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Abstract.	Enhancing	the	sensitivity	of	flexible	MEMS	capacitive	pressure	sensors	
is	vital	 for	applications	 in	wearable	electronics,	healthcare,	and	 tactile	sensing.	
Recent	 advancements	 focus	 on	 material	 innovations	 like	 graphene	 and	 silver	
nanowires,	 structural	 designs	 such	 as	 pyramidal	 microstructures	 and	
interdigitated	electrodes,	and	fabrication	techniques	like	laser-induced	graphene	
and	 multilayer	 architectures.	 These	 approaches	 improve	 sensitivity,	 broaden	
detection	 ranges,	 and	 enhance	 response	 times.	Despite	progress,	 challenges	 in	
stability	 and	 fabrication	 complexity	 remain.	 This	 review	 summarises	 current	
strategies,	 offering	 insights	 into	 advancing	 sensor	 performance	 for	 emerging	
applications.	

1.	Introduction		

Microelectromechanical	 systems	 (MEMS)	 are	 a	 class	 of	 miniaturized	 devices	 that	 integrate	
mechanical	and	electrical	components	on	a	single	chip	[1].	These	systems,	often	fabricated	using	
techniques	adapted	 from	semiconductor	manufacturing,	are	capable	of	sensing,	actuating,	and	
processing	information.	MEMS	technology	covers	a	wide	range	of	applications,	including	inertial	
sensors,	microIluidic	devices	[1],	and	pressure	sensors,	due	to	its	advantages	of	compact	size,	low	
power	consumption	[2],	and	high	precision	[3].	Among	these,	MEMS	capacitive	pressure	sensors	
have	 gained	 signiIicant	 attention	 for	 their	 reliable	 operation	 and	 compatibility	 with	 modern	
electronics	[4].	

2.	MEMS	Pressure	Sensors	

In	MEMS,	pressure	sensors	are	among	the	most	widely	used	devices	due	to	their	compact	size,	
high	sensitivity,	and	low	power	consumption	[2].	MEMS	pressure	sensors	measure	external	force	
exerted	 and	 convert	 it	 into	 an	 electrical	 signal	 [5].	 Pressure	 sensors	 can	 be	 categorized	 into	
various	 types	based	on	 their	sensing	principles	and	applications.	These	 include	capacitive	 [6],	

https://creativecommons.org/licenses/by/4.0/
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piezoresistive	[7],	piezoelectric	[8],	optical	[9],	and	resonant	pressure	sensors	[10].	Each	type	of	
pressure	sensor	offers	unique	advantages	and	is	suited	for	speciIic	applications.	Table	2.1	shows	
various	type	of	pressure	sensors.	
	

2.1	MEMS	Capacitive	Pressure	Sensor		
MEMS	Capacitive	pressure	sensors	operate	based	on	a	simple	yet	effective	design	that	revolves	
around	the	interaction	of	capacitive	electrodes	and	a	diaphragm,	typically	made	of	materials	like	
silicon	or	polysilicon	[20-22].	The	capacitive	electrodes	typically	consist	of	two	main	components:	
a	fixed	electrode	and	a	movable	diaphragm.	The	fixed	electrode	is	securely	anchored	to	the	substrate,	
while	 the	 movable	 diaphragm	 is	 designed	 to	 deform	 in	 response	 to	 applied	 pressure.	 This	
deformation	causes	a	change	in	the	capacitance	between	the	electrodes,	which	forms	the	basis	for	
pressure	sensing	[20].	

The	diaphragm	is	a	critical	component	that	significantly	influences	the	sensor's	performance.	It	
can	be	fabricated	using	various	materials	such	as	silicon,	silicon	carbide,	or	gold,	chosen	for	their	
speciIic	mechanical	 and	 electrical	 properties	 [20,24,25].	Additionally,	 diaphragms	 can	 take	on	
different	geometric	shapes,	including	circular,	square,	or	octagonal,	depending	on	the	application	
requirements	and	the	desired	sensitivity	[26].	

Table	2.1	ClassiUication	of	pressure	sensors	along	with	their	mechanism,	operating	principle,	and	
applications	

Type	 Mechanism	 Operating	Principles	 Applications	

Capacitive	a	 Electrostatic	
transduction	

Capacitance	changes	due	to	air-
gap	variation	caused	by	
diaphragm	deflection	

Healthcare	monitoring,	
environmental	sensing	

Piezoresistive	
b	

Change	in	electrical	
resistance	

Resistance	changes	in	
piezoresistive	elements	due	to	

strain	in	the	diaphragm	

Automotive	(engine	
monitoring),	aerospace	

Piezoelectric	c	 Electric	charge	
generation	

Electrical	charge	is	generated	by	
the	stress-induced	polarization	
of	the	piezoelectric	material	

Robotics	and	
prosthetics	

Optical	d	 Optical	path	
length/intensity	

change	

Light	signal	properties	(intensity,	
phase,	or	wavelength)	change	
due	to	structural	deformation	

Hazardous	
environments	(oil	and	
gas),	biomedical	

Resonant	d	 Change	in	resonant	
frequency	

Resonance	frequency	shifts	due	
to	mass	or	tension	changes	

caused	by	pressure	

Meteorology,	scientific	
research	

a	Ref.	[11,12,13],	b	Ref.	[9,10,11,14,15,16],	c	Ref.	[11,17,18],	d	Ref.	[19]	
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When	pressure	is	applied,	the	diaphragm	deIlects,	thereby	altering	the	air	gap	between	the	
two	electrodes.	This	change	in	the	air	gap	directly	modiIies	the	capacitance	value,	which	is	then	
measured	and	correlated	to	the	pressure	applied	[20,21,26].	Each	sensor	type	leverages	a	distinct	
operating	principle,	offering	unique	beneIits	tailored	to	speciIic	applications.		

Table	2.1.1	presents	a	comparative	overview	of	various	pressure	sensor	 types,	highlighting	
their	structural	features.		
	

From	the	table,	it	is	apparent	that	MEMS	capacitive	pressure	sensor	outperform	piezoelectric,	
piezoresistive,	 optical,	 and	 resonant	 sensors	 in	 several	 aspects,	 including	 sensitivity,	 power	
efIiciency,	temperature	stability,	dynamic	range,	and	mechanical	robustness	[20,32-37].	

	

Figure	2.1.1	Schematic	diagram	of	a	diaphragm-based	capacitive	pressure	sensor	[23].	

Table	2.1.1	Feature	of	various	pressure	sensors	

Pressure	Sensors	

Feature	 Capacitive	a	 Piezoresistive	b	 Piezoelectric	c	 Optical	d	 Resonant	d	

Sensitivity	 High	 Moderate	to	High	 High	 High	 High	

Power		
Consumption	

Low	 Moderate	 Moderate	 Low	 Low	

Temperature		
Stability	

High	 Moderate	 Low	to	
Moderate	

Low	 Low	

Dynamic		
Range	

High	 Moderate	to	High	 High	 High	 High	

Integrated		
Circuit	(IC)	
Compatibility	

High	 Moderate	 Low	to	
Moderate	

Low	 Low	

Mechanical		
Robustness	

High	 Moderate	 Moderate	 High	 High	

a	Ref.	[18,19,20,21,22,23,24,25,26,27],	b	Ref.	[27,28,29],	c	Ref.	[30],	d	Ref.	[31]	
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These	 advantages,	 combined	 with	 their	 IC	 compatibility	 and	 cost-effectiveness,	 make	
capacitive	sensors	a	versatile	and	indispensable	tool	for	modern	sensing	applications	[38].	Their	
capabilities	 position	 them	 as	 a	 preferred	 choice	 for	 industries	 ranging	 from	 healthcare	 to	
aerospace,	where	precision,	reliability,	and	efIiciency	are	critical	[39-40].	

2.2	Sensitivity	and	Capacitance	
Sensitivity	 refers	 to	 the	 ability	 of	 a	 pressure	 sensor	 to	 detect	 small	 changes	 in	 pressure	 and	
convert	them	into	measurable	signals.	It	is	often	deIined	as	the	ratio	of	the	change	in	output	(e.g.,	
	capacitance,	resistance)	to	the	applied	pressure	change.	Higher	sensitivity	allows	the	sensor	to	
respond	to	Iiner	pressure	differences,	enabling	more	precise	measurements.	High	sensitivity	is	
crucial	for	applications	that	require	precise	pressure	monitoring.	

In	the	context	of	capacitive	pressure	sensors,	sensitivity	refers	to	the	sensor's	ability	to	detect	
small	changes	in	pressure	and	convert	them	into	measurable	variations	in	capacitance.	Sensitivity	
is	inIluenced	by	several	factors,	including	the	material	properties,	diaphragm	structure,	dielectric	
layer	thickness,	and	electrode	area	[20,21,41].	The	sensitivity	of	a	capacitive	pressure	sensor	is	
deIined	as	the	change	in	output	capacitance	(ΔC)	divided	by	the	change	in	applied	pressure	(ΔP):	

	

𝑆 =
∆𝐶
∆𝑃
	

(1)	
Where:	
• S	is	the	sensitivity	of	the	sensor	(typically	in	F/Pa	or	F/N),	
• ΔC	is	the	change	in	capacitance	(in	farads),	
• ΔP	is	the	change	in	applied	pressure	(in	pascals).	
	
For	a	MEMS	capacitive	pressure	sensor,	the	sensors	operate	by	converting	externally	applied	

pressure	 into	 changes	 in	 capacitance,	which	 serves	 as	 the	 output	 signal	 [26,42].	 Capacitance,	
denoted	 by	 C,	 is	 a	 measure	 of	 the	 sensor's	 ability	 to	 store	 electrical	 energy	 as	 charges.	 The	
capacitance	of	a	parallel	plate	capacitor	in	a	vacuum	can	be	deIined	as:	

	

𝐶 =
𝜀!𝐴
𝑑
	

(2)	
Where:	

• ε0	permittivity	of	free	space,	
• A	is	the	effective	area	of	the	plates,	
• d	is	the	distance	between	the	parallel	plates.	
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Figure	 2.1	 illustrates	 a	 MEMS	 capacitive	 pressure	 sensor	 that	 utilizes	 a	 diaphragm,	 the	
primary	mechanical	part	of	the	sensor,	and	a	cavity	to	measure	pressure.	As	pressure	is	applied,	
the	diaphragm	deforms,	altering	the	distance	between	the	diaphragm	and	the	fixed	electrode,	thus	
changing	the	capacitance	[20,26,42].	The	change	in	capacitance,	ΔC	can	be	expressed	as:	
	

∆𝐶 =
𝜕𝐶
𝜕𝑃

∆𝑃	

(3)	
Where:	
• ∂C/∂P	 is	 the	 pressure-to-capacitance	 sensitivity	 coefIicient,	 which	 depends	 on	 the	

diaphragm	deIlection	and	the	mechanical	properties	of	the	sensor,	
• ΔP	is	the	pressure	difference	between	two	measured	values	
	

2.3	Flexible	MEMS	Capacitive	Pressure	Sensor	
Flexible	MEMS	 capacitive	pressure	 sensors	 operate	 on	 the	 same	basic	 principle	 as	 traditional	
MEMS	devices,	consisting	of	two	conductive	layers	separated	by	a	dielectric	layer.	However,	the	
primary	distinction	between	Ilexible	and	traditional	MEMS	sensors	lies	in	the	materials	used	and	
their	ability	to	adapt	to	dynamic	environments.	Traditional	MEMS	are	made	from	rigid	materials	
like	silicon,	which	provide	structural	integrity	in	stable,	Ilat	conditions.	These	sensors	are	well-
suited	 for	 applications	 that	 do	 not	 require	 movement	 or	 deformation,	 such	 as	 automotive,	
industrial,	and	aerospace	systems.	However,	they	are	limited	in	their	ability	to	conform	to	curved	
or	dynamic	surfaces,	making	them	unsuitable	for	environments	that	require	Ilexibility.	

In	contrast	 to	 the	 rigid	substrates	used	 in	 traditional	 capacitive	pressure	sensors,	 Ilexible	
MEMS	integrate	Ilexible	substrates	made	from	materials	such	as	polydimethylsiloxane	(PDMS)	
[44],	polyimide	(PI)	[45],	or	polyethylene	terephthalate	(PET)	[46].	Replacing	rigid	silicon	with	
Ilexible	polymers	allows	MEMS	capacitive	pressure	sensors	to	better	conform	to	curved	surfaces	
and	 provide	 more	 accurate	 readings	 under	 deformation.	 This	 Ilexibility	 also	 enables	 more	
efIicient	 integration	 into	 wearable	 devices,	 biomedical	 implants,	 and	 other	 advanced	
technologies.	

	

Figure	2.2.1	(a)	A	cross	section	of	a	MEMS	diaphragm-based	capacitive	pressure	sensor	(b)	
Deformation	of	diaphragm	due	to	applied	pressure	[43].	
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Figure	 2.3.1	 shows	 the	 fundamental	 structure	 of	 capacitive	 sensing	 in	 Ilexible	 pressure	
sensors	 where	 these	 sensors	 consist	 of	 two	 electrode	 layers	 that	 is	 made	 from	 metals	 or	
conductive	polymers,	and	a	dielectric	elastomer	layer	in	between	of	the	electrodes.		
	

Table	 2.3.1	 compares	 between	 the	 traditional	 and	 flexible	MEMS	 capacitive	 pressure	
sensors	 in	 terms	 of	 their	 structure,	 fabrication	 processes	 used,	 sensitivity,	 flexibility,	 and	
applications,	and	it	shows	that	flexible	version	are	superior.	However,	further	advancements	are	
needed	 to	 improve	 their	 sensitivity,	durability,	 and	overall	performance	 [55].	This	paper	will	
focus	 on	 key	 components	 influencing	 sensor	 sensitivity,	 including	 the	 substrate,	 diaphragm,	
dielectric	layer,	and	electrodes.	By	reviewing	current	advancements	and	strategies	to	optimize	
these	components,	the	paper	aims	to	provide	insights	into	overcoming	existing	limitations	and	
guiding	future	developments	in	flexible	MEMS	capacitive	pressure	sensors	[2,40-48].	

																																							 	

Figure	2.3.1	Structure	of	a	Ulexible	MEMS	capacitive	pressure	sensor	[47].	

Table	2.3.1	Comparison	of	the	traditional	and	Ulexible	MEMS	capacitive	pressure	sensor	

Aspect	 Traditional	MEMS	Capacitive	
Pressure	Sensor	

Flexible	MEMS	Capacitive	Pressure	Sensor	

Structure	 Silicon	membrane,	fixed	
electrode	a	

Flexible	substrates,		
polymer-based	materials	d	

Fabrication	 Silicon	micromachining	a	 Magnetron	sputtering	d	

Sensitivity	 High	a,b	 High,	enhanced	by	flexible	materials	and	
micro/nanostructures	d	

Flexibility	 Limited	a	 High,	suitable	for	curved	surfaces	d,e	

Applications	 Medical	devices,	industrial	
sensors	c	

Wearable	electronics,	electronic	skin	d,e	
	

a	Ref.	[36,48,49],	b	Ref.	[41],	c	Ref.	[40,54],	d	Ref.	[50,51,53],	e	Ref.	[52]	

Fingerprint-like	surface	

Electrode	layer	

Dielectric	layer	
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3.	Sensitivity	Enhancement	of	Flexible	MEMS	Capacitive	Pressure	Sensor	

Flexible	MEMS	capacitive	pressure	sensors	rely	on	the	integration	of	several	key	components	that	
collectively	 determine	 the	 performance	 and	 sensitivity	 of	 the	 sensor.	 The	 sensors	 rely	 on	 the	
design	 and	 materials	 used	 in	 each	 component.	 To	 enhance	 the	 sensitivity	 of	 Ilexible	 MEMS	
capacitive	 pressure	 sensors,	 several	 strategies	 involving	 substrate	 materials	 and	 structural	
modiIications	can	be	employed.		

3.1	Flexible	MEMS	Capacitive	Pressure	Sensors	Substrate	Materials	and	Structures	

3.1.1	Substrate	Materials	
The	 substrate	 serves	 as	 the	 foundation	 of	 the	 sensor.	 In	 Ilexible	MEMS	 sensors,	 the	 choice	 of	
substrate	 for	 Ilexible	 MEMS	 capacitive	 pressure	 sensors	 depends	 on	 the	 speciIic	 application	
requirements,	such	as	Ilexibility,	chemical	resistance,	and	environmental	stability.	There	are	wide	
variety	all	viable	materials,	each	offering	unique	advantages	for	different	use	cases.	Table	3.1.1	
compares	 various	 Ilexible	 substrates	 for	MEMS	 capacitive	 pressure	 sensors,	 focusing	 on	 their	
advantages,	and	applications.		
	

Based	 on	 this	 comparison,	 PDMS	 stands	 out	 for	 its	 unique	 combination	 of	 Ilexibility,	 micro-
structuring	capability,	low	dielectric	constant,	and	compatibility	with	nanomaterials,	making	it	a	
highly	effective	material	for	signiIicantly	improving	the	performance	of	Ilexible	MEMS	capacitive	
pressure	sensors.	As	a	 result,	 further	 investigation	 into	PDMS	 is	conducted	 to	enhance	sensor	
performance.	

Table	3.1.2	below	provides	the	overall	characteristic	of	PDMS	as	a	material,	and	it	emerges	as	
the	most	favourable	material	for	flexible	MEMS	capacitive	pressure	sensors	given	the	advantages	
using	 the	materials	 compared	 to	materials	 listed	 in	 Table	 3.1.1.	 PDMS	enhances	 flexible	MEMS	
capacitive	 pressure	 sensors	 by	 providing	 Ilexibility,	 improving	 sensitivity	 through	 micro-
structuring,	reducing	dielectric	constant,	and	enabling	integration	with	nanomaterials.		

Table	3.1.1	Comparison	of	material	advantages	and	applications	of	various	Ulexible	substrates	

Substrate	Material	 Advantages	 Applications	

Polydimethylsiloxane,	
PDMS	a	

Flexibility,	bending	stability,	
cycling	stability	

Printed	circuit	processing,		
pressure	sensors	

Liquid	Crystal	
Polymer,	LCP	b	

Dimensional	stability,	
flexibility,	chemical	resistance	

Wearable	devices,		
electronic	skins	

Parylene	C	c	 Biocompatible,	flexible	 Intraocular	pressure	sensors	

Polyimide,	PI	d	 Flexible,	robust	 Smart	skins,	tactile	sensors	

Silicon	Carbide,		
3C-SiC	e	

Mechanical	strength,	
temperature	resistance	

Harsh	environment	sensors	
	

Kapton	f	 High	flexibility,	durability	 Medical	monitoring,	stress	
measurements	

a	Ref.	[56,57],	b	Ref.	[24],	c	Ref.	[52,58],	d	Ref.	[53,59],	e	Ref.	[60],	f	Ref.	[61,62]	
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Other	materials	have	their	advantages	in	speciIic	contexts,	but	their	limitations	in	Ilexibility,	
thermal	stability,	or	cost-	efficiency	make	them	less	suitable	to	further	enhance	the	sensitivity	of	a	
flexible	MEMS	capacitive	pressure	sensor.		
	

3.2	Substrate	Structure	
The	substrate	of	the	flexible	MEMS	capacitive	pressure	sensors	are	commonly	incorporate	micro-	
arrayed	patterns,	hemispherical	microstructures,	or	hollow	cavities,	which	enable	the	sensor	to	
better	deform	under	pressure,	increasing	the	effective	surface	area	and	improving	sensitivity.	
	

Table	 3.2.1	 shows	 various	 incorporation	 of	 designs	 on	 the	 substrate	 layer.	 The	
combination	 of	microstructures	 and	 hollow	 cavities	 in	 the	 PDMS	 substrate	 poses	 significant	
impact	in	achieving	high	sensitivity	and	reliable	performance	[44,74,78].	

Table	3.1.2	Comparison	of	material	advantages	and	applications	of	various	Ulexible	substrates	

Feature/Approach	 Description	 Advantage/Outcome	

Flexibility	and	
Elasticity	a	
	

High	flexibility	and	elasticity,	
adaptable	to	curved	surfaces	

Suitable	for	wearable	devices,	
enabling	real-time	monitoring	

Sensitivity	
Enhancement	b	

Micro-structured	PDMS	(e.g.,	micro-
arrayed	or	porous	designs)	

enhances	sensitivity	

Sensitivity	of	2.04	kPa⁻¹	with	
micro-arrayed	PDMS;	0.0083	Pa⁻¹	

in	low-pressure	ranges	

Low	Dielectric	
Constant	c	

Reduces	parasitic	capacitance	noise,	
improving	the	signal-to-	noise	ratio	

Enhanced	sensor	performance	via	
techniques	like	UV	exposure	and	
ethanol-toluene	buffer	washing	

Integration	with	
Nanomaterials	d	

Combines	with	nanomaterials	like	
Silver	Nanowires	(AgNWs),	Carbon	
Nanotubes	(CNTs),	and	graphene	to	

improve	electrical	properties	

Achieves	high	sensitivity	(e.g.,	
2.94	kPa⁻¹	with	AgNWs	coating	on	

PDMS)	

a	Ref.	[44,63,64,65],	b	Ref.	[56,63,66],	c	Ref.	[67],	d	Ref.	[63,64,68,69,70],	e	Ref.	[71,72]	

Table	3.2.1	Comparative	Performance	Metrics	of	Sensor	Types	

Sensor	Type	 Structural	Feature	 Sensitivity	 Applications	

Hemispherical	+	Hollow	
Cavities	in	PDMS	a	

Curved	microstructures,	
hollow	cores	

7.99	kPa⁻¹	 Biomedical	sensors	

Sealed	PDMS	Cavity	with	IDE	
Electrodes	b	

Flat	cavities,	IDE	
configuration	

3.35	
fF/psi	

General	pressure	
sensing	

Pyramid-Shaped	
Microstructures	in	PDMS	c	

Geometrically	rigid	
microstructures	

0.22%	
Pa⁻¹	

Wearable	physiological	
monitoring	

a	Ref.	[74],	b	Ref.	[78],	c	Ref.	[44]	
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3.2.1	Composite	Substrates	
A	 composite	 substrate	 in	 the	 context	 of	MEMS	 capacitive	 pressure	 sensors	 refers	 to	 a	multi-	
material	structure	that	combines	a	base	material	(like	PDMS)	with	other	functional	materials	to	
enhance	 its	physical,	 electrical,	 or	mechanical	properties.	The	goal	 is	 to	optimize	 the	 sensor's	
performance	by	leveraging	the	synergistic	beneIits	of	the	combined	materials.	
	

	
Table	3.2.1.1	shows	enhancement	that	can	be	made	for	when	PDMS	is	integrated	with	various	

materials.	 The	 use	 of	 composite	 substrates	 allows	 for	 greater	 customization	 of	 the	 sensor’s	
properties,	 such	 as	 improving	 electrical	 conductivity,	 enhancing	 Ilexibility,	 and	optimizing	 the	
mechanical	response	to	pressure.	By	combining	PDMS	with	conductive	or	dielectric-enhancing	
materials	results	in	superior	sensitivity,	Ilexibility,	and	functionality	[63,80,87-89].	

In	 summary,	 the	 substrate	 structure	 is	 essential	 in	 dictating	 the	 performance	 of	 Ilexible	
MEMS	capacitive	pressure	sensors.	The	material	choice,	integrated	microstructures,	and	overall	
design	all	play	a	significant	role	in	improving	sensitivity,	stability,	and	flexibility.	These	features	make	
the	sensor	adaptable	for	a	wide	range	of	applications,	from	wearable	electronics	to	biomedical	
sensors	[88-89].	

3.3	Dielectric	material	
Dielectric	materials	 are	 insulating	 substances	 that	do	not	 conduct	 electricity	but	 can	 support	
electrostatic	 fields,	 making	 them	 essential	 in	 various	 electronic	 applications.	 Their	 primary	
function	in	capacitive	pressure	sensors	is	to	enhance	capacitance	by	polarizing	under	an	applied	
electric	field.	The	dielectric	constant,	a	measure	of	a	material's	ability	to	store	electrical	energy,	is	
a	critical	property	determining	their	effectiveness.		

Table	3.2.1.1	Comparison	of	material	advantages	and	applications	of	various	Ulexible	substrates	

Material	
Integrated	

Role	in	Composite	 Performance	Impact	 Applications	

AgNWs	a	 Enhances	electrical	
conductivity,	serves	as	
electrode	material	

Improves	sensitivity	and	
signal	stability	

Wearables,	biomedical	
devices	

MWNTs	b	 Embedded	conductive	
elastomer;	creates	
elastomer	wires	and	

electrodes	

Increases	conductivity,	
enhances	mechanical	

stability	

Flexible	electronics,	
soft	robotics		

CCTO	c	 Enhances	dielectric	constant	
of	PDMS	

Enhances	dielectric	
constant	of	PDMS	

Pressure	sensing	for	
wearables,	industrial	

sensors	

BTO	d	 Forms	porous-elastic	matrix	
within	PDMS	

Increases	sensitivity	and	
linearity	under	low-	
pressure	conditions	

Robotics,	prosthetics,	
low-	pressure	
applications	

a	Ref.	[63],	b	Ref.	[80,87],	c	Ref.	[88],	d	Ref.	[89]	
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Materials	with	higher	dielectric	constants	signiIicantly	improve	the	sensitivity	of	sensors	by	
amplifying	 the	 capacitance	 changes	 induced	 by	 pressure	 variations.	 In	 the	 context	 of	 MEMS	
capacitive	pressure	sensors,	dielectric	materials	are	used	 in	various	 forms,	 ranging	 from	solid	
composites	to	liquids.	Conventional	solid	dielectric	materials,	such	as	polymers	and	composites,	
have	been	the	cornerstone	of	sensor	design	due	to	their	structural	stability,	ease	of	fabrication,	
and	reliable	performance.	However,	these	materials	often	face	limitations	in	achieving	ultra-high	
sensitivity,	 especially	 for	 applications	 requiring	 precise	 measurements	 over	 a	 wide	 range	 of	
pressures.	
	

Table	 3.3.1	 compares	 performance	metrics	 of	 various	methods	 to	 enhance	 dielectrics	
materials	for	the	flexible	MEMS	capacitive	pressure	sensor.	For	flexible	MEMS	capacitive	sensors,	
using	high	dielectric	materials	like	deionized	water,	glycerine,	and	composites	such	as	PDMS	with	
dielectric	fillers	or	RGO	can	significantly	enhance	sensor	performance.	These	materials	maintain	
flexibility	while	providing	high	sensitivity,	making	them	suitable	for	a	wide	range	of	applications	
including	wearable	sensors,	medical	devices,	and	human	motion	monitoring.	

3.4	Electrodes	
An	electrode	is	a	conductive	material	that	plays	a	critical	role	in	the	device's	operation.	It	serves	
as	one	of	the	two	plates	of	a	capacitor,	enabling	the	generation	and	measurement	of	electrical	
signals	 that	 correspond	 to	 pressure	 changes.	 Electrodes	 are	 arranged	 in	 a	 parallel	 plate	
configuration,	with	a	dielectric	layer	(e.g.,	PDMS)	sandwiched	between	them.	The	top	electrode	
is	often	flexible	to	allow	deformation	under	pressure,	while	the	bottom	electrode	is	usually	fixed	
to	a	substrate.	To	improve	the	performance,	 it	requires	optimization	of	materials,	designs,	and	
fabrication	techniques	to	achieve	higher	sensitivity,	better	stability,	and	a	wider	detection	range.	

Innovative	structural	designs	are	crucial	for	amplifying	the	performance	of	flexible	sensors.	
Studies	have	shown	that	interdigitated	electrodes	(IDE)	effectively	reduce	output	non-linearity	by	
serving	as	a	pressure-magnifying	structure	[95-96].	The	design	can	also	manipulate	the	electrical	
properties	of	the	graphene	structural	properties	when	pressure	is	applied	in	Z-direction.	Precise	
adjustments	to	electrode	 spacing	in	IDE	structures	 as	 shown	 in	 Figure	 3.4.1.	ensures	uniform	
strain	distribution,	further	improving	sensor	sensitivity	and	detection	accuracy	[95].		

Table	3.3.1	Comparison	of	Dielectric	Materials	

Material	 Dielectric	Constant	 Flexibility	 Sensitivity	

Deionized	Water	a	 ~80	 High	 High	(5x	air)	

Glycerine	a	 ~47	 High	 High	(5x	air)	

PDMS	with	BaTiO3/STO	b	 Varies,	High	 High	 High	(7.847	kPa⁻¹)	

RGO-PDMS	Composite	c	 38	 High	 Moderate	(0.4321	kPa⁻¹)	

Porous	PDMS	d	 Varies	 High	 Moderate	(0.694	kPa⁻¹)	
a	Ref.	[51],	b	Ref.	[91],	c	Ref.	[93],	d	Ref.	[94]	
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Additionally,	Graphene	offers	superior	Ilexibility,	high	conductivity,	and	mechanical	strength,	
making	it	ideal	for	sensors	requiring	consistent	performance	under	strain	[95-96].		

4.1	Conclusion	

The	development	of	Ilexible	MEMS	capacitive	pressure	sensors	has	seen	signiIicant	advancements	
through	structural	modiIications	and	material	innovations.	Enhancing	Ilexible	MEMS	capacitive	
pressure	sensors	 involves	optimizing	 the	 substrate,	dielectric,	 and	electrode.	Micro-structured	
and	 multilayer	 substrates	 improve	 Ilexibility	 and	 sensitivity.	 High-k	 dielectric	 materials	 and	
liquid-based	 dielectrics	 enhance	 capacitance	 response.	 Advanced	 electrodes	 like	 AgNWs	
composites	ensure	conductivity	and	stability.		

	

Table	4.1	summarizes	the	numerous	strategies	that	can	be	utilised	to	enhance	sensitivity	in	
Flexible	 MEMS	Capacitive	Pressure	Sensor.	These	innovations	cater	to	diverse	applications,	and	
positions	 Ilexible	 MEMS	 capacitive	 pressure	 sensors	 as	 ideal	 candidates	 for	 next-generation	
technologies.	 Future	 research	 focusing	 on	 further	 material	 innovation	 and	 optimization	 of	
fabrication	 techniques	will	 continue	 to	 push	 the	 boundaries	 of	 performance	 and	 reliability	 in	
these	sensors.	

	

Figure	3.4.1	Geometry	of	the	interdigitated	graphene-based	pressure	sensor	unit	cell	[95].	

Table	4.1	Summary	of	sensitivity	enhancement	of	Ulexible	MEMS	capacitive	pressure	sensors	

Category	 Approach	 Sensitivity	
Improvements	

Substrate	a	 Composite	materials,	Micro-structured	
substrate	configurations	

High	sensitivity,	
flexibility	

Dielectric		b	 Highly	dielectric	materials	 High	dielectric	
constant,	flexibility	

Electrode	c	 Composite	materials,	nano-structured	
configurations	

Potential	for	
optimization	

a	Ref.	[103],	b	Ref.	[67]c	Ref.	[51,106]	
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