

Q Search Sources Sci

0

Abstract

Author keywords

Funding details

Corresponding auth

Back

Wear Characteristics of LAM-Processed Hybrid eSiC-GO Coated Ti-Alloy

Science and Technology Indonesia + Article + Open Access + 2025 + DOI: 10.26554/sti.2025.10.4.1198-1208

Malegue, Md Abdul a 🔀 : Napīng, Rosmīa : Sarīfuddin, Norshahīda a : Rahman, Md Mustafizur b : Zulkifli, Nurin Wahidah 🖰

^a Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, 50728, Malaysia

Show all information

Full text ✓ Export ✓ 🔲 Save to list

Document Impact Cited by (0) References (41) Similar documents

Abstract

This study concentrates on the wear characteristics of Ti-alloy coated with environmentally friendly silicon carbide-graphene oxide (eSiC-GO) using the liquid additive manufacturing (LAM) technique. Waste rice husk was utilized to extract eSiC material. The hybrid coating of eSiC-GO on Ti-6Al₄V alloy was synthesized via LAM technique. Nine wear test samples were obtained from the Taguchi design of experiments variety of process parameters including current (70, 80, and 90 A), voltage (20, 25, and 30 V), gas flow rate (15, 20, and 25 L/min), eSiC-GO composition (95-5, 90-10, and 85-15 wt%), and a fixed traverse speed (1 mm/s). An analysis of variance (ANOVA) was performed using design software to ascertain the optimal parameter levels for the LAM technique. Optimal hardness, friction, and wear were achieved in experimental run 8, as evidenced by the experimental results. The findings conclude eSiC-GO coated LAM-processed significantly enhanced friction and wear properties. LAM integrates sustainable materials with additive manufacturing advantages to develop hybrid coatings that augment friction and wear resistance. Consequently, aerospace, automotive, and energy can make tangible and measurable contributions to the United Nations' Sustainable Development Goals. © 2025 The Authors.

Detailed information

×

Document type	Article
Open access	Gold
DOI	10.26554/sti.2025.10.4.1198-1208
EID	2-52.0-105018485533
Original language	English
Publication date	October 2025
PubMed ID	
Source type	Journal
ISSN	25804405
Publisher	Magister Program of Material
	Sciences, Graduate School of
	Sriwijaya University
Publication year	2025
Source title	Science and Technology Indonesia
Volume	10
Issue	4

Authors (5)

Pages

Naping, Rosmia a

1198 - 1208