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Abstract—The manufacturing industry has witnessed a 

surge in the adoption of machine learning (ML) techniques to 

enhance various aspects of production processes. One critical 

application of ML in manufacturing is condition monitoring 

and fault detection, which play a pivotal role in ensuring 

product quality, minimizing downtime, and maximizing 

operational efficiency. This paper presents a comprehensive 

review of the use of machine learning for condition monitoring 

and fault detection in manufacturing environments. It also 

discusses the importance of data preprocessing, feature 

engineering, and model selection in developing robust and 

reliable ML-based condition monitoring systems. Furthermore, 

the paper addresses the case studies, challenges and future 

trends associated with deploying ML-driven condition 

monitoring, such as data quality, model interpretability, and 

integration with existing manufacturing systems. It also 

highlights emerging trends and future research directions in 

this domain, including the integration of edge computing, 

digital twins, and advanced analytics for real-time, predictive, 

and prescriptive maintenance strategies. 

Keywords—Condition Monitoring; Fault Detection; Machine 

Learning; Supervised Learning, Sensor- based Monitoring. 

I. INTRODUCTION 

The evolution of data storage and computational power, 
together with the democratization of machine learning 
methods, has widened the scope of what is considered 
possible within the realm of condition monitoring and fault 
detection. Algorithms can be trained to detect and predict 
incipient faults in equipment only from its sensor data. In 
other words, expert knowledge and rule-based approaches 
are no longer viewed as the only way forward. This is 
especially interesting in the current competitive market, 
where rapid changes in manufacturing configuration and 
changes in business are inherently welcome. Many owners 
and service providers are opting for an on-demand, 
predictive maintenance regime in which prognosis methods 
play a vital role, in contrast to traditional maintenance 
methods. In the following, we provide an introduction to 
predictive maintenance and discuss the feasibility and the 
potential benefits of doing this with machine learning. [1] 

Condition monitoring and fault detection have been at the 
heart of manufacturing for many years. The goal is to ensure 
continuous and reliable operation of manufacturing 
machinery and other devices in the production process, thus 
preventing equipment damage, production downtime, 
defective products, and potentially much larger problems. 
The primary driver for condition monitoring and fault 
detection in the factory is to replace centralized maintenance 
schedules with more efficient on-demand maintenance 
regimes, where repairs and replacements are executed only 
when necessary. Typically, condition monitoring and fault 
detection depend on the analysis of historical data, train 
human experts to monitor the acquired data, and create 
cause-and-effect models. Methods vary from very simple 
rule- based approaches to practical but complex engineering 
models. Implementation is often capital and know-how 
intensive, time-consuming and only executed by highly 
trained experts [2][3]. 

The aim of this paper is to demonstrate the power of 
machine learning for condition monitoring and fault 
prediction in discrete event manufacturing systems. It 
focuses on using machine learning for fault detection, and 
novel early fault detection is demonstrated. The comparison 
phase is an important part, and different measures to quantify 
the performance of the machine learning techniques are 
suggested. The machine learning tools can be used for 
intelligent decision support or for dynamic reconfiguration 
for fault prevention. 

II. FUNDAMENTALS OF MACHINE LEARNING FOR 

MANUFACTURING 

The two most important tasks in the field of condition 
monitoring are fault detection and diagnosis. In most 
literature and some implementations, they are often used 
interchangeably. In fault detection, a system aims to detect a 
sudden change in and/or deviation from the normal behavior 
of the physical system. In contrast, fault diagnosis aims at 
identifying the likely cause of the symptoms, i.e., it is the 
process of identifying the specific abnormal conditions that 
have occurred. In condition monitoring systems, fault 
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detection is inherently a necessary part. However, it cannot 
be assumed that it is enough. With a proper fault diagnosis 
system, it can further help the system to decide which 
components to shut down, predominant influential factors, 
and prevent unplanned shutdowns. Especially in the 
predictive maintenance system, more than one detection 
mechanism is required, since it can foresee the needs for 
replacement earlier and reduce the risks of in-service failures 
or accidents [4]. 

Machine learning consists of a suite of analyses and 
modeling that have been developed in multiple research 
fields such as computer science, statistics, chemical 
engineering, etc., and has become a commonly employed 
method in scientific and industrial fields. The terms 
"artificial intelligence" and "machine learning" are often 
interchangeably used but, in general, the terms refer to 
subsets of the other. Artificial intelligence has a wider 
connotation, encompassing all human-like behaviors. It 
involves "learning from data" which is realized in a few 
primary classes: (1) Supervised learning - a model to form an 
input-output map from sets of training data; (2) 
Unsupervised learning - a model to derive insights from data, 
without any supervisory inputs; (3) Reinforcement learning - 
an agent tries to make the best possible sequences of 
decisions based on the experiences gathered, and when 
taking actions in an environment, it receives feedback in 
terms of some reward [5].  

A. Supervised Learning Techniques 

With the classic machine learning approach, every 
attribute pertaining to an input pattern/data point is explicitly 
assigned. Instead, deep learning methodologies map the 
dataset into a modeling feature using computational models 
composed of multiple processing layers to learn data 
representation, with multiple levels of abstraction. As a 
preliminary step, a supervised approach could be tested for 
identifying the most relevant and discriminative attributes to 
be configured into the employed Auto-Encoder architectures. 
The identification of such sets of optimal attributes is often a 
relevant research question, in particular if the domain deals 
with small size datasets. Once identified, the subset of 
meaningful attributes cannot be considered as input to the 
Deep Learning methods to be used in stage two [6]. 

In the case of supervised learning, the data available is 
labeled, i.e., it is tagged with the corresponding category. 
Training is performed through presenting and testing the 
machine with a set of examples containing the input and the 
desired output. A possible set of techniques in the case of 
structured data, which is the best candidate for our 
employment as it fits very well with the structure of 
industrial data, is decision trees. Decision trees require 
learning and class prediction. Training involves the operation 
in which a tree is learned from data, while during class 
prediction, the example must be labeled [7]. 

III. TECHNIQUES FOR CONDITION MONITORING AND FAULT 

DETECTION 

It is clear that there are numerous situations in different 
areas of industrial processing, which are of equal or even 
enhanced complexity, in which relevant data have to be 
acquired and processed, have to be used to demonstrate their 
benefit; otherwise, the words machine learning (ML) would 
not have become some of the most common buzzwords of 

the current knowledge society. As shown in Section 1, 
manufacturing use cases related to problems of Research & 
Development (R&D), such as quality optimization, 
evaluating morphology or defects, are those use cases related 
to fast feedback in process monitoring and control. The need 
for ML in these cases is mainly caused by physical modeling 
approaches based on system identification, which are widely 
used to track relatively slowly changing dynamics of 
manufacturing processes. While these techniques are well 
suited to predict equipment failures and forecast maintenance 
requirements in quasi-stationary equipment (parts in a 
manufacturing process), they might still only partially 
capture dynamics during fast operation of machinery 
components, which are only marginally affected by varying 
deterministic inputs but mainly by occurring and 
superimposed stochastic disturbances [8]. 

The need for condition monitoring (CM) and fault 
detection (FD) in manufacturing processes is discussed in 
Section 2. In order to satisfy the needs of fast and efficient 
FD and process optimization in manufacturing, various 
approaches from the fields of data science, signal processing, 
and physics have been adopted and adapted for the use of in-
line measurements for analog and discrete control signals 
and, less frequently, for the acquired data from process webs. 
In this section, a general framework for the stages of data 
conditioning for these data lunch during production, 
followed by insights into the structure of processing 
measures commonly used for monitoring purposes, is given. 
We then describe the ML techniques to be used with these 
matrices that have shown the most promising results in the 
context of FD within production departments and illustrate 
them with case studies from different manufacturing areas 
[9]. 

A. Sensor-based Monitoring 

The sensors play a key role to keep the manufacturing 
process in a statistically controlled state, and to monitor and 
detect actual manufacturing performance. However, it is 
difficult to monitor the entire manufacturing process through 
the direct operation of all available sensors. They are 
expensive to install and maintain for every possible signal, 
and they are also incapable of measuring an entire signal. 
There may not even be a direct correlation of the sensor's 
reading with the feature being measured. Therefore, to select 
appropriate sensors, the sensors based on methods must be 
highly efficient and cover as much data as possible. All of 
the sensor data is stored in a database to be used as the 
dataset for the developed machine learning algorithms to 
detect the states or patterns. In order to detect and diagnose 
signals, during preliminary analyses, manufacturing 
engineers with the aid of statistical techniques used to reduce 
the dimension of a large set of data. After that, in an off-line 
manner, they are correlated with accurate diagnostic 
strategies [10]. 

Products are manufactured in various processes which 
consist of multiple manufacturing operations. The operations 
generate signals and data from different kinds of sensors 
attached to machine tools, workpieces, or fixtures, used to 
provide process-informing data for system equipment, setup, 
and operations. Sensor-based monitoring in manufacturing is 
essential to achieve close monitoring, to provide early 
detection and diagnosis of a broad range of problems that 
might compromise product quality, to reduce cost, to reduce 
cycle time, or to optimize system and process performance. 
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The sensors give important information and process 
knowledge which is otherwise unavailable. These sensors 
also improve processing capability and productivity. Sensor-
based manufacturing process monitoring, or fault detection is 
defined as the use of sensors that distinguish unacceptable 
from acceptable process behavior. The sensors can be contact 
or noncontact types and can detect variables such as tool 
wear, magnetic field, electric current, temperatures, forces, 
visual inspection, power consumption, laser signals, 
ultrasound, sound signals, and vibrations. The signals that are 
monitored and collected can be time series data, images, 3D 
data, and spectra properties [11]. 

IV. CASE STUDIES IN MANUFACTURING 

This chapter discusses the utilization of machine learning 
for predicting imminent failures by training models on sensor 
data generated from the machines or other monitored 
equipment. The sensor data generated from multiple types of 
sensors, each of a different modality, were concatenated and 
transformed by Principal Component Analysis (PCA). The 
transformed data were used as the input to the model. With 
the PCA transformation, the exercise reduced the model's 
training time while preserving its performance. The response 
of the developed model was binary; when it predicts that the 
monitored machine is about to fail, it triggers a flag. In 
response, reliability engineers or qualified domain experts 
intervene and rectify the issue to avoid further damage to the 
component. Using the acquired knowledge and expertise 
from the case studies discussed herein this chapter, 
practitioners in industrial or manufacturing settings can 
deploy a SCME environment and leverage the insights from 
sensor data for managing machine condition jointly [12]. 

This section explains two case studies using condition 
monitoring in a manufacturing setting. The first case study 
was conducted using a rolling element bearing, an 
accelerometer, and a setup of signal acquisition hardware. 
The third case study maps the noises emanating from drilling 
into binary classes using a CNN, trained and tested on a 
labeled dataset. It successfully performs the on- site testing 
using the SCME. It describes the development and use of the 
multimodal sensor concept in condition monitoring, which 
combines the familiar thermography technique with two 
inexpensive, cheap, and affordable breather pipes. The 
second case study presents the development and testing of an 
acoustic emission sensor used in machining on concurrent 
electro-hydraulic vibration testing. 

A. Case Study 1: Predictive Maintenance in Automotive 

Industry 

Consider the case of a large automotive manufacturer that 
operates hundreds of heavy machineries, including milling 
machines, turning machines, and even automated guided 
vehicle (AGV) systems. An unexpected breakdown of any 
such machine not only disrupts potential production 
schedules but also results in high repair costs and loss of 
revenue. Hence, predictive maintenance becomes important, 
but the preventive maintenance or time-based maintenance 
of such machines may result in unnecessary downtime and 
increased maintenance cost. To solve this bottleneck, a 
machine-learning-based predictive maintenance solution was 
implemented for the milling machines. The real-time features 
extracted from a simple one-dollar vibration sensor were 
transformed into higher-level features using the advanced 

signal pre-processing and feature optimization methods. 
These higher-level features were then input to the neural 
network implemented with the LSTM network to predict 
when the machine would fail. [13] 

B. Case Study 2: Anomaly Detection in Semiconductor 

Industry 

Small particles are the most common wafer defects, so 
they are used in the classification process. Eleven 
contaminants and three levels of shaking particles cause 
defects. The proposed system has been evaluated on new 
wafers and has achieved satisfactory results with high 
accuracy using a combination of classifiers (SVM). As an 
end-to-end vision system, the findings support the potential 
of employing deep learning methods to detect surface 
contaminants on wafers. Due to the high accuracy of 99%, 
the system can classify the contaminants and isolate the 
severity level of each detected contaminant. A key challenge 
is that the localized small percentage of identified dust 
particles does not accurately reflect the severity of the 
contamination found. The classification of all the detected 
particles into the correct class is challenging for real-time 
detection of the contaminants. [14] 

V. CHALLENGES AND FUTURE DIRECTIONS 

In a challenging and continuously growing global market 
and by highly effective production techniques, existing 
manufacturing firms are constantly working to develop 
products with modified functionality and minimize 
manufacturing costs. The Fourth Industrial Revolution is 
identified and referred to as Industry 4.0. At its heart, this 
state-of-the-art production revolution is made possible 
through the integration of the physical world with the 
internet. For this reason, the term 'Smart Factory' is often 
used to clarify these digital techniques. Smart, cloud-
connected, electric-powered devices, also referred to as 
cyber-physical systems (CPS) in the literature, are these 
devices. At its core, the Smart Factory is a blend of physical 
and virtual engineering processes and technologies, including 
industrial Internet of Things (IIOT), Augmented reality, 
Artificial Intelligence (AI), and Machine Learning (ML). 
Due to the large volume and variety of data collected from 
intelligent devices, Machine Learning techniques open up 
significant possibilities to render manufacturing intelligent 
and capable of accomplishing self-diagnostics. The goal of 
machine learning in smart manufacturing processes is 
predictivity. The purpose of such predictive algorithms is to 
create a control system that can decide the future by learning 
from past patterns, before it happens, whatever the subject, 
occurrence, or action. However, the realistic potential of self-
diagnoses of machine learning model’s establishment is 
complicated by five relevant challenges in condition 
monitoring applications that create communication gaps 
between the computation aspects and the industrial processes 
[15]. 

VI. CONCLUSION 

The adoption of machine learning-driven condition 
monitoring and fault detection systems has become 
increasingly prevalent in the manufacturing industry, driven 
by the growing need for enhanced productivity, quality, and 
operational efficiency. This paper has explored the key 
advantages and applications of ML in this domain, 
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showcasing its ability to identify complex patterns, adapt to 
changing conditions, and provide early warning signals of 
potential issues. While the implementation of ML-driven 
condition monitoring and fault detection offers numerous 
benefits, the review has also addressed the associated 
challenges and considerations, such as data quality, model 
interpretability, and integration with existing manufacturing 
systems. These aspects must be carefully addressed to ensure 
the successful deployment and long-term sustainability of 
such systems. 
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