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Abstract. This study examines the factors influencing palm oil production in Malaysia across 

different points of the output distribution, with a particular focus on environmental factors. 

Employing quantile regression, which provides a more comprehensive analysis than Ordinary 

Least Squares (OLS) by capturing heterogeneous effects across quantiles, we analyze time series 

data spanning from 1991 to 2022. The findings reveal that CO₂ emissions significantly and 

positively contribute to palm oil production at lower quantile but become insignificant at higher 

quantiles. Pesticide use positively affects production at middle quantile, while labor has a 

consistently negative and significant impact across all quantiles. The results highlight the need 

for sustainable production practices, particularly for small-scale producers reliant on emissions-

intensive methods. Stricter pesticide regulations and eco-friendly alternatives should be 

promoted to mitigate environmental risks. Additionally, addressing labor shortages through 

mechanization and workforce training is crucial for industry sustainability.  

1. Introduction 

Malaysia is one of the world’s largest producers and exporters of palm oil, contributing significantly to 

the global vegetable oil market. The country’s palm oil industry began in the early 20th century, but 

large-scale commercial production expanded in the 1960s as part of Malaysia’s agricultural 

diversification strategy [1]. Today, palm oil plantations cover approximately 5.67 million hectares, 

mainly in Sabah, Sarawak, and Peninsular Malaysia [2]. The industry plays a vital role in Malaysia’s 

economy, accounting for over 4% of GDP and employing more than 600,000 workers [3]. However, 

environmental concerns, including deforestation, biodiversity loss, and greenhouse gas emissions, have 

https://creativecommons.org/licenses/by/4.0/
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led to increasing scrutiny and calls for sustainable production practices [4]. In response, Malaysia has 

implemented certification schemes such as the Malaysian Sustainable Palm Oil (MSPO) standard to 

promote sustainable production [2]. Despite its economic benefits, palm oil production faces challenges 

such as climate change, labor shortages, and fluctuating global demand [5] which requires a balance 

between economic growth, environmental sustainability, and social well-being. 

Quantile regression is increasingly used in agricultural research to analyze crop yields and production 

efficiency across different points in the distribution, especially when data exhibit heteroscedasticity or 

non-normality. Unlike OLS, it captures heterogeneous effects, which is crucial in industries like palm 

oil, where environmental and economic factors influence plantations differently. 

Nurhayati et al. [6] used the Quantile Autoregressive Distributed Lag (QARDL) model to examine 

palm oil production’s impact on CO₂ emissions in Indonesia (1990–2020). They found that palm oil 

production significantly contributed to emissions in lower to middle quantiles (0.05th–0.7th) in the long 

term and across all quantiles in the short term, emphasizing the need for sustainable practices. Wong 

and Pinjaman [7] applied quantile regression to analyze stock prices in Malaysia’s plantation sector 

(2008–2023), finding that earnings per share, business condition index, and inflation positively 

influenced stock prices across all quantiles, while consumer sentiment and exchange rates had a negative 

impact. 

Past studies on Malaysian palm oil production relied on OLS or panel data models, assuming 

homogeneous relationships. Alias and Tang [8] found land expansion had the greatest impact on yield 

but did not account for variations across high- and low-yield plantations. Rahman et al. [9] assessed 

climate change’s role but did not explore its differential impact by production level. Similarly, research 

on CO₂ emissions in agriculture [10, 11] focused on sustainability and policy impacts rather than yield 

variations across quantiles. Temperature fluctuations affect palm oil growth differently by location and 

soil quality. Hasan et al. [12] used average temperature data but did not capture land-specific variability. 

This study addresses that gap by examining differential effects across low-, medium-, and high-yield 

plantations. Prior studies analyzed economic and environmental factors separately [13, 14] but did not 

integrate CO₂ emissions or temperature changes. This study combines labor, land, emissions, and 

climate variables in a single quantile regression framework for a more holistic analysis. 

Climate adaptation strategies remain understudied in their effectiveness across production levels. 

Most research [15] discusses general mitigation strategies without differentiating their impact on 

smallholders versus large estates. By using quantile regression, this study identifies the most vulnerable 

farms and provides targeted adaptation recommendations. 

This study enhances the literature by providing a policy-relevant analysis of the factors influencing 

palm oil production in Malaysia, emphasizing the varying impacts of environmental and economic 

factors across production levels. Unlike past research relying on OLS or panel data, this study applies 

quantile regression to examine the effects of CO₂ emissions, temperature changes, and other 

determinants on low-, medium-, and high-yield plantations. By capturing these heterogeneous effects, 

it offers a more understanding of palm oil production dynamics. 

2. Methodology 

The production function is a fundamental economic concept that relates input use to output production. 

In agriculture, it explains how factors such as land, labor, capital, and technology determine crop yields 

[16]. For palm oil, key inputs include fertilizers, pesticides, labor for harvesting, land availability, and 

mechanization. A commonly used specification in agricultural studies is the Cobb-Douglas production 

function [17]: 

                                          Y=A⋅Lα⋅Kβ                                                             (1) 

where Y represents palm oil output, L is labor, K is capital, A represents total factor productivity (TFP), 

and α, β are input elasticities. This model assumes constant returns to scale but can be modified to 

account for technological changes and environmental constraints [18]. Environmental factors, 

particularly CO₂ emissions and temperature variability, have a growing influence on agricultural 

productivity. While traditional models often assume exogenous technological progress, recent studies 
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suggest that climate-related factors directly impact palm oil yields [19]. Furthermore, temperature 

fluctuations affect palm oil growth differently depending on soil conditions and geographical regions 

[20]. Labor availability and cost significantly influence palm oil productivity. While many studies 

analyze economic and environmental factors separately, there is limited research integrating these 

factors within a unified quantile regression framework. This study fills this gap by examining how CO₂ 

emissions, temperature changes, labor costs, pesticide use, and other inputs influence palm oil 

production at different quantiles. 

This study utilizes the quantile regression framework to capture distributional effects on palm oil 

production. Introduced by Koenker and Bassett [21], quantile regression accounts for non-linear and 

asymmetric relationships, unlike ordinary least squares (OLS), which focuses only on the conditional 

mean [22]. Unlike OLS, which assumes homogeneity, quantile regression estimates variable effects at 

different points in the distribution [23, 24, 25]. It is particularly useful for skewed or heavy-tailed 

distributions [26] and is robust against outliers by minimizing absolute residuals instead of squared 

residuals. Additionally, its linear programming approach enhances interpretation and robustness [26]. 

In contrast to piecewise regression, which divides the dependent variable into segments before applying 

OLS—leading to sample selection biases—quantile regression directly models conditional quantiles, 

making it more reliable [27]. Given these advantages, this study adopts quantile regression to examine 

the heterogeneous effects of key factors influencing palm oil production across different levels of output 

distribution. The basic quantile regression model specifies the conditional quantile as a linear function 

of explanatory variables. This can be written as following: 

    𝑦𝑖 =  𝑥𝑖
′𝛽𝜃 +  𝑢𝜃𝑖, 0 < 𝜃 < 1                                        (2) 

𝑄𝑢𝑎𝑛𝑡𝜃 (𝑦𝑖|𝑥𝑖) =  𝑥𝑖𝛽𝜃 

where y is the dependent variable, x is a matrix of explanatory variables, u is an error term whose 

conditional quantile distribution equals zero, and Quantθ (yi|xi) denotes the θth quantile of y conditional 

on x. The distribution of the error term u is left unspecified. An individual coefficient βθj associated with 

the jth independent variable in the vector xi, called xij, could be interpreted as ‘how yi in its θth 

conditional quantile reacts to a (ceteris paribus) marginal change in xij’. The method allows us to identify 

the effects of the covariates at different locations in the conditional distribution of the dependent 

variable. The θth regression quantile estimate, 𝛽𝜃̂, is from the following minimization problem which is 

solved via linear programming: 

min
𝛽

∑ 𝜃|𝑦𝑖 − 𝑥𝑖
′𝛽|

𝑦𝑖≥𝑥𝑖
′𝛽

+ ∑ (1 − 𝜃)|𝑦𝑖 − 𝑥𝑖
′𝛽|

𝑦𝑖≥𝑥𝑖
′𝛽

 

A special case of the quantile regression is the median regression, which is obtained by setting θ = 0.5. 

Other variations of θ could be used to obtain other quantiles of the conditional distribution. In this study, 

the relationships among selected explanatory variables across the conditional distribution of palm oil 

production using the 25th, 50th, and 75th quantiles are reported. Besides, the bootstrap method is used 

to obtain estimates of the standard errors for the coefficients in quantile regression, as illustrated in [25]. 

This is importance as it is a consistent and robust estimation method, particularly when the error term is 

non-normally distributed and heteroscedastic. The following equation is the model used in the current 

empirical study: 

𝑝𝑜𝑖𝑙𝑡 = 𝛽0 + 𝛽1𝑙𝑎𝑛𝑑𝑡 + 𝛽2𝑙𝑎𝑏𝑜𝑢𝑟𝑡 + 𝛽3𝑝𝑒𝑠𝑡𝑡 + 𝛽4𝑓𝑒𝑟𝑡𝑡 + 𝛽5𝑒𝑚𝑖𝑡 + 𝛽6𝑡𝑒𝑚𝑝𝑡+ ∈  
                (3)  

where poil (palm oil)  is the Gross Production Value of oil palm fruits (constant 2014-2016 thousand 

MYR), land is the share in agricultural land (%), labour is the share of employment in agriculture in 

total employment (ILO Modelled Estimates) (%), fert is fertilizer use per value of agricultural 

production (g/$), pest is pesticide use per area of cropland (kg/ha), emi is Emissions Share (CO2) (%), 

and temp is temperature change on land (°c). The analysis was conducted using time series data spanning 

from 1991 to 2022 that sourced from the statistical database of the Food and Agriculture Organization 

(FAO) of the United Nations. 
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3. Findings  

Table 1 presents descriptive statistics for the study's variables from 1991 to 2022, highlighting trends in 

Malaysia’s palm oil industry. The gross production value averaged MYR 38.0 million, fluctuating 

between MYR 16.5 million and MYR 53.3 million, with a high standard deviation of MYR 12.1 million, 

reflecting market demand, policy shifts, and environmental influences. Agricultural land use remained 

stable at an average of 84.53%. This stability suggests a long-term commitment to agricultural 

cultivation, with minimal shifts in land allocation despite fluctuations in production levels. Meanwhile, 

agricultural employment declined from 18.9% to 10%, with the mean value stood at 14.15%. The 

decrease in agricultural employment over time could be attributed to structural transformations in the 

economy, mechanization, and the increasing reliance on foreign labor for plantation work. 

 

Table 1. Descriptive statistics of variables 

Variable N Mean Standard deviation Min. Max. 

poil 32 3.80e+07 1.21e+07 1.65e+07 5.33e+07 

land 32 84.53 1.99 82.13 89.2 

labor 32 14.15 2.52 10 18.9 

fert 32 33.47 8.78 15.78 47.87 

pest 32 5.47 1.49 3.09 8.47 

emi 32 12.98 7.52 8.26 35.97 

temp 32 0.70 0.35 0.16 1.48 
 

 

    Fertilizer use per value of agricultural production varied significantly, with an average of 33.47 grams 

per dollar. The recorded values ranged from 15.78 grams to 47.87 grams per dollar, with a standard 

deviation of 8.78 grams. This variation suggests fluctuations in input intensity, which could be due to 

changing agricultural practices, fertilizer price volatility, or policies aimed at promoting sustainable 

farming. Similarly, pesticide use per hectare of cropland exhibited notable fluctuations, with an average 

of 5.47 kg/ha, a minimum of 3.09 kg/ha, and a maximum of 8.47 kg/ha. The relatively high variation 

could indicate shifts in pest control strategies, changes in pest prevalence, or regulatory measures 

affecting pesticide application. 

    Emissions, measured as a share of CO₂ emissions from total emissions, displayed substantial 

variability. The average emission share was 12.98%, but values ranged from 8.26% to a peak of 35.97%. 

The high standard deviation of 7.52% suggests that emissions have been influenced by production scale, 

deforestation rates, and environmental policies over time. The fluctuations in emissions also indicate 

that while palm oil production remains a major contributor to greenhouse gas emissions, efforts to reduce 

its carbon footprint may have had varying levels of success. 

    Finally, temperature change on land, an important environmental indicator, showed a clear warming 

trend over the study period. The mean temperature change was 0.70°C, with a minimum of 0.16°C and 

a maximum of 1.48°C. The steady increase in temperature over the years could have significant 

implications for agricultural productivity, affecting crop yields, water availability, and the incidence of 

pests and diseases. Climate change remains a crucial factor in shaping the future sustainability of palm 

oil production. Generally, the findings suggest that while the palm oil industry remains a critical 

component of Malaysia’s economy, ongoing environmental and labor-related challenges must be 

addressed to ensure its long-term viability. 
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Figure 1. Nick Cox's plot of dependent variable at 25th, 50th, and 75th percentiles. 

     

    The plot, following Nick Cox's approach, depicts the cumulative distribution of "quantities of poil" 

with red vertical lines marking key quantiles (25th, 50th, and 75th) as in Figure 1. The non-linear 

patterns indicate distribution variations, justifying the use of quantile regression. Unlike OLS, which 

focuses on average effects, quantile regression captures variable relationships across different quantiles, 

making it useful for addressing heteroskedasticity. This approach provides deeper insights into how 

factors influence different levels of "quantities of poil," offering valuable implications for policy and 

decision-making.     

    The OLS regression results are displayed on Table 2, which show the relationship between the 

dependent variable poil (palm oil production) and several independent variables (land, labor, fert 

(fertilizer), pest (pesticides), emi (emissions), and temp (temperature)). The overall model is highly 

significant, as indicated by the F-statistic of 134.48 with a p-value of 0.0000, suggesting that the 

independent variables collectively explain a significant portion of the variance in poil. The R-squared 

value of 0.9699 indicates that approximately 97% of the variation in poil is explained by the model. The 

adjusted R-squared of 0.9627 confirms that the model maintains a strong explanatory power even after 

accounting for the number of predictors. 

 

Table 2. OLS and quantile regression results 

 

Independent 

variable 

Dependent variable: poil 

OLS 25th quant 50th quant 75th quant 

constant  2.39e+07 

(5.10e+07) 

-6983500 

(1.08e+08)) 

3.34e+07 

(9.66e+07) 

5.49e+07 

(1.10e+08) 

land 765416.8 

(565179.4) 

1066322 

(1211347) 

591030.4 

(1083638) 

337749.1 

(1204854) 

labor -4383548*** 

(381288.4) 

-4.68117*** 

(700395.6) 

-4198152*** 

(610872.1) 

-4283607*** 

(862494.6) 

fert 182548.8** 

(73257) 

232723.2 

(169461) 

124748.6 

(139871.3) 

197470.6 

(132730.8) 

pest 1330732*** 

(411925.8) 

830537.1 

(939259.2) 

2016564** 

(861720) 

1688253* 

(904560.4) 

emi 196395.9*** 

(70686.4) 

230446.9* 

(117264.7) 

189766.3 

(167869.8) 

153838 

(175559.4) 

temp -6461549*** 

(2243881) 

-6141978 

(4436425) 

-4892487 

(4705661) 

-2101552 

(5288306) 
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N 32 32 32 32 

Adj. R2 0.9627    

Pseudo R2  0.8612 0.8588 0.8270 

Slope equality test 

 τ0.25,0.50,0.75 

 F-statistic p-value 

land 0.12 0.8837 

labor 0.03 0.9737 

fert 0.45 0.6399 

pest 1.05 0.3637 

emi 0.06 0.9401 

temp 0.36 0.7032 
Note: 1. Standard errors are in parentheses; ***statistically significant at the 1% level; **5% level; *10%  level.  

          2. For quantile regressions, standard errors are bootstrap (100) standard errors 

    Examining the coefficients of individual predictors provides a deeper understanding of their impact 

on palm oil production. The coefficient for land is 765,416.8, suggesting a positive relationship between 

land allocation and oil production. However, its p-value of 0.188 indicates that this effect is not 

statistically significant. This finding is consistent with studies by Baffes [29], who noted that land 

expansion alone may not significantly drive production unless accompanied by improvements in 

technology and resource management. On the other hand, labor exhibits a significant negative impact 

on oil production, with a coefficient of -4,383,548 and a p-value of 0.000. This suggests that an increase 

in labor is associated with a reduction in oil output, potentially due to inefficiencies or diminishing 

returns to labor. Previous research by Aghion et al. [30] highlights similar findings, emphasizing that 

over-reliance on labor-intensive production may lead to productivity losses in extractive industries. 

    The role of agricultural inputs, such as fertilizer (fert) and pesticides (pest), is also notable. The 

fertilizer coefficient of 182,548.8 is statistically significant (p = 0.020), confirming that increased 

fertilizer application positively affects oil production. This result is supported by studies like those by 

Fuglie [31], who found that fertilizers significantly enhance yield in agricultural and extractive sectors. 

Similarly, the coefficient for pesticides (1,330,732) is positive and statistically significant (p = 0.003), 

reinforcing the argument that improved pest control measures contribute to higher productivity. These 

findings align with existing literature, which suggests that optimal chemical inputs play a crucial role in 

maintaining production efficiency [32]. 

Another important factor influencing oil production is emissions (emi), which has a positive 

coefficient of 196,395.9 and a p-value of 0.010. This suggests that increased emissions correlate with 

higher palm oil output. While this result may indicate a link between industrial activity and production, 

it also raises concerns about environmental sustainability. Studies by Stern [33] and Acemoglu et al. 

[34] have documented similar trends, emphasizing the trade-off between production efficiency and 

environmental degradation. Policymakers may need to balance productivity goals with regulatory 

frameworks aimed at reducing carbon footprints. 

The impact of temperature (temp) is particularly striking, as it has a large negative coefficient of -

6,461,549 and is statistically significant (p = 0.008). This suggests that rising temperatures have a 

detrimental effect on palm oil production, potentially due to heat stress on crops, increased evaporation 

rates, or disruption of extraction processes. Previous research by Dell, Jones, and Olken [35] highlights 

the adverse economic consequences of climate change, noting that temperature fluctuations can 

significantly hinder agricultural and industrial productivity. This result underscores the urgency of 

climate adaptation strategies in resource-dependent economies. 

Thus, the OLS findings reinforce the importance of efficient resource management and climate 

resilience in palm oil production. While factors like fertilizers and pesticides positively influence 

productivity, labor inefficiencies and rising temperatures present challenges that require policy attention. 

Given the limitations of OLS in capturing distributional heterogeneity, a quantile regression approach 
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may be beneficial in providing deeper insights into the impact of these variables across different levels 

of production. 

The results from the simultaneous quantile regression provide a deeper understanding of the varying 

impact of independent variables across different points in the conditional distribution of palm oil 

production. Unlike ordinary least squares (OLS), which estimates the average effect, quantile regression 

allows for a more nuanced analysis of how predictors influence different levels of production. The 

pseudo R-squared values for the 25th, 50th, and 75th percentiles (0.8612, 0.8588, and 0.8270, 

respectively) in Table 2 suggest that the model explains a significant portion of the variation in palm oil 

production across these quantiles, though slightly less so at the higher quantiles. This aligns with the 

findings of Koenker and Bassett [21], who emphasized that quantile regression is particularly useful 

when heteroskedasticity is present in the data. 

The effect of land on palm oil production is inconsistent across quantiles. In the lower quartile (q25), 

the coefficient is 1,066,322, while in the median (q50) and upper quartile (q75), the values drop to 

591,030.4 and 337,749.1, respectively. However, none of these effects are statistically significant, 

suggesting that land allocation alone is not a key determinant of oil production at different levels. This 

result aligns with Baffes [29], who noted that land expansion without complementary factors such as 

improved technology or irrigation does not significantly enhance productivity. 

The influence of labor remains consistently negative across all quantiles, with coefficients of -

4,068,117 (q25), -4,198,152 (q50), and -4,283,607 (q75). The statistical significance (p = 0.000 across 

all quantiles) suggests that increasing labor is associated with lower oil production across all levels. This 

may indicate inefficiencies due to overemployment or a decline in marginal productivity, as described 

in the theory of diminishing returns [30]. Similar findings have been reported in labor-intensive 

industries, where excessive reliance on human capital without mechanization leads to productivity losses 

[36]. 

Fertilizer (fert) has a positive but statistically insignificant effect across all quantiles, with 

coefficients ranging from 124,748.6 (q50) to 232,723.2 (q25) and 197,470.6 (q75). These results suggest 

that fertilizer usage may contribute to increased oil production, but the effect is not strong enough to be 

consistently significant. This is in line with Fuglie [31], who noted that while fertilizers enhance 

productivity, their impact depends on soil quality, application methods, and interaction with other inputs. 

Pesticide  has a significant positive effect at the median quantile (coefficient = 2,016,564, p = 0.028) but 

is not statistically significant at lower quantile. This suggests medium-scale producers benefit most, as 

they face higher pest pressure than small farms but lack advanced pest control methods used by large 

plantations. Smallholders may underuse pesticides due to cost constraints, while overuse at higher 

production levels can lead to diminishing returns from pest resistance and environmental degradation. 

Policies should promote integrated pest management (IPM), provide targeted subsidies for smallholders, 

and regulate pesticide use in mid-scale farms. These findings align with Tilman et al. [32], who noted 

varying pesticide effects based on cultivation intensity and pest prevalence. 

The effect of emissions (emi) is inconsistent across quantiles, with a statistically marginal 

significance in the lower quantile (q25, p = 0.061, coefficient = 230,446.9), but insignificant in the 

median (q50) and upper quantiles (q75). This may indicate that at lower levels of production, emissions 

reflect increased industrial activity, but as production scales up, other factors dominate the relationship. 

This pattern aligns with the Environmental Kuznets Curve (EKC) hypothesis, which suggests that the 

relationship between emissions and production is non-linear [33]. 

The temperature (temp) variable has a consistently negative effect on oil production across all 

quantiles, though it is statistically insignificant. The coefficients range from -6,141,978 (q25) to -

4,892,487 (q50) and -2,101,552 (q75), indicating that higher temperatures are associated with lower 

palm oil production. The negative impact of temperature is well-documented in climate change 

literature, with studies by Dell, Jones, and Olken [35] showing that increased temperatures reduce 

productivity in agriculture and resource extraction industries. However, the lack of statistical 

significance in this study suggests that other environmental or technological adaptation mechanisms 

may mitigate these effects. 
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Generally, the quantile regression results highlight the heterogeneous effects of explanatory variables 

on oil production across different production levels. While labor consistently exhibits a strong negative 

impact, pesticides have a significant effect at the median quantile, and emissions influence production 

at lower quantiles. These findings emphasize the need for differentiated policy interventions, such as 

targeted mechanization strategies for labor-intensive firms, optimized pesticide use, and climate 

adaptation policies. 

The slope equality test examines whether the effects of explanatory variables differ across the 25th, 

50th, and 75th quantiles. High p-values (0.36–0.97) indicate that all variables—land, labor, fertilizer, 

pesticide, emissions, and temperature—have consistent effects across quantiles. Low F-statistics further 

confirm no significant variation in coefficient estimates. 

Land's non-significance (F = 0.12, p = 0.8837) aligns with Baffes [29], suggesting that land 

availability alone does not drive productivity differences. Labor (F = 0.03, p = 0.9737) shows a stable 

negative impact across quantiles, supporting Krugman’s diminishing returns theory. Fertilizer’s uniform 

effect (F = 0.45, p = 0.6399) is consistent with Fuglie [31], indicating that marginal returns remain stable 

when constraints like soil quality are controlled. Similarly, pesticide use (F = 1.05, p = 0.3637) does not 

show significant variation, contrasting with Tilman et al. [32], who found diminishing returns at higher 

production levels. Emissions (F = 0.06, p = 0.9401) have a stable association with production, 

supporting the Environmental Kuznets Curve hypothesis [33]. Temperature’s consistent negative effect 

(F = 0.36, p = 0.7032) aligns with Dell, Jones and Olken [35], indicating persistent climate impact on 

agriculture. These findings suggest that production determinants remain stable across different quantiles. 

Thus, policy interventions—such as labor optimization, mechanization, and input management—are 

likely to have similar effects across all production levels. 

 

 
 

Figure 2. The trend of coefficients of exploratory variables by quantiles. 

 

 Figure 2 shows coefficient patterns for each variable, highlighting estimation asymmetries. Pesticide 

(pest) and temperature (temp) increase across quantiles, while others decline. Shaded areas represent 

90% confidence intervals, with deviations from zero indicating significance. Labor remains significant 

across all quantiles, emissions (emi) at lower and upper quantiles, and temperature (temp) at middle and 

upper quantiles. Overall, coefficient variations are minimal. The model, based on Pseudo R², fits better 

at lower and middle quantiles, capturing production variations more effectively in these ranges. 
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4. Conclusion 

This study analyzes palm oil production using OLS and Quantile Regression (QR), revealing varying 

factor impacts across production levels. OLS results show labor negatively affects output, while 

pesticide and fertilizer boost productivity. Temperature of land has a negative impact, highlighting 

climate risks. QR results confirm labor’s consistent negative effect, CO2 emissions significantly 

affecting small producers, and pesticides benefiting medium-scale producers. The slope equality test 

indicates stable input-output relationships, with Pseudo R² showing better model fit at lower and middle 

quantiles. 

    Policy recommendations include improving labor productivity through skill development, 

mechanization, and automation. Subsidized access to quality fertilizers and pesticides should be 

balanced with sustainable practices. Climate resilience strategies, such as heat-tolerant crops and 

precision irrigation, are crucial. Besides, small-scale producers require carbon reduction policies and 

incentives for green farming. Future research should explore technology adoption, governance, and 

climate adaptation using advanced models to enhance predictive accuracy and policy effectiveness. 
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