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ABSTRACT 

The precise determination of the thermal conductivity is crucial for material characterization in 

engineering applications. However, the accurate identification of temperature-dependent 

thermal conductivity poses a significant challenge. This article proposed an adjoint-based 

inverse method to identify the thermal conductivity in the context of nonlinear steady heat 

conduction scenarios. The simulated temperature associated with the nonlinear steady heat 

conduction problem was quantified by employing the finite element method. The inverse 

retrieval of the thermal conductivity parameters was performed utilizing the adjoint method. 

Numerical examples were presented and analyzed to demonstrate the effectiveness of the 

proposed approach to identify the thermal conductivity parameters. For both numerical 

examples, three parameters of thermal conductivity were recovered utilizing temperature 

distribution with around 30 iterations and remarkably low objective function values. These 

results demonstrated the validity of the proposed method even in cases when the initial guess 

was far away from the target parameter value. The findings demonstrated the potential of the 

adjoint method in effectively determining the thermophysical parameters by solving the inverse 

heat conduction problems. 

Keywords: FEM; temperature-dependent thermal conductivity; adjoint method; inverse problem  

ABSTRAK 

Penentuan yang tepat bagi konduktiviti terma adalah sangat penting untuk pencirian bahan 

dalam aplikasi kejuruteraan. Namun, mengenal pasti konduktiviti terma yang bergantung 

kepada suhu merupakan satu cabaran besar. Artikel ini mencadangkan kaedah songsang 

berasaskan adjoint untuk mengenal pasti konduktiviti terma dalam senario pengaliran haba 

mantap nonlinier. Suhu simulatif yang berkaitan dengan masalah tersebut diukur menggunakan 

kaedah elemen terhingga. Pengambilan terbalik parameter konduktiviti terma dilakukan dengan 

ketepatan dan kepresisian yang tinggi melalui kaedah adjoint, yang terkenal dengan ketepatan 

dan penumpuan yang cepat. Contoh numerik dibentangkan dan dianalisis untuk menunjukkan 

keberkesanan pendekatan yang dicadangkan dalam pengenalan parameter konduktiviti terma. 

Hasil kajian ini membuktikan kesahihan kaedah yang dicadangkan walaupun tekaan awal jauh 

dari nilai parameter sasaran. Penemuan ini menunjukkan potensi kaedah adjoint dalam 

menentukan parameter termofizik dengan berkesan melalui penyelesaian masalah pengaliran 

haba songsang.  

Kata kunci: konduktiviti terma bergantung kepada suhu, kaedah adjoint, masalah songsang 

 

1. Introduction 

Understanding the relationship between temperature and thermal conductivity is essential in 

heat conduction problems. In engineering applications, like thermal management in electronics, 

subsurface heat transport in geophysical processes, and temperature-dependent thermal 

conductivity are crucial (Brookfield et al. 2009; Ekpu et al. 2011; Hoq et al. 2016; Moore & 

Shi 2014). However, direct measurement of nonlinear thermal conductivity requires expensive 
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experiments utilizing cutting-edge equipment (Alifanov 2012; Huang & Chin, 2000). 

Therefore, the cost-effective inverse heat transfer problem (IHTP) has received significant 

attention since its invention in the 1960s to identify thermophysical parameters. In recent years, 

the inverse approach has been utilized to identify the material properties, including thermal 

conductivity, which can be spatial-dependent, constant or temperature-dependent (Artyukhin 

1981), heat transfer coefficient (Mohebbi & Sellier 2016a; Zhang & Delichatsios 2009), 

specific heat, heat flux (Liu 2012; Mohebbi & Sellier 2016b), and boundary conditions (Ramos 

et al. 2022). The forward problem in IHTPs is typically solved by the singular boundary method 

(SBM), finite element method (FEM), finite difference method (FDM), and finite volume 

method (FVM). FEM is highly applicable in almost all branches of scientific study; even cubic 

B-spline FEM has been applied to solve second order Volterra-integro differential equation (Ali 

& Senu 2025). The bi-quadratic triangular Galerkin’s finite element method (QGFEM) is also 

employed to solve two-dimensional heat conduction problems (Hoq et al. 2020; Hoq et al. 

2016; Sulaeman et al. 2018). The thermophysical properties of the material under study are 

then determined by utilizing the temperature distribution obtained from the forward problem. 

Among the inverse methods, the Levenberg-Marquardt method (LMM) determines the thermal 

conductivity coefficient for anisotropic media (Chen et al. 2016). The Bayesian approach and 

Markov Chain Monte Carlo (MCMC) technique can recover the heat transfer coefficient and 

thermal conductivity (Gnanasekaran & Balaji 2011). Additionally, the conjugate gradient 

technique (CGM) is able to estimate the temperature-dependent and spatially varying thermal 

conductivity in the contexts of functionally graded materials (Mohebbi et al. 2021). In addition 

to these studies, a hybrid method that combines a modified genetic algorithm and LMM has 

been utilized to simultaneously estimate the temperature-dependent thermal conductivity and 

heat capacity.  

Although a good number of studies have been done focusing on inverse identification of 

thermal conductivity parameters, few studies addressed the simultaneous identification of 

multiple thermal condcutivity parameters for nonlinear steady heat conduction problem. Thus, 

this study focused on the simultaneous identification of three thermal conductivity parameters 

of non-linear steady heat conduciton problems. The proposed procedure took the advantage of 

FEM as supplied by the software package FeniCS (Alnæs et al. 2015; Farrell et al. 2013) to 

obtain the temperature distribution. The FEM method is powerful in solving heat conduction 

problems as it is flexible for complex geometry, boundary conditions, and material properties 

for non-linear problems. Nevertheless, FEM has some shortcomings due to the high 

computational cost, complex processing, and mesh quality; specifically, for lager mesh and 3D 

domain, computational cost increases (Erhunmwun & Ikponmwosa 2017; Jagota et al. 2013). 

In this study, the adjoint method was employed to inverse identify the functional form of 

thermal conductivity for nonlinear steady heat conduction problems. The quasi-Newton 

approach, called limited-memory BFGS approximation (Liu & Nocedal 1989) updated the 

thermal conductivity parameters without requiring the computation of the Hessian matrix, 

thereby reducing the computational cost. To the author's best knowledge, this article is the first 

to apply the adjoint method to estimate temperature-dependent thermal conductivity. While the 

focus of this work was on regular geometry, the proposed method has the potential to be applied 

to irregular geometry as well. 

The remainder of this article is organized as follows: the Method section develops the 

mathematical formulation of the steady and nonlinear 2D heat conduction problem. 

Subsequently, the adjoint method in the context of the inverse problem is presented. The Results 

section demonstrates the feasibility of estimating temperature-dependent thermal conductivity. 

Finally, the summary and the concluding remarks are given in the Conclusion section. 
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2. Methods 

This section briefly discusses the mathematical background of the forward and inverse 

problems for the identification of temperature-dependent thermal conductivity. 

2.1.  Forward problem 

The mathematical model under consideration is expressed in Eq. (1): 

 

( )     ( ) ( )0,      0, ,      0, ,  0, 0,k T T x l y l l l   = =   Ω  (1)   

 

where, ( ),T x y  represents temperature, ( )k T  is the quadratic function representing 

temperature-dependent thermal conductivity. The heat flux, denoted by q , is on the left 

boundary, 1Γ is determined by Eq. (2). 

 

( )
0

0

l

x

dy
k T dy q

dx =

= −  (2)   

 

To solve the nonlinear steady heat conduction problem, the FEM (Bathe 2007) is employed and 

the corresponding weak formulation of Eq. (1) is expressed in Eq. (3). 

 

( ) ( )
1

k T T d T qd 
 
   =    (3)   

 

Where,   T  denotes the virtual temperature field and  q  represents the heat flux on the 

boundary 1Γ . The thermal conductivity is temperature-dependent and defined in Eq. (4). 

 

( ) 2k T a bT cT= + +  (4)   

 

2.2. Inverse problem 

The initial conditions, boundary conditions, and material properties are known to obtain the 

temperature field in the forward problem. Conversely, in the inverse problem, the thermal 

conductivity parameters are unknown, while the other related conditions are assumed to be 

known. Therefore, the temperature field has been employed to retrieve the unknown thermal 

conductivity parameters. The inverse identification is performed by minimizing the objective 

function defined by Eq. (5). 

 

( ) ( )
2

*1
   

2
J T T T d= −

Ω

Ω  (5)   

 

 T  and 
*T are the computed and measured temperatures, respectively. The goal is to compute 

the thermal conductivity parameters a, b, and c by minimizing the objective function in Eq. (5). 

In order to efficiently minimize the objective function, it is essential to calculate the gradient of 

the objective functional Eq. (5) with respect to the thermal conductivity parameters. To achieve 
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this, we have chosen to employ a quasi-Newton approach. Specifically, we utilized a limited-

memory BFGS approximation of the Hessian implemented in the FEniCS platform. 

2.3.  Derivation of the adjoint equation 

Consider the heat equation as follows: 

 

( ), 0C T k =  (6)   

 

Differentiating the objective function regarding the thermal conductivity parameters  (say) 

leads to the expression Eq. (7). 

 

 
dJ J dT

d T d 


=


 (7)   

 

In the equation Eq. (7), 𝜕𝐽 𝜕𝛽⁄ is straight-forward. Conversely,  𝜕𝐽 𝜕𝑇⁄  requires the 

differentiation of the heat equation. Consequently, Eq. (6) is differentiated with respect to the 

thermal conductivity parameter  . 

 

     
C dT C

T d 

 
− =
 

 (8)   

 

The relation in Eq. (8) demonstrates the tangent linear system corresponding to the objective 

functional Eq. (5). Assuming the tangent linear system is invertible, then Eq. (8) turns, 

 
1

   
dT C C

d T 

−
  

= − 
  

 (9)   

 

Using Eq. (9) in Eq. (7), we get, 

 
1

   
dJ J C C

d T T 

−
   

= −  
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 (10)   

 

Defining adjoint variable,   as, 

 

  

T T
C J

T T


    
=   

    
 (11)   

 

Eq. (11) is the adjoint equation corresponding to the forward problem Eq. (1) and the objective 

functional Eq. (5). Solving the adjoint Eq. (11) and substituting it into Eq. (7), we obtain the 

derivative of the objective functional as follows: 

 

*  
dJ C

d


 


=


 (12)   
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2.4.  Convergent criteria 

In the inverse problems, the iteration process is terminated when the objective function meets 

the criteria: ( ) grad J  , where   represents a positive number of sufficiently small 

magnitude. 

2.5. Computational procedure 

The computational technique employed in this study involves the following steps: 

 

Step 1. In the forward problem, the FEM is employed to obtain the temperature distribution, 

incorporating the temperature-dependent thermal conductivity. 

Step 2. Initialize the adjoint method: initiate with an initial value for the thermal conductivity 

parameters. 

Step 3. Compute the objective function and its gradient utilizing the adjoint model. 

Step 4. Evaluate the convergence condition. If the condition is met, terminate the iteration; 

otherwise, update the optimization parameters, go to Step 2, and repeat the 

optimization procedure. 

Step 5. The iteration stops either when the gradient of the objective functional falls below a 

predefined tolerance or when the maximum allowable number of iterations has been 

reached. 

 

The flowchart of the computational procedure is shown in Figure 1. 

 

Figure 1: Flowchart of the proposed inversion method. 

3. Results and Discussion  

In the subsequent sections, the previously presented adjoint approach addressed the inverse 

solution of the nonlinear steady heat conduction problem. We examined the two numerical 

examples to evaluate the efficiency and accuracy of the presented inverse framework. 
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3.1. Case I 

The first example under consideration was a 2D object, as shown in Figure 2(a). The physical 

dimensions of the object were 0.1×0.1 (dimensionless). The domain was discretized as FE mesh 

into a 34×34 bilinear element. The left boundary was assigned to L 1T = ℃ , and the right 

boundary remained consistent with its initial value. The heat flux applied to the left boundary 

was determined by Eq. (3). The expression ( )L L R
T T T T x L= − −  determined the temperature 

at the top and bottom boundaries.  

 

(a)                                                                           (b) 

 

Figure 2: (a) boundary condition (b) temperature distribution obtained from the forward problem 
 

Figure 2(a) presents the boundary and additional conditions of the model. Equation Eq. (5) 

describes the thermal conductivity, with the parameters a, b, and c having values of 1.75, 0.75, 

and 0.075, respectively. The temperature distribution obtained from the forward problem 

employing FEM is presented in Figure 2(b). In the inverse approach, the thermal conductivity 

parameters a, b, and c were recovered utilizing the temperature distribution data, while all other 

conditions remained constant. To start the inverse optimization, the initial estimation of the 

variables a, b, and c was set to 0.1, far from the three target parameters. 
 

                                         (a)                                                                                       (b) 

Figure 3: (a) inversion procedure of the three thermal conductivity parameters with iteration numbers (b) 

convergence process of the objective function 
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  The convergence trend shown in Figure 3(a) illustrates the inverse identification of three 

parameters, 1.75, 0.75, and 0.075, corresponding to a, b, and c, respectively. The iterative 

process of the objective function in the inverse approach is shown in Figure 3(b), demonstrating 

its convergence with the iteration number. Figure 3(a) demonstrates the convergence of multi-

parameters to their actual value attained with a total of 33 iterations. The objective function 

value decreased sharply with iteration numbers and converged quickly. Furthermore, the final 

objective function reached a remarkably low value of 2.08×10-18, indicating the successful 

attainment of the multi-parameters to their respective targets. 

We also tested the effectiveness of the adjoint-based inverse method with varying initial 

guesses of 0.01 and 0.001. In both cases, we observed that the parameters a, b, and c were 

identified successfully with a bit increased iteration. Figure 4 shows that for initial guess 0.01, 

it took 39 iterations to be converged, whereas for initial guess 0.001, it took 41 iterations to be 

converged. 

 

                                           (a)                                                                               (b) 

Figure 4: (a) Inversion procedure of the three thermal conductivity parameters with initial guess 0.01 (b) 

Inversion procedure of the three thermal conductivity parameters with initial guess 0.001 
 

3.2. Case II 

The second numerical example was the thermal conductivity parameters inversion of a two-

dimensional model, as demonstrated in Figure 5(a). The physical domain was discretized into 

30×30 rectangles, each divided into a pair of triangles. The left boundary was assigned to 𝑇L =
1℃; the right boundary maintained 0℃. Eq. (3) determined the heat flux at the left boundary 

while the remaining boundaries were thermally insulated. The temperature-dependent thermal 

conductivity was represented in Eq. (5), where the parameters were a = 1.2, b = 0.8, and c = 

0.04.  

Regarding the inverse approach, the thermal conductivity parameters a = 1.2, b = 0.8, and c 

= 0.04 were unknown and required determination, while all other conditions remained 

unchanged. The temperature distribution obtained from the forward model, as displayed in 

Figure 5(b), required additional data for the inverse identification. The initial guesses assigned 

to the parameters a, b, and c were 0.1. The convergence history, shown in Figure 6(a), illustrates 

the progression of three recovered parameters, 1.2, 0.8, and 0.04, labelled as a, b, and c. It is 

evident from Figure 6(a) that convergence was achieved following a total of 31 iterations. 

Besides that, Figure 6(b) represents the convergence process of the objective function. The 

objective function converged quickly and attained a remarkably low final value of 4.33×10-19. 
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The low objective function value and quick convergence of the three parameters indicated the 

efficiency and robustness of the adjoint-based inverse framework. In this numerical example, 

we also tested the effectiveness of the proposed adjoint-based inverse method with varying 

initial guesses of 0.01 and 0.001. Figure 7 attests that the three parameters a, b, and c converged 

with 33 iterations for the initial guess of 0.01, whereas 39 iterations were needed for the initial 

guess of 0.001. This proved the robustness of the proposed inverse method. 

 

                                           (a)                                                                               (b) 

 

Figure 5: (a) boundary condition (b) temperature distribution obtained from the forward problem 
 

                                           (a)                                                                               (b) 

 

Figure 6: (a) Inversion procedure of the multiple thermal conductivity parameters with iteration numbers (b) 

Convergence process of the objective function 
 

The above two numerical examples demonstrated that the proposed adjoint-based inverse 

approach had the potential to inverse identify the thermal conductivity parameter quickly with 

improved accuracy than the modified conjugate gradient methods reported previously (Cui et 

al. 2014; Yang et al. 2019) as it did not require the computation of the Hessian matrix. In the 

case of irregular geometry, the numerical stability of the inverse method decreases with 
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increasing complex geometry due to complicated mesh; small changes in parameters make the 

sensitivity analysis challenging (Duda 2015). 

                                           (a)                                                                               (b) 

 

Figure 7: (a) inversion procedure of the three thermal conductivity parameters with initial guess 0.01 (b) 

inversion procedure of the three thermal conductivity parameters with initial guess 0.001 

4. Error Analysis 

The relative error was performed between the thermal conductivity parameters obtained 

through the adjoint method with the target value aiming to assess the accuracy of the outcomes, 

as given by Eq. (14). 

 

( )
( )

2
*

1

2

1

e 100%

N

i ii

N

ii

A A

A

=

=

−
= 



 (14)   

 

where, iA  denote target parameters, *

iA represents the recovered parameter of temperature-

dependent thermal conductivity, and N  signifies the total number of nodes in the domain. 

Table 1: Relative error between target and estimated thermal conductivity parameters. 

Parameters First example Second Example 

a 5
1.77 10  %

−
  

6
2.72 10  %

−
  

b 5
1.69 10  %

−
  

6
4.49 10  %

−
  

c 5
6.03 10  %

−
  

5
1.85 10  %

−
  

 

Table 1 depicts the relative error, underscoring the effectiveness of the proposed approach 

in recovering multiple parameters with high accuracy. The precision of the adjoint technique 

was readily apparent from the relative error values calculated for all parameters in the two cases. 

Remarkably, both examples stood out with a relative error in the order of around 10−5. These 

findings collectively underscored the robustness and accuracy inherent in the proposed method. 
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5. Conclusion 

This study presents an inverse approach for the simultaneous identification of multiple thermal 

conductivity parameters in the context of 2D nonlinear steady heat conduction problems. 

Temperature distribution was obtained utilizing FEM by solving the forward problem. The 

adjoint method was utilized in inverse analysis to effectively minimize the objective function 

and accurately retrieve the desired parameters. The numerical findings demonstrated that the 

proposed adjoint method can simultaneously invert the three parameters of thermal conductivity 

by utilizing measured temperature distribution with only around 30 iterations and remarkably 

low objective function value of the order 10-19. Additionally, the relative error for all three 

parameters of both examples stood out in the order around 10−5. In summary, the proposed 

inverse framework has better efficiency, higher precision, and robustness. The outcome of this 

can contribute to the fields of material science, manufacturing, electronic and semiconductor 

industries, as steady-state nonlinear thermal analysis plays a pivotal role in the final stage of 

system design and evaluations. Our subsequent objective is to experimentally validate the 

proposed adjoint approach to address inverse heat conduction problems and to extend for 

complex geometry. 
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