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Abstract—This paper investigates the performance of 

widely used pre-trained CNN architectures (VGG16, 

MobileNetV3, DenseNet121, and RegNet040) across diverse 

datasets, particularly focusing on tuberculosis (TB) detection 

using Chest X-Rays (CXRs). Deep learning (DL) techniques 

applied to CXRs aid radiologists in promptly and accurately 

identifying TB, which is especially critical in low-income 

regions with constrained diagnostic resources. The research 

reveals that MobileNetV3 consistently demonstrates superior 

performance compared to other architectures.  

Keywords—Artificial Intelligence (AI), Convolutional Neural 

Networks (CNNs), Deep Learning (DL), Machine Learning 

(ML), Tuberculosis (TB), Pre-trained models. 

I. INTRODUCTION 

Tuberculosis (TB) remains a significant global health 

threat, particularly in low-income countries with limited 

resources for diagnosis. Conventional methods like sputum 

and culture  tests take 5-8 weeks, leading to delayed 

treatment and increased mortality [1]. A report by the World 

Health Organization (WHO) estimated over 10 million TB 

cases were  diagnosed in 2022 [2]. In low resource areas, 

there's a scarcity of both equipment and skilled radiologists 

which results in delayed diagnoses of many TB cases. Often 

radiologists are overworked, understaffed, under 

tremendous pressure to accurately interpret medical images 

such as chest X-rays, which are vital for TB screening.[3].  

This is where Deep Learning (DL) techniques can play a 

transformative role. By developing DL systems trained on 

vast datasets of Chest X-Rays (CXRs), we can create a 

helpful assistant for radiologists. Similar to how radiologists 

learn through experience, this DL would identify patterns 

indicative of TB. Functioning as a second opinion, it would 

not replace radiologists but rather offer valuable insights and 

support in confirming diagnoses. This aligns with WHO 

recommendations for using chest X-rays in TB screening and 

contributes to the UN's Sustainable Development Goal 3 of 

ending the TB epidemic by 2030.  By employing AI as a 

friendly assistant, radiologists can become more efficient and 

accurate in their fight against TB. 

This paper focuses on using a diverse range of CNN 

architectures and leverages the smaller SH and MC datasets 

for research. Le, Nguyen-Tat, & Ngo (2022) [4],  utilized 

various pre-trained architectures, making their study suitable 

for comparison. We aim to conduct a binary classification of 

TB across various range of CNN models. 

II. METHODOLOGY  

The TB CXR Images are obtained from U.S. National 

Library of Medicine provides two datasets of CXRs from 

Montgomery County, Maryland, USA, and Shenzhen No. 3 

People’s Hospital, China, for TB diagnosis, including normal 

and abnormal X-rays with radiologist readings [5]. Table 1 

summarizes these datasets.  
TABLE I.  DESCRIPTION OF THE DATASETS 

Datasets 

Name 

Normal 
CXRs 

TB 
CXRs 

Total 
CXRs 

Image 
Type 

Montgomery (MC 

Dataset) 
80 58 138 PNG 

Shenzhen (SH Dataset) 326 336 662 PNG 

Both (MC + SH) 
Datasets 

406 394 800 PNG 

 

Fig.1. illustrates the end-to-end pipeline for efficiently 

processing the CXR images through pre-processing, feature 

extraction, and classification. 
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Fig. 1. Illustrates the end-to-end chest x-ray classification methodology with four pre-trained CNN model architectures.    

 

A. Data Preprocessing 

CXRs are normalize and resize to 224x224 input image 
size. Next, data augmentation techniques such as rotations, 
flips and zooming are applied to increase the dataset size. A 
setup data generators is created to efficiently preprocess 
batches of images during training. 

B. Dataset Partition 

 Split data into training, validation, and test sets, 
allocating 70% for training, 15% for validation, and 15% for 
testing. Address class imbalance in the training set by 
oversampling the minority class. 

C. Model Preparation 

 Modify models for binary classification by adding dense 
layers with sigmoid activation. Compile models using 'adam' 
optimizer, 'binary_crossentropy' loss function, and 'accuracy' 
metric. Define callbacks like ModelCheckpoint and 
EarlyStopping to save the best model and enable early 
stopping.  

 Diverse range of models have been considered similar to 
this study because of easy comparision purposes. A few 
details about the models utilized are discussed below. 

VGG16: VGG16 is a renowned convolutional neural 
network (CNN) architecture known for its simplicity and 
effectiveness in image classification. With 16 convolutional 
layers and fully connected layers, it offers a straightforward 
structure and strong performance on diverse datasets. 
However, its large parameter count leads to higher 
computational costs compared to newer architectures. [6]. 

MobileNetV3: MobileNetV3 is a lightweight convolutional 
neural network architecture optimized for mobile and 
embedded devices. It incorporates efficient building blocks 
like inverted residuals and linear bottlenecks to achieve this 
balance. Advantages of MobileNetV3 include its small size, 
fast inference speed, and suitability for deployment on 
resource-constrained devices [7]. However, its main 
limitation might be slightly lower accuracy compared to 
larger and more complex models like VGG16 or 
DenseNet121. 

DenseNet121: DenseNet121 is a densely connected CNN 
architecture recognized for its dense connectivity patterns, 
promoting feature reuse and gradient flow enhancement. It 
excels in image classification with efficient parameter 
utilization and resilience to overfitting [8]. Its dense 
connections contribute to increased memory usage, 

potentially limiting its deployment on memory-constrained 
devices compared to lighter models like MobileNetV3. 

RegNet040: RegNet040 is a member of the RegNet family of 
neural network architectures designed for efficient and 
scalable performance in computer vision tasks. RegNet 
models emphasize simplicity, regularity, and scalability, 
making them easy to train and deploy across different 
hardware platforms. Advantages of RegNet040 include its 
simplicity, efficiency, and scalability, allowing for fast 
training and inference on various tasks and datasets [9]. 
However, its main limitation may be its performance 
compared to more complex architectures like VGG16 or 
EfficientNetB7, especially on datasets with more complex 
patterns and structures. In this stage each model extracts 
different feature from the input CRXs. 

D. Global Average Pooling Layer 

Global Avergare Pooling (GAP) layer reduces feature maps 

into a single value by taking the average.  Thereby, 

minimizing overfitting and retaining necessary spacial 

information. 

E. Dense Layer with ReLU activation 

The features from the GAP layer are fed into the Dense 

layer with ReLU (Rectified Linear Unit) activation function. 

This layer helps in consolidating different feature 

activations and interpreting features for the classification.  

F. Fully Connected (FC) Layer 

The features from the previous layer are passed through FC 

layer with sigmoid activation function. The sigmoid 

activation function transforms the input values into output 

probability values between 0 (Zero) and 1 (one). 

G. Binary Classification 

In the end a binary classification decision is made based on 

the sigmoid output. If the probability of the input CXR is > 

0.5, then the CRX is classified as TB (TB positive). If the 

probabillity of the CXR is ≤ 0.5 then the CXR is classified 

as Normal (TB negative). 

 
 Our methodology ensures a comprehensive approach to 
training and evaluating multiple deep learning models on a 
TB image datasets, highlighting key steps from data 
preparation to final evaluation. In comparison to study by  Le 
et al., (2022) [4] they have utilized three TB datasets (MC, 
SH, & India), while we have considered only two TB dataset 
(MC & SH) which are evaluated separately and later by 
combining them. Furthermore, we have considered only four 
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CNN models for performance evaluation of the datasets 
whereas their study incorporates five models for performance 
evaluation.  

III. RESULTS & DISCUSSION 

The confusion matrices as shown in Fig. 2 for VGG16, 
MobileNetV3, DenseNet121, and RegNet040 on the MC 
dataset reveal their classification performance. VGG16 
correctly identifies all 12 Normal cases but misclassifies all 9 
TB cases as Normal. MobileNetV3 performs better, correctly 
classifying 12 Normal and 4 TB cases, though 5 TB cases are 
misclassified. DenseNet121 correctly identifies 12 Normal 
and 1 TB case but misclassifies 8 TB cases. RegNet040 
shows the best performance, accurately classifying 11 
Normal and 6 TB cases, with fewer misclassifications, 
making it the most balanced model. 

 

Fig. 2. Confusion matrices obtained using the MC dataset on four pre-

trained CNNs 

From Table 2, we can infer that our model performance 
for DenseNet121 and RegNet040 outperforms the results 
from Le et al. (2022), while VGG16 and MobileNetV3 
perform worse.  

TABLE II.  COMPARISION OF RESULTS ON MC DATASET 

MC DATASET 

PRE-TRAINED 

MODELS 
[4] OUR RESULTS 

 Accuracy F1-Score Accuracy F1-Score 

VGG16 64.38% 68.66% 57.00% 42.00% 

MOBILENETV3 77.81% 78.92% 67.00% 60.00% 

DENSENET121 60.94% 70.65% 76.00% 75.00% 

REGNET040 71.56% 75.32% 81.00% 80.00% 

 

In Fig. 3, confusion matrices, VGG16 correctly classifies 
35 Normal and 40 TB cases but misclassifies 14 Normal and 
11 TB cases. MobileNetV3 performs well with 45 correct 
Normal and 36 correct TB classifications, though it 
misclassifies 15 TB cases as Normal. DenseNet121 shows 
similar performance with 42 Normal and 41 TB cases 
correctly classified, but 10 TB and 7 Normal cases are 
misclassified. RegNet040 demonstrates the best 
performance, accurately identifying 44 Normal and 42 TB 
cases, with the fewest misclassifications among the models. 
Overall, RegNet040 stands out as the most balanced and 
accurate model. 

 

Fig. 3. Confusion matrices obtained using the SH dataset on four pre-

trained CNNs 

TABLE III.  COMPARISION OF RESULTS ON SH DATASET 

SH DATASET 

PRE-TRAINED 

MODELS 
[4] OUR RESULTS 

 Accuracy F1-Score Accuracy F1-Score 

VGG16 64.38% 72.71% 75.00% 75.02% 

MOBILENETV3 67.19% 74.86% 81.00% 80.00% 

DENSENET121 70.00% 71.57% 83.00% 83.00% 

REGNET040 62.19% 68.43% 86.00% 86.00% 

 

Table 3 indicates that our model performance for all four 
models (VGG16, MobileNetV3, DenseNet121, and 
RegNet040) outperforms the results from Le et al. (2022) on 
the SH dataset. 

Fig. 4, confusion matrices have the best overall performance, 
accurately identifying both Normal and TB cases with 
minimal misclassifications. VGG16 performs well but tends 
to misclassify some TB cases as Normal. MobileNetV3 
excels at identifying Normal cases but struggles significantly 
with TB detection. RegNet040 is highly accurate for Normal 
cases but has the highest rate of misclassifying TB cases. 
Overall, DenseNet121 is the most reliable model, while 
MobileNetV3 and RegNet040 need improvement in TB 
detection. 

 

Fig. 4. Confusion matrices obtained using both the MC & SH datasets on 

four pre-trained CNNs 
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Fig. 5. Comparison of ROC curve performance for four CNN models evaluated on the MC, SH and combined (MC & SH) datasets. 

 

TABLE IV.  RESULTS ON MC & SH DATASET 

COMBINED MC&SH DATASET 

PRE-TRAINED MODELS Accuracy F1-Score 

VGG16 74.00% 74.00% 

MOBILENETV3 70.00% 67.65% 

DENSENET121 80.00% 80.00% 

REGNET040 69.00% 65.67% 

  

 Analyzing Table 4, we can conclude that DenseNet121 
demonstrates the best performance on the combined MC & 
SH dataset, achieving the highest accuracy and F1-Score at 
80.00%. VGG16 also performs well with balanced metrics of 
74.00% for both accuracy and F1-Score. MobileNetV3, 
despite having a decent accuracy of 70.00%, shows a very 
low F1-Score of 67.65%, indicating issues with class 
handling or imbalance. RegNet040 has moderate 
performance, with an accuracy of 69.00% and an F1-Score 
of 65.67%, slightly lower than VGG16. 

IV. ROC CURVES 

Receiver Operating Characteristic (ROC) Curve is a 

graphical representation to evaluate the performance of a 

binary classification. The ROC curve aids in assessing the 

trade-off between the true positives rate (TPR) and false 

positive rate (FPR) [10]. In the Fig. 5, ROC curves obtained 

from the datasets are discussed. Each plot in the Fig. 5 

illustrates the performance of four different CNN classifiers. 

The Left plot shows the ROC curves obtained from the MC 

dataset. In the plot only MobileNetV3 shows a good 

performance result in comparison with the other three CNN 

models. The decrease in the performance would be due to 

the class imbalance present in the MC dataset. The plot in 

the middle is obtained from the SH dataset. It has the best 

performance results in comparison with the other two 

datasets. This may be due to the good quality CXR images 

present in the SH dataset with almost similar class balance 

of the CXR images in the dataset. The plot on the right is 

obtained from processing both the MC & SH as one dataset. 

Here, we can see that due to class imbalance and slightly 

low quality CXR images the performance of the combined 

dataset decreases in contrast with SH dataset. However, it 

has still better performance results than MC dataset. 

V. CONCLUSION 

In summary, MobileNetV3 consistently performs well, 
on all three datasets, especially on the MC dataset. The SH 
dataset provides better overall performance results, likely 
due to balanced classes and better quality images. Lastly, the 
combination of MC & SH dataset gives modest performance 
scores not surpassing the SH dataset results. Therefore, 
indicating that image quality and data balance play highly 
significant role in achieving high AUC scores. Furthermore, 
to enhance model performance, we can consider fine-tuning 
model parameters, and exploring different architectures. 
Employing regularization techniques can also aid in 
improving generalization. Experimenting with ensemble 
methods to combine predictions from multiple models may 
further boost overall performance.  
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