
2024 IEEE 9th International Conference on Engineering Technologies and Applied Sciences (ICETAS)

Ubair Noor

 Department of Computer Science,

 Kulliyah of Information and Communication

Technology International Islamic University

Malaysia Kuala Lumpur, Malaysia

ubairnoor@gmail.com

Raini Hassan

Department of Computer Science

Kulliyah of information and Communication

Technology International Islamic University

Malaysia Kuala Lumpur, Malaysia

hrai@iium.edu.my

Dini Oktarina Dwi Handayani

 Department of Computer Science

Kulliyah of Information and Communication

Technology International Islamic University

Malaysia Kuala Lumpur, Malaysia

dinihandayani@iium.edu.my

Abstract— Ever since its introduction into the database

community, skyline queries have been widely adopted in a range

of contemporary database applications. Skyline technique relies

on the concept of Pareto-optimal in which a data item from the set

of dataset D is identified as skyline if and only if it is not worse

than other data items in all dimensions (attributes) and strictly

better in at least one dimension. Most of the previous skyline

solutions have been designed for conventional databases for

complete, incomplete, and uncertain data. However, not much

attention has been paid to issues related to skyline query

processing over knowledge of large-scale incomplete graph

databases. Most recently, graphs have become prevalent data

structures to model complex information networks for various

real-life contemporary applications such as social networks,

knowledge bases, pattern recognition, and the World Wide Web.

It is also important to note that, generally graphs are big

structures with very big data and this change often due to updates.

These continuous updates makes the graph to be highly dynamic,

where nodes/edges are added to or removed from the graph

always. However, the issue of data incompleteness when

processing skyline queries in large-scale graph databases has not

been considered by previous works. The research aims at

proposing a new model for processing skyline queries in an

incomplete graph database. The research methodology includes

reviewing the related literature of skyline queries in incomplete

graph databases. Then, propose an method for handling skyline

queries within an incomplete graph database followed by

designing and implementing a model to evaluate the efficiency and

effectiveness of the proposed approaches. The preliminary results

using the K means Clustering Algorithm showed that the

conceptual framework successfully grouped similar data points,

facilitating the identification of skyline points. The implemented

algorithm to perform such operation was far more efficient, faster

and accurate as compared to conventional methods. This research

will ultimately benefit a wide range of applications involving

decision-making, decision support, social network, and

recommendations aspects by developing a tool that incorporates

the proposed approaches.

Keywords—Skyline Query, Graph Database, Machine Learning

I. INTRODUCTION

A skyline query is used in database applications to retrieve the non-
dominated tuples from a database, known as skylines. The main idea of

the skyline queries is to identify the nodes not dominated by any other
node in the graph database, based on certain criteria or preferences
[1].Skyline queries are often used in numerous modern database
applications for decision-making process, multi-criteria, road networks,
web-based businesses, crowd-sourcing databases and e-commerce.

A major challenge in skyline queries, data incompleteness leads to
the loss of the transitivity property, causing the dominant relationships
between data items to become cyclic. Skyline queries have shown to be
useful and practical tool in many real-world database applications.
Processing skyline queries in graph databases poses a significant
challenge in database management. Innovative techniques are required
for effective and precise skyline computation due to incomplete and
uncertain graphs, which are characterized by rapid changes and missing
values within tuples or nodes. The aim is to reduce the search space and
minimize the cost of computing and the time complexity to identify the
skyline of the graph.

Currently, the issue of dynamic skyline queries in uncertain graphs
is tackled by the researcher. They emphasize the issue of identifying the
superior data vertices concerning the query vertices based on two
distance measures (expected distance and majority distance) that fit the
uncertain graphs [2]. Other researchers attempt to investigate the
problem of continuous subgraph multi-queries processing over graph
streams. Based on a literature review insufficient attention has been
directed towards addressing the issue of incomplete data within graph
databases when handling skyline queries. This incompleteness poses a
novel challenge when attempting to process such queries within graph
databases.

As it pertains to real-world use, graphs are quite dynamic; new
nodes are introduced or nodes are removed. If these graphs were
represented as relational tables, they would typically exhibit sparsity
with numerous dimensions. Graphs inherently accommodate a wealth
of attributes, necessitating the development of efficient indexing
methods to enhance the computational efficiency of identifying skyline
entities [3], [4], [5], [6]. Despite the potential presence of numerous
numeric attributes, indicating rare dominant relationships within
knowledge graphs, limited efforts have been allocated towards
resolving the challenges associated with processing skyline queries
within graph databases.

The effects of data incompleteness are thus worsened by the
dynamism of graphs, where nodes and edges can be added or removed
arbitrarily. It shows a possibility of graphs’ sparseness because nodes
often contain much information while they have few links to other
nodes, regarding the representation of graphs as relational tables. Due

The Conceptual Framework of Knowledge of Large Scale and
Incomplete Graphs of Skyline Queries Optimization Using Machine

 Learning

979-8-3503-6314-2/24/$31.00 ©2024 IEEE 20
24

 IE
EE

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

ng
in

ee
rin

g
Te

ch
no

lo
gi

es
 a

nd
 A

pp
lie

d
Sc

ie
nc

es
 (I

CE
TA

S)
 |

 9
79

-8
-3

50
3-

63
14

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

ET
AS

62
37

2.
20

24
.1

11
19

94
2

Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on August 28,2025 at 08:32:49 UTC from IEEE Xplore. Restrictions apply.

to the low number of connections, there are challenges in identifying
the skyline entities in this sparse connectivity.

Moreover, the practice of applying data pruning before executing
skyline queries adds new complications related to partial information
about nodes and edges to the list of challenges of using graph databases.
Solving these problems requires a collective approach towards devising
approaches to manage data incompleteness and enhance skyline query
processing for graph databases.

The objectives of this work are to understand and analyze
knowledge of large graphs complete and incomplete graphs of skyline
queries and to design and develop an approach efficient data pruning
technique that best works over incomplete graph database using
machine learning models.

II. RELATED WORKS

To solve dynamic skyline queries in large graph databases, data
points that are independent of any other points across all dimensions
have been defined, known as skylines of the graph. This method aims
at trying to find the skyline by trying to reduce the search space and any
computational cost which is incurred in the process [7].

A new method, already advanced in similarity skyline, has been
made to address the problem of multi-measure similarity search in a
graph database. In this approach, it focuses on identifying graphs that
are similar to a graph query, and similarity between graphs are in terms
of scalars or multiple measures. The similarity skyline of a graph query
is defined as a subset of graphs from the target database that are the
most similar to the query in the Pareto sense [8].

The subgraph skyline problem over large graph data deals with the
issue of finding a subgraph within a large graph (G), such that a
subgraph (g) is graph isomorphic to a query (q) and is not dominated
by any other subgraphs. Three different challenges have been outlined:
firstly, dynamic skyline computation, which computes skyline to the
numeric attributes specified in query graphs; secondly, efficient
querying on graphs, which involves identifying skylines in the
knowledge graph and requires checking for structural constraints before
outputting the true answers [9] and thirdly, reducing expensive storage
costs, which involves selecting numeric and structural features in a very
large graph, a process that is costly and consumes a large space,
potentially impacting the pruning process and storage space.

Skyline queries in graph databases involve algorithms [10] such as
divide and conquer and nested loop which is already adapted by the
relational database. Skyline queries in graph databases involve using
two algorithms: nested loops and divide-and-conquer. The nested loops
algorithm compares each node against all other nodes to determine
domination, with a time complexity of O(n²). On the other hand, the
divide and conquer splits the data into parts, compares the nodes within
the partitions and then merges the outcomes, thereby providing better
time complexity of n log^(d-1) n. From the performance analysis, we
conclude that the divide-and-conquer algorithm takes less time than the
nested loops algorithm for numerous graph database sizes and query
complications.

A method to estimate missing values of the skyline is developed
through four phases [11] to find missing values, the method generates
Attribute Functional Dependencies (AFDs) by dividing skylines with
missing values into two sets: The second skyline is one that contains
elements with missing values in the target dimension, and the second
skyline contains all the other skylines. It identifies the effect of one
dimension on the other, in order to construct an AFD, which depicts the
interconnection of these dimensions. The resulting values are then used
for the measure of correlation strength, which in turn enables the
estimation of the missing values by approximate ones. Last of all, the
skylines are sorted by the strength with which probability dependencies
have been identified thereby providing high quality skylines to the user.

The path skyline query problem in bicriteria networks, which
involves finding all skyline paths from a starting at an origin node and
reaching a target node, is crucial for optimizing dual criteria
simultaneously [12]. The proposed method, PSQ+, builds on the PSQ
algorithm by starting with the initial node in a queue. It processes
elements by checking if the current path is dominated by the last skyline
path. If it is, the path is added to the current node’s skyline, followed by
edge relaxation for neighboring nodes. This goes on until the queue
becomes empty, and all skyline paths are identified. Compared to the
previous version, PSQ+ increases the performance since the algorithm
does not need to handle non-skyline curves.

The primary concern in skyline query processing with incomplete
data can be attributed to large cardinality and high dimensionality
databases [13]. First, the data items they are grouped because this
alleviates the problem of cyclic dominance. Subsequently, sorting and
filtering get rid of dominated items, which in return minimize the
frequency of carrying out domination tests. Thus, specific local skylines
for each candidate list are determined to achieve parallel processing
which in turn quickens the process of skyline retrieval. This means that
the problems that can be associated with cyclic dominance as well as
the transitivity property are accounted for, even in the presence of
missing values. Last of all, the method acquires the whole set of skyline
data items by comparing local skyline of every candidate list.

Moreover, the processing of skyline queries in incomplete datasets
focuses on the SCSA algorithm [14] which efficiently addresses
situations where data values are missing. The algorithm begins by
arranging the data items according to dimensions values in descending
order. In addition, it accumulates the domination power of each item by
scanning the sorted lists, enabling effective filtration to prune
dominated items. Furthermore, the remaining data items are partitioned
into clusters according to their domination power and then divided into
smaller groups with identical bitmap representations. By running the
algorithm in parallel on these groups, unwanted data items are
eliminated effectively. Finally, the algorithm compares local cluster
skylines to return only those not surpassed by any others in all
dimensions.

Furthermore, the focus on skyline nearest neighbor search in multi-
layer graphs presents significant advancements. The proposed
algorithm incorporates an early-termination condition, which enables
the computation of shortest distances to stop once a vertex has been
visited across all layers [15]. This approach effectively reduces
unnecessary computations. In addition, optimization strategies, such as
refining the search order, are employed to further enhance the
algorithm's efficiency, ensuring a more streamlined process in
identifying skyline nearest neighbors.

Moreover, the exploration of dynamic skyline queries on uncertain
graphs introduces a systematic processing method comprising three key
steps: Pruning, Distance Computation, and Skyline Vertex Set
Generation [16] Pruning occurs in two phases: the first computes path
lengths, and the second calculates distances between candidate skyline
vertices and query vertices using direct and expected distance measures.
During the Skyline Vertex Set Generation phase, the block nested loop
(BNL) algorithm is utilized. This combined approach effectively prunes
candidate vertices, computes required distances and generates the
skyline vertex set based on the results.

Besides, the IDSA algorithm addresses skyline queries in dynamic
and incomplete databases through seven phases. It begins with a
Pruning Process to identify new skylines, reducing domination tests by
leveraging existing skylines before INSERT/UPDATE operations. Step
2 minimizes further domination tests by selecting superior local
skylines [17] Steps 3 and 4 involve adding and removing tuples from
the database. Step 5 reviews prior methods and challenges. Step 6
produces new candidate tuples on domination power; Step 7 evaluates

Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on August 28,2025 at 08:32:49 UTC from IEEE Xplore. Restrictions apply.

the performance of the algorithm experimentally to demonstrate that the
skylines after database changes are accurate.

 The algorithm presented in [18] optimizes skyline query processing
by sorting dataset points into distinct lists based on each dimension and
accessing them in a round-robin manner. This indexing technique
improves the access efficiency by using the extent component and
density aspect best represented by the no. of complete dimensions of
any point as the basis for dominance.

 Moreover [19] encompasses a two-phase process: modeling and
crowdsourcing. In the modeling phase, a Bayesian network is trained
to capture data correlations, and a c-table is constructed to represent
objects and their associated conditions. This c-table is essential for
determining the likelihood of each object being a query result.
Furthermore, the crowdsourcing phase involves selecting tasks for
crowd workers to resolve missing data issues, employing strategies
such as Frequency Based Strategy (FBS), Uncertainty Based Strategy
(UBSand Hybrid Heuristic Strategy (HHS). Specifically, FBS
prioritizes the most frequent expressions, UBS targets tasks with high
uncertainty, and HHS combines elements of both to enhance
efficiency. This iterative framework refines query results based on
crowd responses until the query is successfully resolved.

 In addition, [20] tackles incomplete skyline queries with a two-
stage processing method for efficient computation on large datasets. In
Stage 1, TSI performs a sequential scan to identify candidate tuples,
discarding dominated ones. Stage 2 further refines these candidates
with another scan. To boost efficiency, TSI uses a pruning bit-vector
(PRB) to streamline the process, significantly cutting execution costs
by skipping many tuples in Stage 1. However, some candidates may
still require removal in the second stage. Overall, TSI shows high
efficiency in computing skylines on large incomplete datasets.

Furthermore [21] explores skyline path queries over temporal graphs
with labels, proposing an efficient index-based method for processing
these queries. The paper introduces the Main Point (MP) index, which
includes phases for MP discovery and Mout set construction, enabling
effective handling of skyline path queries by identifying key points in
the graph. In addition, the TMP algorithm, built on the MP index,
employs a bidirectional topology strategy to address skyline path
queries while accommodating multiple constraints related to temporal
and label elements. Through experiments and comparisons with other
algorithms, the proposed methodology demonstrates significant
performance improvements and effectiveness in managing skyline path
queries in complex temporal graph environments.

 Recently, [22] introduces the ProbSky framework, which utilizes
the MapReduce paradigm to efficiently evaluate probabilistic skyline
queries on large, uncertain datasets. The methodology begins with slab-
based partitioning of the dataset, allowing for the computation of local
skyline points within each partition. Furthermore, the framework
calculates skyline probabilities of uncertain objects using reference
points, which accelerates the evaluation process. To enhance efficiency
and scalability in a distributed computing environment, three optimization
techniques are incorporated: dominant instance pruning to eliminate
unqualified objects early, slab-based partitioning to balance workload
and minimize communication costs, and reference point-based
acceleration to avoid unnecessary dominance tests. Collectively, these
techniques significantly improve the performance of the framework.

 Finally [23] focuses method for classifying incomplete data using
a weighted classification tree, where missing values are marked as 0
and non-missing as 1. Skyline queries are performed within each class
to identify local skyline points. It introduces optimal virtual points,
representing the maximum local skyline values, which help minimize
comparisons across classes. Points dominated by these virtual points
are shifted to a shadow skyline. Global skyline points are determined
by comparing candidates in each class with the shadow skylines of
others, eliminating dominated points. This approach efficiently handles

multidimensional incomplete data, enhancing classification efficiency
and reducing comparisons, as shown by improved experimental results.

III. METHODOLOGY

The framework consists of 5 components: sorting and filtering,
Creating a cluster, local skylines identifier, and final skyline. Fig. 1
illustrates the proposed framework of skyline queries in the incomplete

graph database. Those components are further explained as follows.

Fig. 1. Proposed Methodology Framework

A. Sorting of Nodes

This phase endeavours to arrange the data nodes within the dataset
in descending order according to the domination power of each node.
The process begins by organizing the nodes within each distinct list
based on the values of properties within each node. The interaction
between the nodes which ultimately leads to domination power is done
on a round-robin basis. This procedure begins and goes on until all
nodes within the initial dataset are visited at least one time. The goal of
this step, the node items in the dataset to be sorted with decreasing
domination power. Further, it tries to prune out nodes that are
dominated by other nodes having lesser values of domination power.
As a result, data items with low or equal domination power are
considered not to be effective to the extent of contributing to the skyline
results. Therefore, the elimination of them before applying the skyline
technique would give way to substantial reduction of useless
comparisons and the load of the skyline process.

B. Filtering of Nodes

In the filtration stage, the domination power of each data nodes is
calculated and any data node with domination power less than the
provided threshold are pruned from further processing. This decision
stems from the understanding that nodes with a domination power
below than the threshold lack the potential to be included in the skyline
result, as their domination power suggests they excel in no more than
one dimension. The core concept behind the filtration process hinges
on leveraging domination power values to streamline the skyline

process within an incomplete graph database.

C. Clustering of Nodes

Specifically, the purpose of this phase is to enhance the skyline
computation within a dataset by splitting the data nodes by the missing
values of the item. Here again, data items with similar missing value is
grouped into one cluster by the help of k means clustering algorithm.
Consequently, it gives rise to the creation of several numbers of
separate clusters. Eliminating many unwanted pairwise comparisons as
reduction in the number of data items does not have a negative
implication on the skyline result.

D. Identify local Skyline

This component aims to capture the local skylines of each built
cluster. There are many advantages to obtaining local skyline of each
cluster before obtaining the final skyline. First, it eliminates the
processing of numerous dominated data items before reaching the next
stage which to some extent reduces the amount of time taken. Second,
it makes sure the transitivity property of skyline technique always hold
since all data items in one cluster belong to the same namespace. It will
be in all the clusters parallelly which will reduce the processing time of

the between the data elements.

Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on August 28,2025 at 08:32:49 UTC from IEEE Xplore. Restrictions apply.

E. Final Skyline

This component is in our proposed framework for handling skyline
queries in an incomplete graph database.it is responsible to determine
the final skyline of the incompelete database. The process starts by
comparing those local skylines generated from the previous component
and retrieving those undominated data items as the final skylines of the
entire incomplete graph database. This component ensures that any
reported global skyline are the skylines are the skylines over the entire

database and no other data items might dominate them.

IV. PRELIMINARY RESULTS

Skyline queries have tremendous benefits on many contemporary

database applications that personalize the query results on the given

user preferences. Due to its practical use, skyline queries have been

adopted in many multi-criteria applications such as decision-making,

decision support, recommendation systems, e-commerce, and data

mining. The literature is rich with numerous numbers of skyline

approaches that process skyline queries in the complete database in

which data are present during skyline process. Nevertheless, very few

numbers of skyline techniques have been developed aiming at

processing skyline queries in a database with incomplete data. The

incompleteness of the data adds more challenges to processing skyline

queries due to the issue of cyclic dominance and lack of the transitivity

property of skyline technique. It is prohibitive to apply skyline

techniques tailored for complete data on a database with incomplete

data. This is due to the exhaustive unnecessary pairwise comparisons

between dimension values, particularly for a database with a large

number of dimensions and a high volume of the data. Therefore, an

efficient approach using machine learning is proposed for handling

skylines queries in the incomplete graph database.

To the further illustrate, consider a general scenario of a tourist is

seeking for a hotel near the beach. The network of available hotels is

depicted in Figure 2, where each node represents a hotel, with the

connections showing possible paths between them.

In the graphical representation, Hotel 1 is denoted as Node 1, Hotel

2 as Node 2, and so forth, up to Hotel 11. Each node contains four

values (e.g., 2, 8, -,4 for Hotel 1), representing a hotel's score on key

dimensions, such as distance from the beach, scenic view, and price

level, rating.

Fig. 2. Hotel database

 Table I Provides the corresponding data for each hotel node,

illustrating their characteristics and allowing for skyline queries to

help the tourist make an informed decision by considering only the

non-dominated hotels, i.e., those that offer the best trade-offs in terms

of multiple factors.

TABLE I. HOTEL DATABASE

NODES P1 P 2 P 3 P4

NODE 1 2 8 - 4

NODE 2 3 - 8 1

NODE 3 3 2 - 2

NODE 4 5 - 2 8

NODE 5 8 1 - 6

NODE 6 4 - 7 3

NODE 7 - 8 2 9

NODE 8 7 - 8 4

NODE 9 - 6 4 2

NODE 10 5 2 6 -

NODE 11 8 6 4 -

A. Sorting of Nodes

This phase tries to order them in a manner that they are arranged in

the descending order of the domination power of the nodes. Then filter

out those data items which overall have a low domination power. The

low domination power of data items is unfavorable for attaining the

skyline results. Therefore, calling the skyline technique after the

removal of these items can help in avoiding a considerable amount of

unnecessary pairwise comparisons lower the overall overhead of the

skyline process significantly. First of all, it is necessary to sort the

elements in every particular list by the values of each dimension in the

set.

Node 5 in dimension 1 has 7 scores, Node 2 has 6 scores in

dimension 3, Node 11 has 7 scores in dimension 1 and Node 7 has 8

scores in dimension 8 in the Table. II. The elements of constructing

lists’ data nodes are screened and matched in the round-robin procedure

in order to define domination power. This continues until all the nodes

have a domination score of the sort.

TABLE II. DOMINANCE SCORE

Node 1 0 5 0 4

Node 2 1 0 6 0

Node 3 1 1 0 0

Node 4 4 0 0 7

Node 5 7 0 0 6

Node 6 3 0 5 3

Node 7 0 5 0 8

Node 8 6 0 6 4

Node 9 0 3 2 1

Node 10 4 1 4 0

Node 11 7 3 2 0

B. Filtering of Nodes

With the help of sorting, the domination score of every node in each
dimension was obtained. After the filtration process, all data items
having a domination power less than the specified threshold (th) are not
processed further. This is because data nodes with low domination

Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on August 28,2025 at 08:32:49 UTC from IEEE Xplore. Restrictions apply.

power have no potential to be part of the skyline result, as their
domination indicates that these items are good in no more than one
dimension. The primary concept of the filtration process relies on
exploiting the domination power value to further simplify the skyline
process in incomplete databases with a high number of dimensions and
large dataset sizes. Therefore, these data items can be safely removed,
guaranteeing that the eliminated items do not affect the skyline results.

It is clear that Node 5, Node 11, and Node 8 in Table III, Node 1,

Node 7, Node 9, and Node 11 in Table IV, Node 2, Node 8, and

Node 6 in Table V, and Node 4 in Table VI Are the nodes with

domination scores greater than the threshold value.

TABLE III. SORTED P1

Node 5 7 0 0 6

Node 11 7 3 2 0

Node 8 6 0 6 4

Node 4 4 0 0 7

Node 10 4 1 4 0

Node 6 3 0 5 3

Node 2 1 0 6 0

Node 3 1 1 0 0

Node 1 0 5 0 4

Node 7 0 5 0 8

Node 9 0 3 2 1

TABLE IV. SORTED P2

Node 1 0 5 0 4

Node 7 0 5 0 8

Node 9 0 3 2 1

Node 11 7 3 2 0

Node 3 1 1 0 0

Node 10 4 1 4 0

Node 2 1 0 6 0

Node 4 4 0 0 7

Node 5 7 0 0 6

Node 6 3 0 5 3

Node 8 6 0 6 4

TABLE V. SORTED P3

Node 2 1 0 6 0

Node 8 6 0 6 4

Node 6 3 0 5 3

 Node 10 4 1 4 0

 Node 9 0 3 2 1

 Node 11 7 3 2 0

Node 1 0 5 0 4

Node 3 1 1 0 0

Node 4 4 0 0 7

Node 5 7 0 0 6

Node 7 0 5 0 8

TABLE VI. SORTED P4

Node 7 0 5 0 8

Node 4 4 0 0 7

Node 5 7 0 0 6

Node 1 0 5 0 4

Node 8 6 0 6 4

Node 6 3 0 5 3

Node 9 0 3 2 1

Node 2 1 0 6 0

Node 3 1 1 0 0

Node 10 4 1 4 0

Node 11 7 3 2 0

C. Clustering of Nodes

This phase focuses on further simplify the skyline process in a

database containing incomplete data by dividing the data items into

separate clusters in Table VII. Utilizing of a machine learning

algorithm, clusters of datasets are developed based on their

similarities. Specifically, the K-means Clustering Algorithm is used to

group similar nodes, including those with empty values. This

clustering approach allows for efficient management and processing

of the data, ultimately enhancing the accuracy and speed of skyline

queries.

TABLE VII. CLUSTERING OF NODES

P1 P2 P3 P4

Node 5 Node 1 Node 2 Node 7

Node 11 Node 7 Node 8 Node 4

Node 8 Node 9 Node 6 Node 5

Node 4 Node 11 Node 10 Node 1

Node 10 Node 10 Node 9 Node 8

Node 6 Node 3 Node 11 Node 6

Node 2 Node 2 Node 1 Node 9

Node 4 Node 3 Node 2 Node 2

Node 3 Node 4 Node 3 Node 2

Node 1 Node 5 Node 4 Node 3

Node 7 Node 6 Node 5 Node 10

Node 9 Node 8 Node 7 Node 11

D. Identify Local Skyline

This phase aims at identifying the local skylines of each of the
identified clusters. Also, it eliminates all dominated data items from
further processing, which decreases the number of pairwise
comparisons required to determine the final skyline of the dataset. It
starts with determining the skylines of each group within each of the
novel clusters formed. This step provides vital support to the pairwise
comparison process as all group data items should have similar bitmaps.
This approach assists in eliminating difficulties associated with the loss
of the transitivity property and cyclic dominance. After that, the results
obtained from the computations made on those sets are compared to
identify the local skyline. This process is important as it will ensure that
only the non-dominated data items will appear in the next phase.

Hence, the Skyline process will be made easier. According to the

running example, Node 7, Node 8, Node 5, and Node 11 are the local

skyline in Table VII. When comparing Node 7 with Node 9 in Table

VIII Node 7 has more domination power than Node 9, whereas Node

11 has no comparison in Table IX. Furthermore, Node 8, when

compared with Node 2 and Node 6 in Table X, exhibits greater

domination power. Lastly, Node 5 dominates Node 1 in Table XI.

TABLE VIII. CLUSTER 1

Node 7 - 8 2 9

Node 9 - 6 4 2

TABLE IX. CLUSTER 2

Node 8 7 - 8 4

Node 9 3 - 7 3

Node 6 4 - 7 3

TABLE X. CLUSTER 3

Node 5 8 1 - 6

Node 1 2 8 - 4

TABLE XI. CLUSTER 4

Node 11 8 6 4 -

TABLE XII. LOCAL SKYLINE

Node 5 8 1 - 6

Node 7 - 8 2 9

Node 11 8 6 4 -

Node 8 7 - 8 4

E. Final Skyline

This completes the last phase of the proposed method offering

suggestions for skyline query processing on incomplete graph data.

The goal of this phase is to select the final skyline of the entire dataset.

This is done by checking the skyline clusters we formed against each

other for the final skyline. The precise definition of this phase is

actually identical to the definition of determining the local skyline of

each. Here we have a comparison of Node 7 and Node 11 with Node

8 and Node 5 in the running example. The last two skylines of the study

are Node 7 and Node 11 as presented in the Table XII.

Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on August 28,2025 at 08:32:49 UTC from IEEE Xplore. Restrictions apply.

TABLE XIII. FINAL SKYLINE

V. CONCLUSION

Thus, the proposed approach is capable of overcome the challenges
of skyline queries in incomplete graph databases. The approach
includes sorting, filtering, clustering, finding local skylines, and having
finally been able to capture the final skyline as it were, has been proven
to lower avoiding unnecessary comparisons and, therefore, the overall
process is further enhanced. By leveraging machine learning
algorithms, the clustering phase allows for efficient grouping, and
identifying local skylines before determining the final skyline further
simplifies the procedure.

This framework enables the accurate retrieval of skyline results
even in the presence of incomplete data, ensuring that dominated data
items are removed, and only significant ones contribute to the outcome.
Through systematic phases, the process ensures efficiency in
computational overhead while maintaining the integrity of the skyline
result. Ultimately, this method holds promise for improving decision-
making and query optimization in various applications involving
incomplete and uncertain graph databases.

VI. ACKNOWLEDGEMENTS

The Fundamental Research Grant Scheme (FRGS) with the Reference

Code support this research FRGS/1/202/ICT01/ UIAM/02/2 from the

Ministry of Higher Education (MOHE) Malaysia.

REFERENCES

[1] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,”

in Proceedings - International Conference on Data Engineering,
2001, pp. 421–430. doi: 10.1109/icde.2001.914855.

[2] Z. Yang, X. Yang, and X. Zhou, “Uncertain dynamic skyline queries

for uncertain databases,” in 2015 12th International Conference on
Fuzzy Systems and Knowledge Discovery, FSKD 2015, 2016, pp.

1797–1802. doi: 10.1109/FSKD.2015.7382219.

[3] Mohamed E. Khalefa, Skyline query Processing for incomplete Data.
IEEE Xplore, 2008.

[4] W. Ren, X. Lian, and K. Ghazinour, “Skyline queries over
incomplete data streams,” VLDB Journal, vol. 28, no. 6, pp. 961–985,

Dec. 2019, doi: 10.1007/s00778-019-00577-6.

[5] X. Miao, Y. Gao, G. Chen, B. Zheng, and H. Cui, “Processing
incomplete k nearest neighbor search,” IEEE Transactions on Fuzzy

Systems, vol. 24, no. 6, pp. 1349–1363, 2016, doi:

10.1109/TFUZZ.2016.2516562.
[6] D. Amr and N. El-Tazi, “Skyline Query Processing in Graph

Databases,” Academy and Industry Research Collaboration Center

(AIRCC), Jul. 2018, pp. 49–57. doi: 10.5121/csit.2018.81005.
[7] L. Zou, L. Chen, M. Tamer¨ozsu, T. Tamer¨ozsu, and D. Zhao,

“Dynamic Skyline Queries in Large Graphs.”

[8] K. Abbaci, A. Hadjali, L. Liétard, and D. Rocacher, “A similarity
skyline approach for handling graph queries - A preliminary report,”

in Proceedings - International Conference on Data Engineering,

2011, pp. 112–117. doi: 10.1109/ICDEW.2011.5767617.
[9] W. Zheng, L. Zou, X. Lian, L. Hong, and D. Zhao, “Efficient

subgraph skyline search over large graphs,” in CIKM 2014 -

Proceedings of the 2014 ACM International Conference on

Information and Knowledge Management, Association for

Computing Machinery, Nov. 2014, pp. 1529–1538. doi:
10.1145/2661829.2662037.

[10] A. Alwan, H. Ibrahim, N. Udzir, and F. Sidi, “Missing values

estimation for skylines in incomplete database,” International Arab
Journal of Information Technology, vol. 15, no. 1, pp. 66–75, 2018.

[11] H. Wang et al., “Efficient Computation of Skyline Queries on

Incomplete Dynamic Data,” IEEE Access, vol. 6, pp. 52741–52753,
Sep. 2018, doi: 10.1109/ACCESS.2018.2869819.

[12] D. Ouyang, L. Yuan, F. Zhang, L. Qin, and X. Lin, “Towards

efficient path skyline computation in bicriteria networks,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), Springer

Verlag, 2018, pp. 239–254. doi: 10.1007/978-3-319-91452-7_16.
[13] Y. Gulzar, A. A. Alwan, and S. Turaev, “Optimizing Skyline Query

Processing in Incomplete Data,” IEEE Access, vol. 7, pp. 178121–

178138, 2019, doi: 10.1109/ACCESS.2019.2958202.
[14] Y. Gulzar, A. A. Alwan, R. M. Abdullah, Q. Xin, and M. B. Swidan,

“SCSA: Evaluating skyline queries in incomplete data,” Applied

Intelligence, vol. 49, no. 5, pp. 1636–1657, May 2019, doi:
10.1007/s10489-018-1356-2.

[15] W. Liu, D. Wen, H. Wang, F. Zhang, and X. Wang, “Skyline nearest

neighbor search on multi-layer graphs,” in Proceedings - 2019 IEEE
35th International Conference on Data Engineering Workshops,

ICDEW 2019, Institute of Electrical and Electronics Engineers Inc.,

Apr. 2019, pp. 259–265. doi: 10.1109/ICDEW.2019.000-3.
[16] S. Banerjee, B. Pal, and M. Jenamani, “DySky: Dynamic Skyline

Queries on Uncertain Graphs,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), Springer Science and Business

Media Deutschland GmbH, 2020, pp. 242–254. doi: 10.1007/978-3-
030-62005-9_18.

[17] Y. Gulzar et al., “IDSA: An Efficient Algorithm for Skyline Queries

Computation on Dynamic and Incomplete Data with Changing
States,” IEEE Access, vol. 9, pp. 57291–57310, 2021, doi:

10.1109/ACCESS.2021.3072775.

[18] C. M. Liu, D. Pak, and A. E. Ortiz Castellanos, “Priority-Based
Skyline Query Processing for Incomplete Data,” in ACM

International Conference Proceeding Series, Association for

Computing Machinery, Jul. 2021, pp. 204–211. doi:
10.1145/3472163.3472272.

[19] X. Miao, Y. Gao, S. Guo, L. Chen, J. Yin, and Q. Li, “Answering

Skyline Queries over Incomplete Data with Crowdsourcing,” IEEE
Trans Knowl Data Eng, vol. 33, no. 4, pp. 1360–1374, Apr. 2021,

doi: 10.1109/TKDE.2019.2946798.

[20] J. He and X. Han, “Efficient Skyline Computation on Massive
Incomplete Data,” Data Sci Eng, vol. 7, no. 2, pp. 102–119, Jun.

2022, doi: 10.1007/s41019-022-00183-7.

[21] L. Ding, G. Zhang, J. Ma, and M. Li, “An Efficient Index-Based
Method for Skyline Path Query over Temporal Graphs with Labels,”

in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
Springer Science and Business Media Deutschland GmbH, 2023, pp.

217–233. doi: 10.1007/978-3-031-30675-4_15.

[22] A.-T. Kuo, H. Chen, L. Tang, W.-S. Ku, and X. Qin, “ProbSky:
Efficient Computation of Probabilistic Skyline Queries Over

Distributed Data,” IEEE Trans Knowl Data Eng, vol. 35, no. 5, pp.

5173–5186, 2023, doi: 10.1109/TKDE.2022.3151740.
[23] D. Yuan, L. Zhang, S. Li, and G. Sun, “skyline query under

multidimensional incomplete data based on classiication tree skyline

query under multidimensional incomplete data based on
classification tree,” 2024, doi: 10.21203/rs.3.rs-3915982/v1.

Node 7 - 8 2 9

Node 11 8 6 4 -

Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on August 28,2025 at 08:32:49 UTC from IEEE Xplore. Restrictions apply.

