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ABSTRACT

Gelatin is derived from animal collagen, sourced primarily from bovine or porcine, and finds widespread application 
within the food industry. These issues raise concern over its halal status, particularly among Muslims and Jews, as they 
adhere to dietary laws prohibiting the consumption of pork and its derivatives. Conventional methods like quantitative 
Polymerase Chain Reaction (qPCR) and liquid chromatography–mass spectrometry (LC–MS) have limitations due to the 
deoxyribonucleic acid (DNA)’s reliability and the gelatin’s complex composition, respectively. Therefore, this study aimed 
to explore the application of artificial intelligence (AI)–based machine learning, focusing on amino acid composition 
for non-halal gelatin prediction. A set of 3,780 data points enabled the analysis of the chromatographic peak areas of 18 
amino acids in 210 gelatin samples. Orthogonal partial least squares discriminant analysis (OPLS–DA) and artificial neural 
network (ANN) compared their performance in machine learning models. The ANN employed resilient backpropagation 
algorithms that demonstrated high accuracy (98.5%) and regression (R2) of 0.913, with a slightly higher Root Mean Square 
Error (RMSE) of 0.244. However, OPLSDA demonstrated the best accuracy (100%), R2 of 0.997, and lower RMSE (0.130) 
compared to the ANN model. The ANN’s robustness against outliers and direct output results provided practical advantages, 
while OPLS–DA offered comprehensive insights and robust discrimination. This study demonstrates the potential of AI-
based machine learning in non-halal gelatin prediction, with both models showing the same capability. These findings 
can be integrated with existing analytical methods to complement the halal analysis, thus ensuring product integrity and 
upholding halal sanctity.
Keywords: Artificial neural network; gelatin; halal; machine learning; OPLS–DA

ABSTRAK

Gelatin diperoleh daripada kolagen haiwan dan biasanya diperoleh daripada lembu atau khinzir. Gelatin ini digunakan secara 
meluas dalam industri makanan. Hal ini menimbulkan kebimbangan mengenai status halal, terutamanya dalam kalangan 
umat Islam dan Yahudi, kerana mereka terikat kepada undang-undang pemakanan yang melarang pengambilan daging 
babi dan sumbernya. Kaedah analisis seperti tindak balas rantaian polimerase kuantitatif (qPCR) dan kromatografi cecair–
spektrometri jisim (LC–MS) mempunyai had kerana kebolehpercayaan asid deoksiribonukleik (DNA) dan komposisi gelatin 
yang kompleks. Oleh itu, kajian ini bertujuan untuk meneroka penggunaan pembelajaran mesin berasaskan kecerdasan 
buatan (AI), dengan memberi tumpuan kepada komposisi asid amino untuk ramalan gelatin tidak halal. Set data yang terdiri 
daripada 3,780 data membolehkan analisis kawasan kromatografi bagi 18 asid amino dalam 210 sampel gelatin. Analisis 
diskriminan–kuasa dua separa ortogonal (OPLS–DA) dan rangkaian saraf tiruan (ANN) membandingkan prestasi masing-
masing dalam model pembelajaran mesin. ANN menggunakan algoritma perambatanbalik yang menunjukkan ketepatan 
tinggi (98.5%) dan regresi (R2) 0.913 dengan Ralat Purata Punca Kuasa Dua (RMSE) yang sedikit lebih tinggi iaitu 0.244. 
Walau bagaimanapun, OPLS–DA menunjukkan ketepatan terbaik (100%), R2 (0.997) dan RMSE yang lebih rendah (0.130) 
berbanding model ANN. Ketahanan ANN terhadap pencilan dan hasil langsung memberikan kelebihan praktikal, manakala 
OPLS–DA memberikan pandangan yang komprehensif dan diskriminasi yang kukuh. Kajian ini menunjukkan potensi 
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pembelajaran mesin berasaskan AI dalam ramalan gelatin tidak halal dengan kedua-dua model menunjukkan keupayaan 
yang sama. Penemuan ini boleh digabungkan dengan kaedah analisis sedia ada untuk melengkapkan analisis halal, justeru 
memastikan integriti produk dan memelihara kesucian halal.
Kata kunci: Gelatin; halal; pembelajaran mesin; pengesahan daging; rantaian saraf tiruan; OPLS–DA 

INTRODUCTION

Gelatin is a protein-rich material derived from a collagen 
protein found in animals’ bones, skins, and connective 
tissues (Ahmad et al. 2024; Yuswan et al. 2021). It is widely 
used in the food industry, encompassing muscle foods, 
dairy products, confectionary and desserts, beverages, 
and bakery products (Ahmad et al. 2024). In 2020, the 
global market value for collagen and gelatin exceeded 
approximately USD4.7 billion, and it is anticipated to 
reach over USD7 billion by 2027 (Ahmad et al. 2024). 

However, commercial gelatin is primarily sourced 
from pigs, constituting 41% of global production (Ali et al. 
2018). While bovine hide, bovine bone, and fish contribute 
28.5%, 29.5%, and 1%, respectively (Milovanovic & 
Hayes 2018). This contribution raises concerns among 
certain groups of people, notably Muslims and Jews, who 
are prohibited from consuming pig and its by-products 
(Uddin et al. 2021). Moreover, Hindu dietary law also 
forbids the consumption of bovine derivatives (Uddin et 
al. 2021). 

Commonly, detecting the origin of gelatin involves 
quantitative polymerase chain reaction (qPCR) and liquid 
chromatography–mass spectrometry (LC–MS) methods 
(Jannat et al. 2018), yet both methods have limitations. 
The qPCR method lacks reliability because gelatin is 
a polypeptide by-product of collagen during partial 
hydrolysis in harsh industrial processing. Therefore, 
the possibility of obtaining so-called ‘deoxyribonucleic 
acid (DNA)’s gelatin’ depends entirely on the industrial 
purification process and could also originate from cross-
contamination. Meanwhile, LC-MS is time-consuming and 
prone to false positives due to gelatin’s complex molecular 
composition, characterized by repetitive GXY motifs, 
where G represents glycine and X and Y represent proline 
and hydroxyproline, respectively (Kleinnijenhuis, van 
Holthoon & Herregods 2018). Therefore, an alternative 
method is required to enhance the accuracy of non-halal 
gelatin detection.

Hence, the objective of this study was to explore the 
utilization of artificial intelligence (AI)–based machine 
learning in forecasting non-halal gelatin by analyzing 
its biomolecular structure, focusing on amino acid 
composition. The chromatographic peak areas of amino 
acids served as input data. AI is a branch of computer 
science that simulates human cognitive functions such as 
reasoning, learning, and knowledge acquisition. It has been 
widely adopted across various sectors, including gaming, 
weather forecasting, food processing, the medical industry, 
data mining, and stem cell research (Mavani et al. 2022). 

The performance of AI is enhanced through machine 
learning which involves specific algorithms for learning 
and improving from experience without being explicitly 
programmed. Machine learning techniques are generally 
categorized into three main types: supervised learning, 
unsupervised learning, and reinforcement learning 
(Mavani et al. 2022). In the food industry, numerous 
machine learning algorithms have been applied, such as 
regression analysis, classification analysis, cluster analysis, 
dimensionality reduction, association rule learning, 
reinforcement learning, and artificial neural networks as 
well as deep learning (Sarker 2021). 

In this study, Principal Component Analysis (PCA), 
a dimensionality reduction technique, was employed to 
eliminate outliers from the dataset before implementing the  
Orthogonal Partial Least Squares–Discriminant Analysis 
(OPLS–DA), a classification method, and Artificial Neural 
Network (ANN) to evaluate the potential of AI-based 
machine learning approaches in predicting the presence 
of non-halal gelatin. The performance of OPLS–DA and 
ANN was assessed for their suitability in this application. 
Previously, OPLS–DA an advancement of PLS–DA, 
enhances discrimination between multiple groups (Boccard 
& Rutledge 2013), while ANN has shown promising results 
in predicting, particularly for protein structure and function 
(Tsuchiya & Tomii 2020). This innovative AI–driven 
methodology offers a complementary tool to existing 
analytical techniques, thus ensuring product integrity and 
upholding halal sanctity.

MATERIALS AND METHODS

MATERIALS

Two batches of porcine (G1890 and G2625), bovine 
(G9382 and G6650), and fish (G7041 and G7765) gelatin 
were purchased from Sigma-Aldrich. To ensure a diverse 
sample set, an additional batch of gelatin was obtained from 
Millipore; however, only porcine gelatin (G48722) was 
available from this supplier. The gelatin samples consisted 
of 90 type A gelatin samples from porcine skin (30 samples 
from each of the batches G1890 Sigma Aldrich, G2625 
Sigma Aldrich, and G48722 Millipore), 60 type B gelatin 
samples from bovine skin (30 samples from each of the 
batches G9382 Sigma Aldrich and G6650 Sigma Aldrich), 
and 60 gelatin samples from cold water fish skin (30 
samples from each of the batches G7041 Sigma Aldrich 
and G7765 Sigma Aldrich). All gelatin samples were 
subjected to acid hydrolysis for chromatographic amino 
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acid separation. The datasets were constructed based on the 
peak area of 18 amino acids, including aspartic acid, serine, 
glutamic acid, glycine, hydroxyproline, histidine, arginine, 
threonine, alanine, proline, cystine, tyrosine, valine, 
methionine, lysine, isoleucine, leucine, and phenylalanine 
across 210 gelatin samples.

AMINO ACID HYDROLYSIS 

Each gelatin sample was subjected to amino acid hydrolysis 
and derivatization, as described previously (Yuswan et al. 
2021). Each sample was weighed approximately 0.2 g and 
incubated with 5 mL of 6 N HCl at 110 °C for 24 h in 
an oven for hydrolysis. Then, the sample was transferred 
into a 100-mL volumetric flask, and 4 mL of 2.5 mM 
L-2-aminobutyric acid (AABA) was added. The 100-mL 
volumetric flask volume was made up of ultrapure water. 
Next, 2 mL of the diluted sample was filtered into an 
Eppendorf tube using a 0.45-µm MS PTFE syringe filter. 
For derivatization, 70 µL of borate buffer was added to a 
new clean Eppendorf tube, followed by 10 µL of filtered 
sample. The mixture was vortexed immediately for 5 
s. Then, 20 µL of AccQ-Fluor Reagent was added and 
vortexed for 5 s. The sample was transferred into an HPLC 
insert vial before chromatographic separation.

CHROMATOGRAPHIC SEPARATION 

Chromatographic separation was performed as described 
previously (Yuswan et al. 2021). The HPLC system 
consisted of a Waters e2695 separation module, a 
Waters column compartment, and a Waters 2475 multi λ 
fluorescence detector (Maple Street Milford, MA, USA). 
The sample was injected into a Waters AccQ Tag reversed-
phase column (3.9 × 150 mm, 4 µm, 60 Å) at a flow rate of 
1 mL/min at 36 °C for 50 min. Mobile phases A, B, and C 
were AccQ Tag HPLC Eluent A (1:10), 100% acetonitrile, 
and 100% ultrapure water, respectively. The column was 
equilibrated for 10 column volumes before sample injection 
at a volume of 10 µL. The chromatographic gradient was 
initially set to 98% A: 0.8% B: 1.2% C for 0.5 min, then 
92% A: 3.2% B: 4.8% C from 0.5 to 15 min, then 85% 
A: 6% B: 9% C from 15 to 19 min, then 65% A: 14% B: 
21% C from 19 to 32 min, maintained for 32 to 33 min, 
then 40% B: 60% C from 33 to 35 min, maintained from 
35 to 38 min, then back to the initial conditions from 38 
to 39 min before equilibration for the next injection from 
39 to 50 min. The excitation and emission wavelengths 
of fluorescence detection were set at 250 and 395 nm, 
respectively.

STATISTICAL ANALYSIS AND MACHINE LEARNING 
MODELLING 

All data are presented as a means with standard deviations. 
The suitability of the dataset was assessed through Kaiser–
Meyer–Olkin (KMO) analysis, while the intercorrelation 

among 18 amino acids within the dataset was evaluated 
using Bartlett’s test of sphericity. The relationship among 
the 18 amino acids was also examined through Pearson 
correlations. Principal Component Analysis (PCA) 
was employed to identify the most significant factors 
contributing to non-halal gelatin prediction and to remove 
potential outliers. Subsequently, the sample() function 
in RStudio Team was used to randomly select sample 
replicates for balanced sample analysis. Subsequently, 
the factors were utilized in modelling using orthogonal 
partial least squares discriminant analysis (OPLS–DA) 
(Jadhav et al. 2021; Liu et al. 2023) technique with some 
modifications. The OPLS–DA model was assessed based 
on four parameters: variance explained by the X matrix 
(R2X), variance explained by the Y matrix (R2Y), goodness 
of predictive power (Q2), and the root mean squared error 
(RMSE). The random cross–validation for groups was set 
to 7. Meanwhile, the artificial neural network (ANN) model 
was evaluated for ideal network architecture based on 
resilient backpropagation algorithms, activation functions 
(hyperbolic tangent vs logistic), hidden layer as well as its 
neuron numbers, determination coefficient (R2), accuracy, 
and the RMSE. To develop the OPLSA–DA and ANN 
models, the dataset was randomly split into two subsets at 
a 7:3 ratio: 70% for training (model development) and 30% 
for testing (model validation) using the sample() function 
in RStudio Team. The PCA and OPLS–DA models were 
constructed using MKS Umetrics AB SIMCA software, 
version 14.1.0.2047 (Umea, Sweden), while the data 
subset randomization (7:3 ratio), KMO analysis, Bartlett’s 
test of sphericity, Pearson correlation, and ANN model 
was developed using RStudio Team (Version 1.4.1717): 
Integrated Development Environment for R, 2015. A 
significance level of α = 0.05 was used.

RESULTS AND DISCUSSION

ASSESSMENT OF THE GELATIN BIG DATA

The dataset employed in this study consisted of 18 rows 
representing the chromatographic peak area of amino acids 
and 210 columns of gelatin samples, resulting in 3,780 data 
points. The Kaiser-Meyer-Olkin (KMO) analysis assesses 
the adequacy of the dataset, showing an overall measure of 
sampling adequacy (MSA) of 0.86. The KMO index ranges 
from 0 to 1, where an index exceeding 0.5 indicates the 
appropriateness of samples (Jameel & Al-Salami 2023). 
Before conducting the Principal Component Analysis 
(PCA), Bartlett’s test ascertains the validity of PCA 
(Jameel & Al-Salami 2023) by verifying the significant 
interconnections among 18 amino acids across 210 gelatin 
samples. Bartlett’s test yielded a p–value < 0.001, denoting 
significant intercorrelations. Subsequently, the relationships 
among the 18 amino acids were examined through 
Pearson correlation, as depicted in Table 1. The Pearson 
correlation analysis showed that, out of 153 correlations, 
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only eight were not statistically significant. Among these, 
six involved hydroxyproline’s relationships with arginine, 
cystine, tyrosine, valine, isoleucine, and leucine. This high 
prevalence of significant correlations can be attributed 
to the use of a single parameter (chromatographic peak 
area), in contrast to another study that implements multiple 
parameters such as color, smell, taste, hardness, viscosity 
index, adhesiveness, and acidity (Stangierski, Weiss & 
Kaczmarek 2019). Additionally, aspartic acid and glutamic 
acid exhibited the strongest positive correlation (r = 0.986, 
p–value < 0.001), suggesting that both amino acids are 
derived from the deamination of asparagine and glutamine, 
respectively (Ahmad et al. 2024). Conversely, proline and 
hydroxyproline showed the weakest positive correlation (r 
= 0.146, p < 0.05), which may reflect the conversion of 
proline into hydroxyproline through hydroxylation (Amira 
Aqilah et al. 2019).

To reduce the dimensionality of the dataset while 
retaining important information, a PCA model was 
developed, and Figure 1 illustrates the PCA score plot. 
Consequently, 25, 22, and 14 outliers corresponded to 
porcine, bovine, and fish gelatin, respectively (Figure 
1(a)). Outlier selection was based on the sample location, 
wherein any sample located outside the tolerance ellipse 
(Hotelling’s T² statistic at p = 0.05) and clustering with a 
different group, was considered an outlier. Furthermore, 
there was unclear discrimination among the porcine 
and bovine gelatin samples. This is due to the highly 
similar amino acid compositions of porcine and bovine 
gelatins, both of which contain high concentrations of 
hydroxyproline, resulting in minimal differences that make 
them indistinguishable in the PCA score plot (Yuswan et 
al. 2021). A similar observation has been reported in a 
previous study on authentication and quantification of 
porcine adulterant in gelatin and marshmallow (Muhamad 
Shirwan et al. 2021). After outliers’ exclusion (Figure 
1(b)), the PCA model underwent refinement, showing 
the first two principal components (PCs). Notably, PC1 
and PC2 contributed 0.843 and 0.108, respectively. Both 
PC1 and PC2 accounted for a total variance (R2X) of 0.95, 
elucidating the dataset with a predictive ability (Q2) of 
0.933. A previous study on gelatin and collagen as halal-
critical food ingredients reported low R2X (0.643) and 
Q2 (0.547) (Yuswan et al. 2021), which might be due to 
the presence of diverse samples such as carrageenan and 
various test samples. In contrast, this study exclusively 
focused on gelatin samples for non-halal gelatin prediction.

ORTHOGONAL PARTIAL LEAST SQUARES DISCRIMINANT 
ANALYSIS (OPLS-DA) MODEL

An OPLS-DA model predicts non-halal gelatin. Initially, 
the clean dataset, consisting of 149 gelatin samples (after 
outliers’ exclusion), was partitioned into training and 
testing datasets based on subset randomization at a 7:3 
ratio. The model was constructed using the training dataset 

(100 gelatin samples), and subsequently, the testing dataset 
(49 gelatin samples) assessed the model’s recognition 
accuracy and predictive ability (Oliveri et al. 2021). Figure 
2 illustrates the score and loading plot of the training and 
testing OPLS-DA model. As anticipated, the training OPLS-
DA score plot exhibited distinct discrimination (Figure 
2(a)), effectively segregating all gelatin samples into three 
distinct groups. When incorporating the testing dataset into 
the established training OPLS-DA model, a 100% number 
of correct classifications was achieved for the same gelatin 
sample groups on the predicted OPLS-DA testing score plot 
(Figure 2(b)). However, large intra-variance for porcine 
gelatin samples was observed as compared to others gelatin 
samples. Several factors may contribute to the observed 
intra-variance among porcine gelatin samples, including 
source heterogeneity (arising from differences in animal 
age, geographic origin, and supplier-related factors), 
processing differences (such as variations in extraction 
and purification methods), and analytical variability (such 
as instrument sensitivity, operator technique, and sample 
preparation inconsistencies) (Liu & Locasale 2017). This 
intra-variance does not significantly affect the OPLS-DA 
model, as the R²X values for both the training and testing 
models are nearly identical. Conversely, the loading plot 
of the OPLS-DA model delineated the distribution of 18 
amino acids with their respective contributions to predicted 
gelatin samples (Figure 2(c) and 2(d)). Notably, only 
hydroxyproline demonstrated a negative correlation with 
others among these amino acids. A previous study reported 
that hydroxyproline was a signature amino acid in gelatin 
and collagen for the initial detection of halal-critical food 
ingredients (Yuswan et al. 2021).

Table 2 presents a summary of discrimination 
results from the OPLS-DA model of the source of gelatin 
samples. For the training of the OPLS-DA model, the score 
plot effectively segregated gelatin samples with 99.7% 
explanatory power for a variation on X (R2X = 0.997), 
thereby indicating that species constitutes the primary factor 
influencing the distinct sources of gelatin. Furthermore, 
the OPLS-DA model training demonstrated 99.2% 
goodness of fit (R2Y = 0.992) with a predictive accuracy 
of 99.1% (Q2 = 0.991). To ensure that the OPLS-DA model 
training avoided overfitting, random cross-validation was 
conducted during its establishment using the training 
dataset (Liu et al. 2023). As inferred from the random 
cross-validation, the Root Mean Square Error (RMSE) for 
porcine, bovine, and fish gelatin were estimated at 0.059, 
0.045, and 0.026, respectively. These values indicate the 
accuracy of the OPLS-DA model training in predicting the 
non-halal gelatin samples. The RMSE can be defined as a 
dimensionless statistic and serves as a valuable metric for 
model evaluation (Hang et al. 2022).

Nevertheless, the OPLS-DA model testing decreased, 
although 100% of predictions were achieved for the testing 
dataset (Table 2). The accuracy was computed by class 
prediction rates (Supplementary 1). Both explanatory 



1917

TA
BL

E 
1.

 P
ea

rs
on

 c
or

re
la

tio
n 

be
tw

ee
n 

18
 a

m
in

o 
ac

id
s b

as
ed

 o
n 

ch
ro

m
at

og
ra

ph
ic

 p
ea

k 
ar

ea

As
pa

rt
ic

. 
Ac

id
Se

ri
ne

G
lu

ta
m

ic
. 

Ac
id

G
ly

ci
ne

H
yd

ro
xy

pr
ol

in
e

H
is

tid
in

e
Ar

gi
ni

ne
Th

re
on

in
e

Al
an

in
e

Pr
ol

in
e

C
ys

tin
e

Ty
ro

si
ne

Va
lin

e
M

et
hi

on
in

e
Ly

si
ne

Is
ol

eu
ci

ne
le

uc
in

e
Ph

en
yl

al
an

in
e

As
pa

rt
ic

. A
ci

d

Se
ri

ne
0.

72
1*

**

G
lu

ta
m

ic
. A

ci
d

0.
98

6*
**

0.
65

3*
**

G
ly

ci
ne

0.
79

8*
**

0.
74

7*
**

0.
81

2*
**

H
yd

ro
xy

pr
ol

in
e-

0.
42

5*
**

-0
.5

19
**

*-
0.

28
9*

**
-0

.0
84

H
is

tid
in

e
0.

54
1*

**
0.

41
5*

**
0.

51
3*

**
0.

40
9*

**
-0

.2
71

**
*

Ar
gi

ni
ne

0.
74

7*
**

0.
73

5*
**

0.
77

5*
**

0.
92

3*
**

0.
05

5
0.

48
3*

**

Th
re

on
in

e
0.

72
7*

**
0.

94
6*

**
0.

67
0*

**
0.

81
9*

**
-0

.4
11

**
*

0.
48

4*
**

0.
84

2*
**

Al
an

in
e

0.
97

2*
**

0.
71

0*
**

0.
98

9*
**

0.
86

7*
**

-0
.2

44
**

*
0.

49
8*

**
0.

84
6*

**
0.

73
9*

**

Pr
ol

in
e

0.
81

5*
**

0.
38

6*
**

0.
89

3*
**

0.
76

2*
**

0.
14

6*
0.

45
7*

**
0.

78
2*

**
0.

44
9*

**
0.

89
4*

**

C
ys

tin
e

0.
47

4*
**

0.
13

3
0.

51
4*

**
0.

34
0*

**
-0

.0
04

0.
24

6*
**

0.
33

5*
**

0.
14

1*
0.

47
6*

**
0.

54
3*

**

Ty
ro

si
ne

0.
62

8*
**

0.
42

0*
**

0.
62

1*
**

0.
60

6*
**

-0
.0

46
0.

75
9*

**
0.

67
9*

**
0.

54
0*

**
0.

61
1*

**
0.

64
6*

**
0.

35
6*

**

Va
lin

e
0.

85
7*

**
0.

45
5*

**
0.

92
5*

**
0.

78
7*

**
0.

06
6

0.
49

1*
**

0.
80

7*
**

0.
51

3*
**

0.
92

6*
**

0.
99

2*
**

0.
56

2*
**

0.
66

1*
**

M
et

hi
on

in
e

0.
76

2*
**

0.
95

4*
**

0.
67

9*
**

0.
74

4*
**

-0
.6

08
**

*
0.

49
7*

**
0.

72
6*

**
0.

97
1*

**
0.

72
5*

**
0.

38
1*

**
0.

14
3*

0.
49

7*
**

0.
45

7*
**

Ly
si

ne
0.

78
3*

**
0.

50
9*

**
0.

79
0*

**
0.

60
7*

**
-0

.2
71

**
*

0.
38

2*
**

0.
57

0*
**

0.
51

0*
**

0.
77

7*
**

0.
68

9*
**

0.
35

3*
**

0.
43

3*
**

0.
71

1*
**

0.
53

5*
**

Is
ol

eu
ci

ne
0.

81
2*

**
0.

60
1*

**
0.

87
7*

**
0.

84
6*

**
0.

06
0

0.
34

0*
**

0.
87

5*
**

0.
65

3*
**

0.
92

1*
**

0.
90

2*
**

0.
40

6*
**

0.
45

8*
**

0.
91

2*
**

0.
56

8*
**

0.
68

3*
**

le
uc

in
e

0.
82

9*
**

0.
43

0*
**

0.
90

6*
**

0.
78

1*
**

0.
12

0
0.

45
9*

**
0.

80
6*

**
0.

49
0*

**
0.

91
2*

**
0.

99
5*

**
0.

54
2*

**
0.

63
1*

**
0.

99
7*

**
0.

42
3*

**
0.

69
9*

**
0.

92
6*

**

Ph
en

yl
al

an
in

e
0.

36
4*

**
0.

31
7*

**
0.

43
2*

**
0.

66
7*

**
0.

50
3*

**
0.

41
7*

**
0.

81
9*

**
0.

48
4*

**
0.

49
7*

**
0.

65
0*

**
0.

24
6*

**
0.

72
8*

**
0.

62
9*

**
0.

29
8*

**
0.

27
9*

**
0.

61
0*

**
0.

64
5*

**
St

at
is

tic
al

ly
 si

gn
ifi

ca
nt

 c
or

re
la

tio
ns

 a
re

 d
en

ot
ed

 b
y 

an
 a

st
er

is
k.

 T
he

 sy
m

bo
ls

 *
 a

nd
 *

**
 re

pr
es

en
t p

-v
al

ue
s <

 0
.0

5 
an

d 
0.

00
1,

 re
sp

ec
tiv

el
y



1918

power for a variation on X and goodness of fit were 
dropped to 88.4% (R2X = 0.884) and 38.3% (R2Y = 
38.3%), respectively. The predictive accuracy also dropped 
to 37.9% (Q2 = 0.379), indicating that the OPLS-DA 
model performed poorly in predicting non-halal gelatin. 
R²Y represents the proportion of variance in the response 
variable (Y) explained by the model, whereas Q² reflects 
the model’s predictive ability based on cross-validation. A 
large discrepancy between R²Y and Q² typically indicates 
overfitting. In this study, although both R²Y and Q² values 
dropped, the difference between them remained small 
(R²Y – Q² = 0.004). This suggests that the decrease in these 
values is more likely due to limited model generalizability 
caused by class imbalance after outlier removal, rather than 
overfitting. This interpretation is supported by a previous 
metabolomics-based comparative analysis, in which one of 
the OPLS-DA models reported R²X = 0.227, R²Y = 0.477, 
and Q² = 0.129 (Zhang et al. 2022).

ARTIFICIAL NEURAL NETWORK (ANN) MODEL

This study employed an ANN model to predict non-halal 
gelatin based on the chromatographic peak area of 18 
amino acids in 210 gelatin samples utilized as input data. 
The ANN was trained using an independent training dataset 
comprising 143 gelatin samples and subsequently validated 
using another independent testing dataset consisting of 67 
gelatin samples. Table 3 shows the parameters utilized for 
developing the ANN model. There are 18 combinations of 
parameters in constructing and training the ANN model.

The ANN model was a multilayer input feed-forward 
architecture, incorporating a single hidden layer and 

output. The number of multilayer inputs was the same as 
that of 18 amino acids. A previous study indicated that a 
single layer is sufficient for the ANN model to approximate 
any complex nonlinear functions (Oliveri et al. 2021). 
Meanwhile, determining the number of neurons within 
the hidden layer significantly influenced the estimated 
parameter (NP) count, encompassing weights and biases. 
In this study, the range of neurons tested within the hidden 
layer extended from 1 to 9, ensuring that the total count 
of NP remained below the original dataset size (210) for 
optimum performance (Gonçalves Neto et al. 2021). As 
the ANN model was constructed for cluster prediction, 
the output was a single layer with possible outputs being 
porcine, bovine, fish, or unknown. Figure 3 illustrates the 
schematic model of the ANN model. 

The resilient backpropagation (rprop) was the 
algorithm to determine the optimal performance of the 
ANN model. Generally, the rprop algorithm with the 
hyperbolic tangent (tanh) activation function yielded the 
best predictions for the non-halal gelatin, with an R2 value 
of 0.913 and an accuracy of 0.985. An R2 value exceeding 
0.98 denotes a strong alignment between observed and 
predicted data (Stangierski, Weiss & Kaczmarek 2019). 
This algorithm and activation function also achieved the 
lowest RMSE of 0.244 among other combinations. This 
RMSE signifies the deviation for the ANN model, where a 
low value indicates model robustness (Stangierski, Weiss 
& Kaczmarek 2019). In this case, the ANN architecture 
of 1, 2 and 4 are the best combination parameters (Table 
3). These ANN models accurately predict gelatin samples 
except for one sample of fish gelatin, resulting in an RMSE 
value of 0.471 for fish gelatin.

FIGURE 1. Score plot for (a) the Principal Component Analysis (PCA) 
model including outliers and (b) the PCA model excluding outliers
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TABLE 2. Summary of discrimination results from the OPLS-DA model of the source of gelatin samples

Model 
OPLS-DA

Number of samples Σ Number of correct 
classifications

Σ Root mean square error 
(RMSE)

R2X R2Y Q2

Porcine Bovine Fish Porcine Bovine Fish Porcine Bovine Fish
Training 43 26 31 100 43 26 31 100 0.059 0.045 0.026 0.997 0.992 0.991
Testing 22 12 15 49 22 12 15 49 0.318 0.241 0.260 0.884 0.383 0.379

149 149
The training and testing dataset is a subset of the 7:3 ratio from each source of gelatin samples. Σ = total. R2X = variance explained by the X matrix, 
R2Y = variance explained by the Y matrix, Q2 = goodness of predictive power, RMSE = measure of the difference between a model’s predicted and 
actual values as estimated from a cross-validation

FIGURE 2. OPLS-DA consists of (a) training score plot shows a clear 
discrimination of training dataset, (b) testing score plot shows a 

clear prediction of testing dataset, (c) training loading plot shows a 
prediction of training (5-points star) dataset based on species among 

the 18 amino acids, and (d) loading plot shows a prediction of training 
(5-points star) and testing (4-points star) dataset based on species 

among the 18 amino acids
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FIGURE 3. The schematic model of an artificial neural network (ANN). 
Circles symbolize neurons, with 18 multilayer inputs (amino acids), a 
single hidden layer consisting of 4 neurons in the middle, and a single 
output neuron representing cluster for porcine gelatin, bovine gelatin, 
fish gelatin, or unknown. Neurons labelled with number 1 represent 

biases, while arrows annotated with number represent weights. 
The biases serve as additional input to neurons (excluding input 

neurons) and represent threshold of the neuron’s activation function 
to minimize the error of the ANN. The weights reflect the strength 
of connection between two neurons and are adjusted iteratively to 
minimize the error between the predicted and actual output. These 

numerical parameters are optimized for the ANN model after 15029 
iterations through the training dataset

COMPARISON OF ORTHOGONAL PARTIAL LEAST SQUARE 
DISCRIMINANT ANALYSIS (OPLS-DA) AND ARTIFICIAL 

NEURAL NETWORK (ANN) MODELS

OPLS-DA and ANN represent machine learning models 
that are widely employed in multivariate data analysis 
across diverse disciplines such as chemistry, biology, 
and engineering (Chang et al. 2022; Guiné 2019; Liu et 
al. 2023; Tsuchiya & Tomii 2020; Zheng et al. 2011). In 
this study, both OPLS-DA and ANN models demonstrate 
efficacy in predicting non-halal gelatin based on the 
chromatographic peak area of amino acids. A comparative 
analysis between the testing OPLS-DA and optimal ANN 
models (ID 1, 2, and 4 in Table 3) focuses on accuracy, 
coefficient determination (R2), and variation (RMSE). 

Regarding accuracy, the OPLS-DA model achieved 
100% of correct classifications with no unknown prediction 
(Table 3). This performance is due to the exclusion of all 
outliers through principal component analysis before 
constructing the OPLS-DA model (Liu et al. 2023; 
Oliveri et al. 2021; Wang et al. 2023). The ANN models 

demonstrated robustness by maintaining high accuracy 
(98.5%) upon training on input datasets containing outliers. 
These advantages result from their nonlinear modeling 
capabilities, robust training algorithms that can detect and 
mitigate the influence of outliers, and high performance 
in complex data (Gbashi et al. 2023). Remarkably, the 
optimal ANN models (ANN ID 1, 2, and 4 in Table 3) 
did not generate any unknown predictions and accurately 
classified all gelatin samples, except for one incorrect 
prediction on fish gelatin samples. This observation may 
be attributed to the presence of outliers in the training 
dataset, which can induce significant oscillations in the 
performance of the ANN model. Therefore, the exclusion 
of outliers is recommended in future studies (Gbashi et al. 
2023).

R2 represents the proportion of the variance in the 
dependent variables that is predictable from the independent 
variables (Bhagya Raj & Dash 2022; Gonçalves Neto et al. 
2021; Stangierski, Weiss & Kaczmarek 2019). In this case, 
R2 indicates the variance in chromatographic peak area that 
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TABLE 3. The parameters used for the development of the artificial neural network (ANN) model. The ANN identity 1, 
2, and 4 are the best combination parameter

ANN ID Activation 
function

Number 
of neurons 
in single 
hidden 
layer

NP Actual* vs prediction RMSE Accuracy R2

Porcine 
(30)

Bovine 
(19)

Fish (18) ? Porcine Bovine Fish Σ

√ x √ x √ x
1 tanh 1 21 30 0 19 0 17 1 0 0.000 0.000 0.471 0.244 0.985 0.913
2 2 41 30 0 19 0 17 1 0 0.000 0.000 0.471 0.244 0.985 0.913
3 3 61 30 0 19 0 17 0 1 0.000 0.000 0.707 0.367 0.985 0.804
4 4 81 30 0 19 0 17 1 0 0.000 0.000 0.471 0.244 0.985 0.913
5 5 101 29 1 19 0 17 1 0 0.183 0.000 0.471 0.273 0.970 0.891
6 6 121 29 1 19 0 17 1 0 0.183 0.000 0.471 0.273 0.970 0.891
7 7 141 29 1 19 0 17 0 1 0.183 0.000 0.707 0.386 0.970 0.782
8 8 161 29 1 19 0 16 2 0 0.183 0.000 0.527 0.299 0.955 0.869
9 9 181 29 1 19 0 16 2 0 0.183 0.000 0.333 0.212 0.955 0.935
10 logistic 1 21 1 29 19 0 0 18 0 0.983 0.000 1.000 0.838 0.299 -0.025
11 2 41 29 1 19 0 17 1 0 0.183 0.000 0.471 0.273 0.970 0.891
12 3 61 29 1 19 0 17 0 1 0.183 0.000 0.707 0.386 0.970 0.782
13 4 81 29 1 19 0 17 0 1 0.183 0.000 0.707 0.386 0.970 0.782
14 5 101 29 1 19 0 17 0 1 0.183 0.000 0.707 0.386 0.970 0.782
15 6 121 29 1 19 0 17 0 1 0.183 0.000 0.707 0.386 0.970 0.782
16 7 141 29 1 19 0 17 1 0 0.183 0.000 0.471 0.273 0.970 0.891
17 8 161 29 1 19 0 17 1 0 0.183 0.000 0.471 0.273 0.970 0.891
18 9 181 29 1 19 0 16 1 1 0.183 0.000 0.745 0.405 0.955 0.760

*Actual number represents in bracket, tanh = hyperbolic tangent, NP = total quantity of estimated parameters, √ = correct prediction, x = wrong 
prediction, ? = unknown prediction, Σ = total, RMSE = root mean square error, R2 = determination coefficient

is predictable from the amino acid composition. A good 
model for predicting non-halal gelatin should demonstrate 
a high R2 value. The OPLS-DA model has two types of R2 
values that refer to the dataset (R2X = 0.997) and sample 
clusters (R2Y = 1.00). However, the ANN models exhibited 
a slightly low R2 of 0.913. This trend aligns with findings 
from a previous study, where the R2 value for the partial 
least square regression (PLSR) model exhibits a slightly 
higher than the ANN model (Zheng et al. 2011). 

The low RMSE value indicates the robustness of the 
machine learning model (Zheng et al. 2011). In this case, 
the OPLS-DA model demonstrated a lower RMSE value 
of 0.130, in contrast to the ANN models (RMSE = 0.244). 
A lower RMSE value typically signifies a better predictive 
model. However, the two models have no significant 
difference in RMSE values. This observation aligns with 
a previous study on applying ANN and PLSR to predict 
changes in nutritional components in red bayberry juice 
(Zheng et al. 2011).

CONCLUSION

This study compared the OPLS-DA and ANN models 
to ascertain their performance in predicting non-halal 
gelatin. The results showed that both models displayed 
competence in predicting non-halal gelatin samples. The 
OPLS-DA model demonstrated better accuracy, coefficient 
of determination (R2), and root mean square error (RMSE) 
compared to the ANN model. This performance was due to 
the inherent structure of OPLS-DA, which performed outlier 
removal and provided a comprehensive discrimination 
overview. Consequently, the OPLS-DA is practical for 
obtaining direct insights into the system, particularly the 
interaction between multiple groups of samples. However, 
the ANN model presents distinct advantages owing to its 
resilience towards outliers and capability to yield immediate 
output results in predicting non-halal gelatin samples. ANN 
offers distinct advantages in processing large, complex, 
and nonlinear datasets, which are characteristic of real-
time industrial applications. Through robust training 
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algorithms, ANN can mitigate the influence of outliers 
during the modeling process, enabling the network to 
learn complex patterns even in the presence of outlier data. 
Further research is recommended in expanding datasets, 
the attribute of outliers, investigating alternative machine 
learning models, incorporating additional parameters, and 
collaborating with industry stakeholders to enhance the 
accuracy and reliability of non-halal gelatin prediction 
through artificial intelligence.
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SUPPLEMENTARY 1. The accuracy was computed by class prediction rates

Obs ID 
(Primary)

Obs ID ($ 
Class ID)

M2. YVar 
PS ($M2. 

DA (Testing 
Porcine))

M2. YPred 
PS[2] ($M2. 
DA(Testing 
Porcine))

M2. YVar 
PS ($M2. 

DA(Testing 
Bovine))

M2. YPred 
PS[2] ($M2. 
DA(Testing 

Bovine))

M2. YVar 
PS ($M2. 

DA(Testing 
Fish))

M2. YPred 
PS[2] ($M2. 
DA(Testing 

Fish))
P1 Testing 

Porcine
0 0.532168 0 0.0583115 0 0.0857265

P6 Testing 
Porcine

0 0.468441 0 0.154884 0 0.0504751

P7 Testing 
Porcine

0 0.413008 0 0.2233 0 0.0356546

P19 Testing 
Porcine

0 0.513032 0 0.147077 0 0.0143999

P20 Testing 
Porcine

0 0.58584 0 0.0554164 0 0.0356947

P26 Testing 
Porcine

0 0.585743 0 0.0463305 0 0.0450248

P35 Testing 
Porcine

0 0.911005 0 -0.279291 0 0.05493

P36 Testing 
Porcine

0 0.640257 0 0.066292 0 -0.0290676

P47 Testing 
Porcine

0 0.660823 0 0.092811 0 -0.0763173

P53 Testing 
Porcine

0 0.817858 0 -0.136144 0 0.0013819

P59 Testing 
Porcine

0 0.700641 0 0.0337175 0 -0.0555593

P60 Testing 
Porcine

0 0.599965 0 0.13411 0 -0.0582242

P61 Testing 
Porcine

0 0.682411 0 -0.0191571 0 0.0161714

P62 Testing 
Porcine

0 0.696338 0 -0.0286442 0 0.0120669

P63 Testing 
Porcine

0 0.753475 0 -0.103061 0 0.0313046

P66 Testing 
Porcine

0 0.640257 0 0.066292 0 -0.0290676

P67 Testing 
Porcine

0 0.580299 0 0.137041 0 -0.0417928

P71 Testing 
Porcine

0 0.841537 0 -0.196033 0 0.0388777

P78 Testing 
Porcine

0 0.553935 0 0.196357 0 -0.0760562

P83 Testing 
Porcine

0 0.817858 0 -0.136144 0 0.0013819

P88 Testing 
Porcine

0 0.702331 0 0.0468373 0 -0.0705612

continue to next page
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P89 Testing 
Porcine

0 0.700641 0 0.0337175 0 -0.0555593

B2 Testing 
Bovine

0 0.0589384 0 0.60026 0 0.00200574

B18 Testing 
Bovine

0 -0.000308424 0 0.661311 0 -0.00156473

B24 Testing 
Bovine

0 0.0321463 0 0.600757 0 0.0279451

B27 Testing 
Bovine

0 -0.0282305 0 0.669257 0 0.017918

B34 Testing 
Bovine

0 0.0258904 0 0.627964 0 0.0064678

B44 Testing 
Bovine

0 0.0593272 0 0.636199 0 -0.0349032

B45 Testing 
Bovine

0 -0.0019311 0 0.698813 0 -0.0380781

B46 Testing 
Bovine

0 0.0910209 0 0.606746 0 -0.0362509

B49 Testing 
Bovine

0 0.0442484 0 0.633978 0 -0.017763

B52 Testing 
Bovine

0 0.0107719 0 0.664249 0 -0.0154871

B55 Testing 
Bovine

0 0.0295166 0 0.65099 0 -0.0205126

B58 Testing 
Bovine

0 0.000937194 0 0.659886 0 -0.00134601

F7 Testing Fish 0 -0.0225064 0 -0.00856388 0 0.701152
F8 Testing Fish 0 -0.0201115 0 -0.0185483 0 0.708935
F12 Testing Fish 0 -0.0482744 0 0.0816723 0 0.634876
F14 Testing Fish 0 -0.0142483 0 -0.0169536 0 0.701528
F25 Testing Fish 0 -0.0545754 0 0.0250485 0 0.698643
F27 Testing Fish 0 -0.0484214 0 0.0020093 0 0.715984
F29 Testing Fish 0 -0.0551773 0 -0.0364854 0 0.761775
F32 Testing Fish 0 -0.0779026 0 0.138225 0 0.606643
F33 Testing Fish 0 -0.00355253 0 -0.0423986 0 0.716831
F34 Testing Fish 0 -0.0297909 0 -0.0189659 0 0.718913
F36 Testing Fish 0 -0.000722051 0 0.0582066 0 0.611791
F37 Testing Fish 0 -0.0225064 0 -0.00856388 0 0.701152
F50 Testing Fish 0 0.0342072 0 -0.100714 0 0.73883
F52 Testing Fish 0 -0.036506 0 0.0841553 0 0.620737
F56 Testing Fish 0 -0.116594 0 0.156334 0 0.626426
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