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Abstract— Ever since its introduction into the database 

community, skyline queries have been widely adopted in a range 

of contemporary database applications. Skyline technique relies 

on the concept of Pareto-optimal in which a data item from the set 

of dataset D is identified as skyline if and only if it is not worse 

than other data items in all dimensions (attributes) and strictly 

better in at least one dimension. Most of the previous skyline 

solutions have been designed for conventional databases for 

complete, incomplete, and uncertain data. However, not much 

attention has been paid to issues related to skyline query 

processing over knowledge of large-scale incomplete graph 

databases. Most recently, graphs have become prevalent data 

structures to model complex information networks for various 

real-life contemporary applications such as social networks, 

knowledge bases, pattern recognition, and the World Wide Web. 

It is also important to note that, generally graphs are big 

structures with very big data and this change often due to updates. 

These continuous updates makes the graph to be highly dynamic, 

where nodes/edges are added to or removed from the graph 

always. However, the issue of data incompleteness when 

processing skyline queries in large-scale graph databases has not 

been considered by previous works. The research aims at 

proposing a new model for processing skyline queries in an 

incomplete graph database. The research methodology includes 

reviewing the related literature of skyline queries in incomplete 

graph databases. Then, propose an method for handling skyline 

queries within an incomplete graph database followed by 

designing and implementing a model to evaluate the efficiency and 

effectiveness of the proposed approaches. The preliminary results 

using the K means Clustering Algorithm showed that the 

conceptual framework successfully grouped similar data points, 

facilitating the identification of skyline points. The implemented 

algorithm to perform such operation was far more efficient, faster 

and accurate as compared to conventional methods. This research 

will ultimately benefit a wide range of applications involving 

decision-making, decision support, social network, and 

recommendations aspects by developing a tool that incorporates 

the proposed approaches. 

Keywords—Skyline Query, Graph Database, Machine Learning 

I. INTRODUCTION  

A skyline query is used in database applications to retrieve the non-
dominated tuples from a database, known as skylines. The main idea of 

the skyline queries is to identify the nodes not dominated by any other 
node in the graph database, based on certain criteria or preferences 
[1].Skyline queries are often used in numerous modern database 
applications for decision-making process, multi-criteria, road networks, 
web-based businesses, crowd-sourcing databases and e-commerce. 

A major challenge in skyline queries, data incompleteness leads to 
the loss of the transitivity property, causing the dominant relationships 
between data items to become cyclic. Skyline queries have shown to be 
useful and practical tool in many real-world database applications. 
Processing skyline queries in graph databases poses a significant 
challenge in database management. Innovative techniques are required 
for effective and precise skyline computation due to incomplete and 
uncertain graphs, which are characterized by rapid changes and missing 
values within tuples or nodes. The aim is to reduce the search space and 
minimize the cost of computing and the time complexity to identify the 
skyline of the graph. 

Currently, the issue of dynamic skyline queries in uncertain graphs 
is tackled by the researcher. They emphasize the issue of identifying the 
superior data vertices concerning the query vertices based on two 
distance measures (expected distance and majority distance) that fit the 
uncertain graphs [2]. Other researchers attempt to investigate the 
problem of continuous subgraph multi-queries processing over graph 
streams. Based on a literature review insufficient attention has been 
directed towards addressing the issue of incomplete data within graph 
databases when handling skyline queries. This incompleteness poses a 
novel challenge when attempting to process such queries within graph 
databases. 

As it pertains to real-world use, graphs are quite dynamic; new 
nodes are introduced or nodes are removed. If these graphs were 
represented as relational tables, they would typically exhibit sparsity 
with numerous dimensions. Graphs inherently accommodate a wealth 
of attributes, necessitating the development of efficient indexing 
methods to enhance the computational efficiency of identifying skyline 
entities [3], [4], [5], [6]. Despite the potential presence of numerous 
numeric attributes, indicating rare dominant relationships within 
knowledge graphs, limited efforts have been allocated towards 
resolving the challenges associated with processing skyline queries 
within graph databases. 

The effects of data incompleteness are thus worsened by the 
dynamism of graphs, where nodes and edges can be added or removed 
arbitrarily. It shows a possibility of graphs’ sparseness because nodes 
often contain much information while they have few links to other 
nodes, regarding the representation of graphs as relational tables. Due 
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to the low number of connections, there are challenges in identifying 
the skyline entities in this sparse connectivity. 

Moreover, the practice of applying data pruning before executing 
skyline queries adds new complications related to partial information 
about nodes and edges to the list of challenges of using graph databases. 
Solving these problems requires a collective approach towards devising 
approaches to manage data incompleteness and enhance skyline query 
processing for graph databases. 

The objectives of this work are to understand and analyze 
knowledge of large graphs complete and incomplete graphs of skyline 
queries and to design and develop an approach efficient data pruning 
technique that best works over incomplete graph database using 
machine learning models. 

II. RELATED WORKS 

To solve dynamic skyline queries in large graph databases, data 
points that are independent of any other points across all dimensions 
have been defined, known as skylines of the graph. This method aims 
at trying to find the skyline by trying to reduce the search space and any 
computational cost which is incurred in the process [7]. 

A new method, already advanced in similarity skyline, has been 
made to address the problem of multi-measure similarity search in a 
graph database. In this approach, it focuses on identifying graphs that 
are similar to a graph query, and similarity between graphs are in terms 
of scalars or multiple measures. The similarity skyline of a graph query 
is defined as a subset of graphs from the target database that are the 
most similar to the query in the Pareto sense [8]. 

The subgraph skyline problem over large graph data deals with the 
issue of finding a subgraph within a large graph (G), such that a 
subgraph (g) is graph isomorphic to a query (q) and is not dominated 
by any other subgraphs. Three different challenges have been outlined: 
firstly, dynamic skyline computation, which computes skyline to the 
numeric attributes specified in query graphs; secondly, efficient 
querying on graphs, which involves identifying skylines in the 
knowledge graph and requires checking for structural constraints before 
outputting the true answers [9] and thirdly, reducing expensive storage 
costs, which involves selecting numeric and structural features in a very 
large graph, a process that is costly and consumes a large space, 
potentially impacting the pruning process and storage space. 

Skyline queries in graph databases involve algorithms [10] such as 
divide and conquer and nested loop which is already adapted by the 
relational database. Skyline queries in graph databases involve using 
two algorithms: nested loops and divide-and-conquer. The nested loops 
algorithm compares each node against all other nodes to determine 
domination, with a time complexity of O(n²). On the other hand, the 
divide and conquer splits the data into parts, compares the nodes within 
the partitions and then merges the outcomes, thereby providing better 
time complexity of n log^(d-1) n. From the performance analysis, we 
conclude that the divide-and-conquer algorithm takes less time than the 
nested loops algorithm for numerous graph database sizes and query 
complications. 

A method to estimate missing values of the skyline is developed 
through four phases [11] to find missing values, the method generates 
Attribute Functional Dependencies (AFDs) by dividing skylines with 
missing values into two sets: The second skyline is one that contains 
elements with missing values in the target dimension, and the second 
skyline contains all the other skylines. It identifies the effect of one 
dimension on the other, in order to construct an AFD, which depicts the 
interconnection of these dimensions. The resulting values are then used 
for the measure of correlation strength, which in turn enables the 
estimation of the missing values by approximate ones. Last of all, the 
skylines are sorted by the strength with which probability dependencies 
have been identified thereby providing high quality skylines to the user. 

The path skyline query problem in bicriteria networks, which 
involves finding all skyline paths from a starting at an origin node and 
reaching a target node, is crucial for optimizing dual criteria 
simultaneously [12]. The proposed method, PSQ+, builds on the PSQ 
algorithm by starting with the initial node in a queue. It processes 
elements by checking if the current path is dominated by the last skyline 
path. If it is, the path is added to the current node’s skyline, followed by 
edge relaxation for neighboring nodes. This goes on until the queue 
becomes empty, and all skyline paths are identified. Compared to the 
previous version, PSQ+ increases the performance since the algorithm 
does not need to handle non-skyline curves. 

The primary concern in skyline query processing with incomplete 
data can be attributed to large cardinality and high dimensionality 
databases [13]. First, the data items they are grouped because this 
alleviates the problem of cyclic dominance. Subsequently, sorting and 
filtering get rid of dominated items, which in return minimize the 
frequency of carrying out domination tests. Thus, specific local skylines 
for each candidate list are determined to achieve parallel processing 
which in turn quickens the process of skyline retrieval. This means that 
the problems that can be associated with cyclic dominance as well as 
the transitivity property are accounted for, even in the presence of 
missing values. Last of all, the method acquires the whole set of skyline 
data items by comparing local skyline of every candidate list. 

Moreover, the processing of skyline queries in incomplete datasets 
focuses on the SCSA algorithm [14] which efficiently addresses 
situations where data values are missing. The algorithm begins by 
arranging the data items according to dimensions values in descending 
order. In addition, it accumulates the domination power of each item by 
scanning the sorted lists, enabling effective filtration to prune 
dominated items. Furthermore, the remaining data items are partitioned 
into clusters according to their domination power and then divided into 
smaller groups with identical bitmap representations. By running the 
algorithm in parallel on these groups, unwanted data items are 
eliminated effectively. Finally, the algorithm compares local cluster 
skylines to return only those not surpassed by any others in all 
dimensions. 

Furthermore, the focus on skyline nearest neighbor search in multi-
layer graphs presents significant advancements. The proposed 
algorithm incorporates an early-termination condition, which enables 
the computation of shortest distances to stop once a vertex has been 
visited across all layers [15]. This approach effectively reduces 
unnecessary computations. In addition, optimization strategies, such as 
refining the search order, are employed to further enhance the 
algorithm's efficiency, ensuring a more streamlined process in 
identifying skyline nearest neighbors. 

Moreover, the exploration of dynamic skyline queries on uncertain 
graphs introduces a systematic processing method comprising three key 
steps: Pruning, Distance Computation, and Skyline Vertex Set 
Generation [16] Pruning occurs in two phases: the first computes path 
lengths, and the second calculates distances between candidate skyline 
vertices and query vertices using direct and expected distance measures. 
During the Skyline Vertex Set Generation phase, the block nested loop 
(BNL) algorithm is utilized. This combined approach effectively prunes 
candidate vertices, computes required distances and generates the 
skyline vertex set based on the results. 

Besides, the IDSA algorithm addresses skyline queries in dynamic 
and incomplete databases through seven phases. It begins with a 
Pruning Process to identify new skylines, reducing domination tests by 
leveraging existing skylines before INSERT/UPDATE operations. Step 
2 minimizes further domination tests by selecting superior local 
skylines [17] Steps 3 and 4 involve adding and removing tuples from 
the database. Step 5 reviews prior methods and challenges. Step 6 
produces new candidate tuples on domination power; Step 7 evaluates 
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the performance of the algorithm experimentally to demonstrate that the 
skylines after database changes are accurate. 

 The algorithm presented in [18] optimizes skyline query processing 
by sorting dataset points into distinct lists based on each dimension and 
accessing them in a round-robin manner. This indexing technique 
improves the access efficiency by using the extent component and 
density aspect best represented by the no. of complete dimensions of 
any point as the basis for dominance. 

 Moreover [19] encompasses a two-phase process: modeling and 
crowdsourcing. In the modeling phase, a Bayesian network is trained 
to capture data correlations, and a c-table is constructed to represent 
objects and their associated conditions. This c-table is essential for 
determining the likelihood of each object being a query result. 
Furthermore, the crowdsourcing phase involves selecting tasks for 
crowd workers to resolve missing data issues, employing strategies 
such as Frequency Based Strategy (FBS), Uncertainty Based Strategy 
(UBSand Hybrid Heuristic Strategy (HHS). Specifically, FBS 
prioritizes the most frequent expressions, UBS targets tasks with high 
uncertainty, and HHS combines elements of both to enhance 
efficiency. This iterative framework refines query results based on 
crowd responses until the query is successfully resolved. 

 In addition, [20] tackles incomplete skyline queries with a two-
stage processing method for efficient computation on large datasets. In 
Stage 1, TSI performs a sequential scan to identify candidate tuples, 
discarding dominated ones. Stage 2 further refines these candidates 
with another scan. To boost efficiency, TSI uses a pruning bit-vector 
(PRB) to streamline the process, significantly cutting execution costs 
by skipping many tuples in Stage 1. However, some candidates may 
still require removal in the second stage. Overall, TSI shows high 
efficiency in computing skylines on large incomplete datasets. 

Furthermore [21] explores skyline path queries over temporal graphs 
with labels, proposing an efficient index-based method for processing 
these queries. The paper introduces the Main Point (MP) index, which 
includes phases for MP discovery and Mout set construction, enabling 
effective handling of skyline path queries by identifying key points in 
the graph. In addition, the TMP algorithm, built on the MP index, 
employs a bidirectional topology strategy to address skyline path 
queries while accommodating multiple constraints related to temporal 
and label elements. Through experiments and comparisons with other 
algorithms, the proposed methodology demonstrates significant 
performance improvements and effectiveness in managing skyline path 
queries in complex temporal graph environments. 

 Recently, [22] introduces the ProbSky framework, which utilizes 
the MapReduce paradigm to efficiently evaluate probabilistic skyline 
queries on large, uncertain datasets. The methodology begins with slab-
based partitioning of the dataset, allowing for the computation of local 
skyline points within each partition. Furthermore, the framework 
calculates skyline probabilities of uncertain objects using reference 
points, which accelerates the evaluation process. To enhance efficiency 
and scalability in a distributed computing environment, three optimization 
techniques are incorporated: dominant instance pruning to eliminate 
unqualified objects early, slab-based partitioning to balance workload 
and minimize communication costs, and reference point-based 
acceleration to avoid unnecessary dominance tests. Collectively, these 
techniques significantly improve the performance of the framework. 

 Finally [23] focuses method for classifying incomplete data using 
a weighted classification tree, where missing values are marked as 0 
and non-missing as 1. Skyline queries are performed within each class 
to identify local skyline points. It introduces optimal virtual points, 
representing the maximum local skyline values, which help minimize 
comparisons across classes. Points dominated by these virtual points 
are shifted to a shadow skyline. Global skyline points are determined 
by comparing candidates in each class with the shadow skylines of 
others, eliminating dominated points. This approach efficiently handles 

multidimensional incomplete data, enhancing classification efficiency 
and reducing comparisons, as shown by improved experimental results. 

III. METHODOLOGY 

The framework consists of 5 components: sorting and filtering, 
Creating a cluster, local skylines identifier, and final skyline. Fig. 1 
illustrates the proposed framework of skyline queries in the incomplete 

graph database. Those components are further explained as follows. 

 

Fig. 1. Proposed Methodology Framework 

A. Sorting of Nodes 

This phase endeavours to arrange the data nodes within the dataset 
in descending order according to the domination power of each node. 
The process begins by organizing the nodes within each distinct list 
based on the values of properties within each node. The interaction 
between the nodes which ultimately leads to domination power is done 
on a round-robin basis. This procedure begins and goes on until all 
nodes within the initial dataset are visited at least one time. The goal of 
this step, the node items in the dataset to be sorted with decreasing 
domination power. Further, it tries to prune out nodes that are 
dominated by other nodes having lesser values of domination power. 
As a result, data items with low or equal domination power are 
considered not to be effective to the extent of contributing to the skyline 
results. Therefore, the elimination of them before applying the skyline 
technique would give way to substantial reduction of useless 
comparisons and the load of the skyline process.  

B. Filtering of Nodes 

In the filtration stage, the domination power of each data nodes is 
calculated and any data node with domination power less than the 
provided threshold are pruned from further processing. This decision 
stems from the understanding that nodes with a domination power 
below than the threshold lack the potential to be included in the skyline 
result, as their domination power suggests they excel in no more than 
one dimension. The core concept behind the filtration process hinges 
on leveraging domination power values to streamline the skyline 

process within an incomplete graph database.  

C. Clustering of Nodes 

Specifically, the purpose of this phase is to enhance the skyline 
computation within a dataset by splitting the data nodes by the missing 
values of the item. Here again, data items with similar missing value is 
grouped into one cluster by the help of k means clustering algorithm. 
Consequently, it gives rise to the creation of several numbers of 
separate clusters. Eliminating many unwanted pairwise comparisons as 
reduction in the number of data items does not have a negative 
implication on the skyline result.  

D. Identify local Skyline 

This component aims to capture the local skylines of each built 
cluster. There are many advantages to obtaining local skyline of each 
cluster before obtaining the final skyline. First, it eliminates the 
processing of numerous dominated data items before reaching the next 
stage which to some extent reduces the amount of time taken. Second, 
it makes sure the transitivity property of skyline technique always hold 
since all data items in one cluster belong to the same namespace. It will 
be in all the clusters parallelly which will reduce the processing time of 

the between the data elements.  
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E. Final Skyline 

This component is in our proposed framework for handling skyline 
queries in an incomplete graph database.it is responsible to determine 
the final skyline of the incompelete database. The process starts by 
comparing those local skylines generated from the previous component 
and retrieving those undominated data items as the final skylines of the 
entire incomplete graph database. This component ensures that any 
reported global skyline are the skylines are the skylines over the entire 

database and no other data items might dominate them.  

IV. PRELIMINARY RESULTS 

Skyline queries have tremendous benefits on many contemporary 

database applications that personalize the query results on the given 

user preferences. Due to its practical use, skyline queries have been 

adopted in many multi-criteria applications such as decision-making, 

decision support, recommendation systems, e-commerce, and data 

mining. The literature is rich with numerous numbers of skyline 

approaches that process skyline queries in the complete database in 

which data are present during skyline process. Nevertheless, very few 

numbers of skyline techniques have been developed aiming at 

processing skyline queries in a database with incomplete data. The 

incompleteness of the data adds more challenges to processing skyline 

queries due to the issue of cyclic dominance and lack of the transitivity 

property of skyline technique. It is prohibitive to apply skyline 

techniques tailored for complete data on a database with incomplete 

data. This is due to the exhaustive unnecessary pairwise comparisons 

between dimension values, particularly for a database with a large 

number of dimensions and a high volume of the data. Therefore, an 

efficient approach using machine learning is proposed for handling 

skylines queries in the incomplete graph database. 

To the further illustrate, consider a general scenario of a tourist is 

seeking for a hotel near the beach. The network of available hotels is 

depicted in Figure 2, where each node represents a hotel, with the 

connections showing possible paths between them. 

In the graphical representation, Hotel 1 is denoted as Node 1, Hotel 

2 as Node 2, and so forth, up to Hotel 11. Each node contains four 

values (e.g., 2, 8, -,4 for Hotel 1), representing a hotel's score on key 

dimensions, such as distance from the beach, scenic view, and price 

level, rating. 

 

Fig. 2. Hotel database 

 Table I  Provides the corresponding data for each hotel node, 

illustrating their characteristics and allowing for skyline queries to 

help the tourist make an informed decision by considering only the 

non-dominated hotels, i.e., those that offer the best trade-offs in terms 

of multiple factors. 

TABLE I.  HOTEL DATABASE 

NODES P1  P 2  P 3 P4 

NODE 1  2 8 - 4 

NODE 2 3 - 8 1 

NODE 3 3 2 - 2 

NODE 4 5 - 2 8 

NODE 5 8 1 - 6 

NODE 6 4 - 7 3 

NODE 7 - 8 2 9 

NODE 8 7 - 8 4 

NODE 9 - 6 4 2 

NODE 10 5 2 6 - 

NODE 11 8 6 4 - 

  

A. Sorting of Nodes 

This phase tries to order them in a manner that they are arranged in 

the descending order of the domination power of the nodes. Then filter 

out those data items which overall have a low domination power. The 

low domination power of data items is unfavorable for attaining the 

skyline results. Therefore, calling the skyline technique after the 

removal of these items can help in avoiding a considerable amount of 

unnecessary pairwise comparisons lower the overall overhead of the 

skyline process significantly. First of all, it is necessary to sort the 

elements in every particular list by the values of each dimension in the 

set. 

Node 5 in dimension 1 has 7 scores, Node 2 has 6 scores in 

dimension 3, Node 11 has 7 scores in dimension 1 and Node 7 has 8 

scores in dimension 8 in the Table. II. The elements of constructing 

lists’ data nodes are screened and matched in the round-robin procedure 

in order to define domination power. This continues until all the nodes 

have a domination score of the sort. 

TABLE II.  DOMINANCE SCORE  

Node 1 0 5 0 4 

Node 2 1 0 6 0 

Node 3 1 1 0 0 

Node 4 4 0 0 7 

Node 5 7 0 0 6 

Node 6 3 0 5 3 

Node 7 0 5 0 8 

Node 8 6 0 6 4 

Node 9 0 3 2 1 

Node 10 4 1 4 0 

Node 11 7 3 2 0 

 

 

B. Filtering of Nodes 

With the help of sorting, the domination score of every node in each 
dimension was obtained. After the filtration process, all data items 
having a domination power less than the specified threshold (th) are not 
processed further. This is because data nodes with low domination 
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power have no potential to be part of the skyline result, as their 
domination indicates that these items are good in no more than one 
dimension. The primary concept of the filtration process relies on 
exploiting the domination power value to further simplify the skyline 
process in incomplete databases with a high number of dimensions and 
large dataset sizes. Therefore, these data items can be safely removed, 
guaranteeing that the eliminated items do not affect the skyline results. 

It is clear that Node 5, Node 11, and Node 8 in Table III, Node 1, 

Node 7, Node 9, and Node 11 in Table IV, Node 2, Node 8, and 

Node 6 in Table V, and Node 4 in Table VI Are the nodes with 

domination scores greater than the threshold value. 

TABLE III.  SORTED P1 

Node 5 7 0 0 6 

Node 11 7 3 2 0 

Node 8 6 0 6 4 

Node 4 4 0 0 7 

Node 10 4 1 4 0 

Node 6 3 0 5 3 

Node 2 1 0 6 0 

Node 3 1 1 0 0 

Node 1 0 5 0 4 

Node 7 0 5 0 8 

Node 9 0 3 2 1 
 

TABLE IV.  SORTED P2 

Node 1 0 5 0 4 

Node 7 0 5 0 8 

Node 9 0 3 2 1 

Node 11 7 3 2 0 

Node 3 1 1 0 0 

Node 10 4 1 4 0 

Node 2 1 0 6 0 

Node 4 4 0 0 7 

Node 5 7 0 0 6 

Node 6 3 0 5 3 

Node 8 6 0 6 4 
 

TABLE V.  SORTED P3 

Node 2 1 0 6 0 

Node 8 6 0 6 4 

Node 6 3 0 5 3 

 Node 10 4 1 4 0 

 Node 9 0 3 2 1 

 Node 11 7 3 2 0 

Node 1 0 5 0 4 

Node 3 1 1 0 0 

Node 4 4 0 0 7 

Node 5 7 0 0 6 

Node 7 0 5 0 8 

 

 

TABLE VI.  SORTED P4 

Node 7 0 5 0 8 

Node 4 4 0 0 7 

Node 5 7 0 0 6 

Node 1 0 5 0 4 

Node 8 6 0 6 4 

Node 6 3 0 5 3 

Node 9 0 3 2 1 

Node 2 1 0 6 0 

Node 3 1 1 0 0 

Node 10 4 1 4 0 

Node 11 7 3 2 0 
 

 

C. Clustering of Nodes 

This phase focuses on further simplify the skyline process in a 

database containing incomplete data by dividing the data items into 

separate clusters in Table VII. Utilizing of a machine learning 

algorithm, clusters of datasets are developed based on their 

similarities. Specifically, the K-means Clustering Algorithm is used to 

group similar nodes, including those with empty values. This 

clustering approach allows for efficient management and processing 

of the data, ultimately enhancing the accuracy and speed of skyline 

queries. 

TABLE VII.  CLUSTERING OF NODES 

P1 P2 P3 P4 

Node 5 Node 1 Node 2 Node 7 

Node 11 Node 7 Node 8 Node 4 

Node 8 Node 9 Node 6 Node 5 

Node 4 Node 11 Node 10 Node 1 

Node 10 Node 10 Node 9 Node 8 

Node 6 Node 3 Node 11 Node 6 

Node 2 Node 2 Node 1 Node 9 

Node 4 Node 3  Node 2 Node 2 

Node 3 Node 4 Node 3 Node 2 

Node 1 Node 5 Node 4 Node 3 

Node 7 Node 6 Node 5 Node 10 

Node 9 Node 8 Node 7 Node 11 

 

D. Identify Local Skyline 

This phase aims at identifying the local skylines of each of the 
identified clusters. Also, it eliminates all dominated data items from 
further processing, which decreases the number of pairwise 
comparisons required to determine the final skyline of the dataset. It 
starts with determining the skylines of each group within each of the 
novel clusters formed. This step provides vital support to the pairwise 
comparison process as all group data items should have similar bitmaps. 
This approach assists in eliminating difficulties associated with the loss 
of the transitivity property and cyclic dominance. After that, the results 
obtained from the computations made on those sets are compared to 
identify the local skyline. This process is important as it will ensure that 
only the non-dominated data items will appear in the next phase. 

Hence, the Skyline process will be made easier. According to the 

running example, Node 7, Node 8, Node 5, and Node 11 are the local 

skyline in Table VII. When comparing Node 7 with Node 9 in Table 

VIII Node 7 has more domination power than Node 9, whereas Node 

11 has no comparison in Table IX. Furthermore, Node 8, when 

compared with Node 2 and Node 6 in Table X, exhibits greater 

domination power. Lastly, Node 5 dominates Node 1 in Table XI. 

TABLE VIII.  CLUSTER 1 

 

Node 7 - 8 2 9 

Node 9 - 6 4 2 

TABLE IX.  CLUSTER 2 

Node 8 7 - 8 4 

Node 9 3 - 7 3 

Node 6 4 - 7 3 

TABLE X.  CLUSTER 3 

Node 5 8 1 - 6 

Node 1 2 8 - 4 

TABLE XI.  CLUSTER 4 

Node 11 8 6 4 - 

 

TABLE XII.  LOCAL SKYLINE  

Node 5 8 1 - 6 

Node 7 - 8 2 9 

Node 11 8 6 4 - 

Node 8 7 - 8 4 
 

 

E. Final Skyline 

This completes the last phase of the proposed method offering 

suggestions for skyline query processing on incomplete graph data. 

The goal of this phase is to select the final skyline of the entire dataset. 

This is done by checking the skyline clusters we formed against each 

other for the final skyline. The precise definition of this phase is 

actually identical to the definition of determining the local skyline of 

each. Here we have a comparison of Node 7 and Node 11 with Node 

8 and Node 5 in the running example. The last two skylines of the study 

are Node 7 and Node 11 as presented in the Table XII. 
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TABLE XIII.  FINAL SKYLINE 

 

 

V. CONCLUSION 

Thus, the proposed approach is capable of overcome the challenges 
of skyline queries in incomplete graph databases. The approach 
includes sorting, filtering, clustering, finding local skylines, and having 
finally been able to capture the final skyline as it were, has been proven 
to lower avoiding unnecessary comparisons and, therefore, the overall 
process is further enhanced. By leveraging machine learning 
algorithms, the clustering phase allows for efficient grouping, and 
identifying local skylines before determining the final skyline further 
simplifies the procedure. 

This framework enables the accurate retrieval of skyline results 
even in the presence of incomplete data, ensuring that dominated data 
items are removed, and only significant ones contribute to the outcome. 
Through systematic phases, the process ensures efficiency in 
computational overhead while maintaining the integrity of the skyline 
result. Ultimately, this method holds promise for improving decision-
making and query optimization in various applications involving 
incomplete and uncertain graph databases. 
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