Smart Search

Web of Science™

Research • Assistant

Results for PRODUCTION, P... >

Production, performance and emission of biodiesel from a mixture of casto...

Production, performance and emission of biodiesel from a mixture of castor oil and neem oil

By Arslan, M (Arslan, M.); Ayyub, H (Ayyub, Hamid); Jamshaid, M

(Jamshaid, M.); Arslan, A (Arslan, A.); Kalam, MA (Kalam, M. A.)

; Ahmad, F (Ahmad, Farah)

Source RSC ADVANCES

Volume: 15 Issue: 42 Page: 35296-35311

DOI: 10.1039/d5ra04004c

Published SEP 22 2025

Indexed 2025-09-28

Document Type Article

Abstract The elimination of reserves of petroleum and their consequential

environmental impact prompts the development of alternative fuels. This study aimed to blend castor and neem oils (at an 80: 20 ratio) to address the drawbacks present in castor oil biodiesel, such as elevated kinematic viscosity and density. We propose that this new blending with a highly effective heterogeneous calcium oxide catalyst is the novelty of this work. This study employed a response surface approach to optimize biodiesel production. Biodiesel blends (B10, B20, and B30) were examined via standards EN 14214 and ASTM D6751. The performance of the biodiesel blends was scrutinized under experimental conditions, operating at a steady 2000 rpm with engine loads in the 25-100%

range. Biodiesel production was optimized at an 8.75:1 methanol-to-oil ratio, 3.01 wt% calcium oxide, 56.6 degrees C, and 800 rpm, achieving a 95% methyl ester yield. The engine performance results indicated that brake thermal efficiency was lower than that of petroleum diesel. Conversely, brake-specific fuel consumption exhibited higher values than those observed with petroleum diesel. In terms of emissions, carbon monoxide and smoke opacity were less common than when using petroleum diesel, as the average smoke opacity for diesel was 10.46%, 18.43%, and 26.93% greater than that of the B10, B20, and B30 blends, respectively. However, the carbon dioxide and nitrogen oxide emissions were greater than those of petroleum diesel. Thus, a biodiesel blend from castor and neem oils can be a viable substitute fuel for internal combustion engines.

Keywords

Keywords Plus: COMPRESSION IGNITION ENGINE; DIESEL-ENGINE; CATALYZED TRANSESTERIFICATION; PROCESS OPTIMIZATION; POTENTIAL FEEDSTOCK; FUEL; COMBUSTION; PALM; BLENDS; TEMPERATURE

Addresses

- ¹ Bahauddin Zakariya Univ, Fac Engn & Technol, Dept Mech Engn, Multan 60800, Pakistan
- ² COMSATS Univ Islamabad, Dept Mech Engn, Wah Campus, Islamabad 46000, Pakistan
- ³ Univ Technol Sydney, Sch Civil & Environm Engn, FEIT, Ultimo, NSW 2007, Australia
- ⁴ IIUM, Fac Engn, Dept Chem Engn & Sustainabil, Kuala Lumpur 53100, Malaysia

Categories/ Classification

Research Areas: Chemistry

Web of Science Categories

Chemistry, Multidisciplinary

Language English

Accession WOS:001577496600001 Number

PubMed ID 41000608

eISSN 2046-2069

IDS Number 7QW0I

See fewer data fields

Citation Network

Use in Web of Science

In Web of Science Core Collection

0 Citations

68

Cited References

Last 180 Days Since 2013

This record is from:

Web of Science Core Collection

 Science Citation Index Expanded (SCI-EXPANDED)

Suggest a correction

If you would like to improve the quality of the data in this record, please <u>Suggest a correction</u>

Clarivate

© 2025 Clarivate. All rights reserved.

LegalTrainingCookieCenterPortalPolicyPrivacyProductManageStatementSupportcookieCopyrightNewsletterpreferencesNoticeData

Cookie Accessibility
Policy Help
Manage Terms of
cookie Use
preferences
Data
Correction

