, Jalan Gombak, Kuala Lumpur, Malaysia, 53100

^{2,3}Department of Mechanical Engineering, Nagaoka University of Technology, Kamitomioka,
Nagaoka, Niigata, 940-2188 Japan

*Corresponding author e-mail: assayidatul_laila@iium.edu.my

ABSTRACT

In this research, an environmentally friendly and cost-effective production process involving the upgraded recycling of cast-iron scrap chips into thermoelectric materials based on iron (Fe) was proposed. The thermoelectric performance of Fe-based materials, including iron-silicide (β-FeSi₂) and Heusler alloys (Fe₂VAl), utilizing cast-iron scrap chips was thoroughly examined across temperatures ranging from room temperature to 800°C. The study identified an optimal dimensionless figure of merit, ZT (0.22 for n-type at 700°C and 0.17 for p-type at 700°C), making it a favourable starting material for producing β -FeSi₂ thermoelectric materials [1]. The development of n-type and p-type β-FeSi₂ modules was achieved, and the coefficient of thermal expansion was evaluated. Isothermal oxidation tests were conducted at 800°C in air for 14 days using an electric furnace to assess the oxidation behaviour of β-FeSi₂ prepared from cast-iron scrap chips [2]. The results indicated that β-FeSi₂ derived from cast-iron scrap chips exhibited a promising long lifetime at high temperatures (around 800°C) in air, showcasing excellent potential for stability in high-temperature thermoelectric devices when utilizing cast-iron scrap chips as a starting material. Furthermore, the thermoelectric performance of Fe₂VAl, prepared using cast-iron scrap chips, demonstrated positive outcomes. The p-type Fe₂VAl exhibited the highest power factor (PF) value of 1604µWm⁻¹K⁻² at 200°C. Additionally, undoped Fe₂VAl, prepared from cast-iron scrap chips, showed a substantial improvement, with a PF value of 967μWm⁻¹K⁻² at 200°C, approximately twice that of previously reported values [3]. Unfortunately, the fabrication of n-type Fe₂VAl specimens from cast-iron scrap chips was hindered by impurities present in the scrap chips' composition [4]. Despite this limitation, the use of cast-iron scrap chips for producing undoped and p-type Fe₂VAl alloys holds potential for contributing to eco-friendly and cost-effective production processes. Ultimately, the research delves into comprehensive guidelines aimed at enhancing recycling processes, with a specific emphasis on esteemed intermetallic compounds. This exploration occurs within the broader framework of elevating the recycling of cast-iron scrap chips, representing a significant endeavour to mitigate the abundance of waste and advance toward a more environmentally friendly and cost-effective production paradigm.

References:

- 1. Laila, A., Nanko, M., & Takeda, M., Mater. Trans., 57 (3) (2016), 455-451.
- 2. Nanko, M., Chang, S. H., Matsumaru, K., Ishizaki, K., & Takeda, M., Materials Science Forum, 522 (2006), 641-648.
- 3. Laila, A., Nanko, M., & Takeda, M., Mater. Trans., 61 (11) (2020), 2216-221.
- 4. Abe, K., Kikuchi, A., Okinaka, N., & Akiyama, T., J. Alloy. Comp., 611 (2014), 319-323.

SRM Institute of Science and Technology (SRMIST)

(Deemed to be University Under section 3 of UGC Act 1956) SRM Nagar, Kattankulathur, Chengalpattu District Chennai, Tamil Nadu, India - 603203

Telephone: +91-44-27417000, +91-44-27417777

Website: https://www.srmist.edu.in/

For further details, Contact

Conference Secretariat : AFMD-2024

Phone: +91-44-24717190

Mobile: +91 87544 20369 | +91 98439 15660

