English

Products

Web of Science™

Smart Search

Research • Assistant

Results for A MOLECULAR D... >

MENU

A Molecular Docking Study on Anticariogenic Properties of Theaflavins agai...

A Molecular Docking Study on Anticariogenic Properties of Theaflavins against *Streptococcus mutans*

By Abdullah, MRS (Abdullah, Muhammad Rizwan Shah); Fadhlina, A

(Fadhlina, Anis); Sheikh, HI (Sheikh, Hassan Ibrahim); Baharuddin, NIA (Baharuddin, Nur Iman Alia); Rosli, NH (Rosli, Nur Hazirah); Abd

Halim, KB (Abd Halim, Khairul Bariyyah)

View Web of Science ResearcherID and ORCID (provided by

Clarivate)

Source MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES

Volume: 21 Issue: 4 Page: 2314-2322

DOI: 10.11113/mjfas.v21n4.3890

Published JUL-AUG 2025

Indexed 2025-09-04

Document Type Article

Abstract Early childhood caries (ECC) is an aggressive manifestation of

dental decay, linked to high levels of Streptococcus mutans in dental plaque. In Malaysia, over 70% of children suffer from ECC,

leading to premature tooth loss, malnutrition, and reduced

quality of life. Common dental-care ingredients like triclosan and triclocarban pose health risks, necessitating safer alternatives. Theaflavins, bioactive compounds in black tea, show potential as natural antimicrobial agents. However, the precise molecular

interactions of theaflavins with key virulence-associated proteins

of S. mutans remain underexplored. This study aims to investigate the antibacterial mechanisms of theaflavins against S. mutans using in-silico methods. PyRx was used to evaluate the binding affinities of four selected compounds, theaflavin (TF1), theaflavin-3gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3), against seven S. mutans proteins (PDB 4TQX: Sortase A, PDB 6CAM: Glucan binding protein, PDB 3QE5: Cell surface protein, PDB 3VX4: Quorum sensing, PDB 3AIC: Glucosyltransferase, PDB 2W3Z: Immune evasion, PDB 3CZC: Carbohydrate uptake). All the ligands were prepared and optimised using Avogadro-1.2 prior to the molecular docking. BIOVIA Discovery visualizer was used to observe the proteinligand interactions. Findings indicated that theaflavins exhibit significant binding affinities to various S. mutans proteins. Among all tested compounds, TF3 demonstrated the strongest binding affinities and favourable hydrogen bonding, particularly against glucan binding protein and glucosyltransferase. These results suggest that TF3 may serve as a promising mechanisms.

Keywords

Author Keywords: Theaflavins; early childhood caries; anti-cariogenic; Streptococcus mutans; molecular docking

Addresses

- ¹ Int Islamic Univ Malaysia, Dept Fundamental Dent & Med Sci, Kulliyyah Dent, Kuantan 25200, Pahang, Malaysia
- ² Univ Malaysia Terengganu, Fac Fisheries & Food Sci, Kuala Nerus 21030, Terengganu, Malaysia
- ³ Int Islamic Univ Malaysia, Dept Biotechnol, Kulliyyah Sci, Kuantan 25200, Pahang, Malaysia

Categories/ Classification

Research Areas: Science & Technology - Other Topics

Web of Science Categories

Multidisciplinary Sciences

+ See more data fields

Citation Network

Use in Web of Science